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Abstract. The broken-circuit complex is fundamental to the shellability and homology of matroids,
geometric lattices, and linear hyperplane arrangements. This paper introduces and studies the
0-system of a matroid, /3nbc(M), whose cardinality is Crapo's /3-invariant. In studying the shellability
and homology of base-pointed matroids, geometric semilattices, and afflne hyperplane arrangements,
it is found that the /3-system acts as the afflne counterpart to the broken-circuit complex. In
particular, it is shown that the /3-system indexes the homology facets for the lexicographic shelling of
the reduced broken-circuit complex BC(M), and the basic cycles are explicitly constructed. Similarly,
an EL-shelling for the geometric semilattice associated with M is produced,_and it is shown that the
/3-system labels its decreasing chains. Basic cycles can be carried over from BC(M). The intersection
poset of any (real or complex) afflne hyperplane arrangement A is a geometric semilattice. Thus
the construction yields a set of basic cycles, indexed by /3nbc(M), for the union \JA of such an
arrangement.
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0. Introduction

If A is a finite arrangement of linear hyperplanes in Rd or Cd, then the basic
combinatorial structure is the geometric lattice L of intersections, corresponding
to a matroid M. In this situation the broken-circuit complex BC(M) indexes bases
for the homology and the homotopy type of the link, i.e., the intersection of \J A
with the unit sphere in Rd, respectively Cd; see Bjorner and Ziegler [9].

If A is an affine arrangement of hyperplanes in Kd or Cd, then the intersection
poset is a geometric semilattice L°. Such lattices were studied by Wachs and
Walker [17], who also showed that L° uniquely determines the intersection lattice
L of the linearization of A and thus the affine matroid; that is, L° determines the
pair (M, g), where g is the distinguished element corresponding to the hyperplane
at infinity. Here L° is the poset of all flats of M that do not contain g.

The purpose of this paper is to introduce and study the ^-system 3nbc(M),
which is the affine counterpart to the broken-circuit complex. In particular, we
show that /3nbc(M) is the natural indexing set for the homology of the reduced
broken-circuit complex BC(M) of the geometric semilattice L° and thus of the
affine arrangement (JA. (The existence of such indexing systems was previously
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established by Dayton and Weibel [13] for sufficiently generic arrangements; see
Section 4.)

The key technical steps in our work are the construction of the basic spherical
cycles in the reduced broken-circuit complex (Theorem 1.7) and of an explicit
EL-shelling for the geometric semilattice (Theorem 2.2).

This paper is in many aspects a continuation (and affine counterpart) of
Bjorner's work [3]. Therefore it contains only very brief sketches of the basic
facts about broken-circuit complexes and shellability, which can all be found in
[3]. For background material on shellability see also [2], [7], and the references
therein; for broken circuit complexes see also [8] and [11]; for the geometry of
affine arrangements see [18].

For history we refer to [3, Section 7.11]. The broken-circuit construction was
pioneered by Whitney and Rota, and the broken-circuit complex was introduced by
Wilf and was further studied by Brylawski; see [3] for references. The shellability
of the broken-circuit complex was first proved by Billera and Provan and in the
lexicographic version by Bjorner, who also identified the close connection between
lexicographic shellability and basis activities. The b-invariant was introduced by
Crapo. The relevance of geometric lattices and semilattices and the 3-invariant
to the study of arrangements was discovered by Zaslavsky. Finally, the theory
of geometric semilattices and their shellability is due to Wachs and Walker.

1. Broken-Circuit Complexes and b-Systems

Let M be a (finite) matroid. The construction of BC(M) and /3nbc(M) relies
on a linear ordering on the ground set E. In the following the elements of E
are identified with the natural numbers in [n] := {1, 2, ..., n}, which specifies a
linear order "<" on E = [n]. As explained in [3] the broken-circuit construction
depends on this linear ordering but its main properties do not. It turns out that
for the affine situation the "correct" choice is to assume that g = 1, i.e., the first
element of the matroid corresponds to the hyperplane at infinity.

The key notion is that of a broken circuit: a set of the form C\min(C)
obtained by deleting the smallest element of a circuit. The broken-circuit complex
BC(M) is the simplicial complex of all subsets of [n] that do not contain a broken
circuit.

It is easy to see that BC(M) is a pure, (r - 1)-dimensional simplicial complex
by using the fact that the lexicographically first basis of any flat cannot contain
a broken circuit. The facets (maximal faces) of BC(M) are bases of M; we will
refer to them as the set nbc(M) of no-broken-circuit bases, or nbc-bases, of M.

For any basis B of M and b e B, let c*(B, b) denote the basic cocircuit: the
complement of the hyperplane spanned by B\b. Similarly, for p & B let c(B, p)
denote the basic circuit: the unique circuit in B U p. Clearly, b g c*(B, b) and
P € c(B, p).

284
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LEMMA 1.1. [3, Lemma 7.3.1]. If B is a basis, b€B,p£B, then

In the following B will always denote a basis. An element b e B is internally
active if it is the smallest element of c*(B, b). The set of internally active elements
with respect to B is denoted by IA(B). Similarly, p & B is externally active if it
is the smallest element of c(B, p). The set of externally active elements with
respect to B is denoted by EA(B).

Note that B e nbc(M) holds if and only if EA(B) = 0, by definition. Also, 1
is always active, either internally (if 1 € S) or externally. Thus 1 e EA(B) U IA(B)
for all bases B. In particular, every facet of BC(M) contains 1, so the broken
circuit complex is a cone with apex 1 over the reduced broken-circuit complex
BC(M) := {A\1 : A e BC(M)} = {A' C [n]\1 : A' U 1 e BC(M)}. This BC(M) is a
pure (r - 2)-dimensional complex.

The following lemma is the key to the shellability of broken-circuit complexes.
(Our formulation is a slight improvement on [3, Lemma 7.3.2].)

LEMMA 1.2. If B is a basis and b e B, then B' := (B\b) U b' is a basis as well, for
b' := min c*(B, b). If B is an nbc-basis, then so is B'.

Proof. The case b = b' is trivial. For b'= b the first claim follows from Lemma
1.1. Assume that B' is not an nbc-basis; then there is an element a £ B' with
a = min c(B', a). If B is an nbc-basis, then we cannot have c(B', a) C B u a , so
we know b' e c(B' a). But this implies a < b' by definition of a, and it implies
a e c*(B', 6') = c"(B, b) by Lemma 1.1, thus a > b', Q

Let A be a pure simplicial complex of dimension d, that is, such that all
maximal faces have dimension d. We will make the usual identification of a
simplex in A with its set of vertices, so a face of the simplex corresponds to a
subset of its vertex set. A facet is a maximal face.

A shelling of A is a linear ordering of the set F of facets in such a way
that the intersection of any facet with the previous ones is a nonempty union of
(d - l)-dimensional faces. In other words, a shelling is a linear ordering of the

facets F1, F2,..., FN such that for all i > 1 the intersection Fi< n (Uj<iFj)) is a
nonempty union of facets of the boundary 9Fi.

In such a shelling Fi is a homology facet if the intersection with the pre-

vious facets is the whole boundary, i.e., if Fi n ( u j < i F j ) - 9fi- Write
F1 = {Fi1, ..., FiK} for the set of homology facets, and write F0 = F/F1\ for
the nonhomology facets. It is now easy to see that the restriction of the linear
order to F0 is a shelling order of (J F0 and that A) := UF0 is a contractible sub-
complex of A [3, Lemma 7.7.1]. Since contraction of a contractible subcomplex
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is a homotopy equivalence (contractible subcomplex lemma, [4, (10.2)]), every
shellable simplicial complex has the homotopy type of a wedge of spheres, where
the spheres are in bijection with the homology facets: A ~ A/Ao = VKSd.
Furthermore, there is a canonical set of basic cycles aj(1 < j < K) for the
reduced homology group Hd(A; Z) = ZK, which is uniquely determined (up to
sign) by the condition that the support of <j is contained in Fij uUF0. with a
±1 coefficient on Fij [3, Thm. 7.7.2].

Definition 1.3. Let M be a matroid on the ground set [n]. The /3-system of M
is the collection of bases

THEOREM 1.4 (see [3]). Let M be a matroid of rank r on the set [n].

(i) The lexicographic ordering of the facets of BC(M) is a shelling order for the
broken-circuit complex BC(M). The complex is a cone and hence contractible.

(ii) The lexicographic ordering of the facets of BC(M) is a shelling order for the
reduced broken-circuit complex BC(M). The set of homology facets for this
shelling is F1 = {B/1 : B e /9nbc(M)}.

Proof. It follows immediately from Lemma 1.2 that the lexicographic ordering
induces shellings [3, Thm. 7.4.3]. Furthermore, B\1 is a homology facet for BC(M)
if and only if for every b e B\1 there is an element b' such that B' := (B\b)uV is
an nbc-basis that is lexicographically smaller than B. But B' is lexicographically
smaller if and only if b' < b. If b is not internally active, then b' can be found
by Lemma 1.2, and if b is internally active, then b' cannot be found because it
must lie in c*(B, b) by Lemma 1.1. (See Figure 1 for an explicit example.) D

Figure 1. (a) Matroid (M, 1) on 5 points, rank 3 of [3, Example 7.3.5] and (b) reduced broken-circuit
complex BC(M). We get jnbc(M) = {135}. The basic cycle o135 corresponding to B = 135 covers
the whole complex.
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There are various ways to see that the cardinality of /3nbc(M) is Crapo's
/3-invariant /3(M) [12]. In fact, /3(M) is easily seen to be the coefficient t01

of the Time polynomial t(M; x, y) =• Etijxiyi [12, Thm. V]. A very elementary
derivation uses the fact that |/3nbc(M)| satisfies the same recursion as /?(M),
namely,B(M) = B(M\n) + j3(M/n) if n is neither a loop nor a coloop. Such a
recursion for the /3-system is given by Theorem 1.5 below. In this connection,
recall that there is a similar recursion [11, Prop. 3.2]

where BC(M/n) * n = {AUn: Ae BC(Af/n)}: this recursion holds unless n is
a loop of M, in which case BC(M) = 0. It is a basic tool for the homology
computations of [9].

THEOREM 1.5. Let M be a matroid on [n]. Then

Proof. We may assume n > 1. If B C [n] does not contain n, then it is immediate
from the definitions that B e /3nbc(M) <*=*• B £ /3nbc(M\n). If B C [n] and
n e B, then again it is immediate that B e /3nbc(M) ^ B\n e /?nbc(m/n). For
the converse, note that if n is the smallest element in c*(B, n), then n is a
coloop. D

Another basic property of the /3-invariant is that it is invariant under duality:
0(M) = /3(M*) if n > 1 [12, Thm. IV]. The following gives a "bijective proof"
for this by describing a bijection /?nbc(M) <—> /?nbc(M*). It was discovered by
Biggs [1, Prop. 14.2] for graphs. The straightforward generalization to matroids
was first given by Bjorner in the preprint version of [3].

THEOREM 1.6 (Biggs, Bjorner). Let M be a matroid on [n], with n>2. Then

Proof. Let B € /3nbc(M). Then clearly 1 e B and 2 g B. From 2 g EA(B)
we get 1 e c(B, 2), and by Lemma 1.1 B = (B\1 U 2 is a basis. Given that
EAM(B) = IAM-(N\B) and IAM(B) = EAM/'(M\B), it suffices to show that
EA(B) = {1} and IA(B) = 0.
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Assume a € EA(3); then a = min.4 for A := c(B, a). Now EA(B) = 0, so
2e A, and we conclude that o = 1. Hence Ek(6) = {1}.

Now assume that a e IA(B). If a = 2, then 1 £ c*(B, a), and thus 1 e B\1,
so 5 is not a basis. Thus we assume o > 2. From 1 £ c*(B, a) we get that
a g c(£, 1) =: A. We get 2 6 A, since otherwise J5 would contain the circuit A.
Thus A contains 1 and 2 but misses a. We conclude that c*(B, a) = c*(B, a)
and thus that a € IA(B). D

Consider a homology facet B e /?nbc(M), and define the map (p : B —>
[n], b i—> minc*(fl, 6). We write the image of this set as <f(B) = {p1, ..., pk}<
in increasing order, where B n <p(B) = IA(B) = {1} and thus <p(i) = 1 = p\,
while v(t) > 1 for b f 1.

Now set Ai := {pi} Uu-1(pi) for 1 < i < k, where A1 = {1}. The sets Ai form
a partition of B U v'(-B). With this we associate to B e /?nbc(M) the simplicial
complex

The following explicit construction of the basic cycles in BC(M) is a counterpart
to Bjorner's treatment of the independence complex given in [3, Thms. 7.8.3 and
7.8.4].

THEOREM 1.7. Let M be a matroid on [n] of rank r, and let Eb be the simplicial
complex associated to some B € /?nbc(M).

(i) B\\1 TB C BC(M): the complex TB is an (r - 2)-dimensional subcomplex
of the reduced broken-circuit_complex of M.

(ii) SB = Sr~2: the complex SB is homeomorphic to the (r — 2)-dimensional
sphere. _

(iii) The simplicial cycles VB associated with the spheres SB, for B € /3nbc(M),
form a basis for the integral homology group Hr_2(BC(M); Z).

Proof. For part (ii), consider D(Ai) := {F : F c Ai}. This is the boundary of a
simplex of dimension \Ai\ - 1 and is thus homeomorphic to the (|Ai| -2)-sphere.
But SB is the join of these spheres, so

The proof for (i) relies on the following technical fact:

(*) If 1 < i < j < k and bj e Aj/PJ, then Ai n c*(B, bj) = 0.

To see (*), note that c*(B, bj)r\B = {bj}, while Ai C Bupi, so the intersection
is contained in {bj, pi}. However, i ^ j implies bj & Ai, while i < j implies
Pi < PJ = min c*(B, bj) and thus pi g c*(B, bj).
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We will now prove by induction on \F n ^(B)\ that for every facet F of
the sphere SB the set F U 1 is an nbc-basis. This is by assumption true if
|F n <p(B)\ = 0, that is, if F U 1 = B. Now assume \F n (p(B)\ > 0, and let
Pj = max F(~\<p(B). Then there is a unique bj e Aj\F. We set F' := (F\pj)ubj.
Then F' is a facet of EB which by induction satisfies F' U 1 e nbc(M).

It follows from our choice of Pj that the symmetric difference F'AB is contained
in U i<j Ai which means (F'AB) n c*(B, bj) C Ui<j A i C c ; B , bj) = 0 by (*), and
thus c*(B, bj) = c*(F', bj). Therefore pj = minc*(B5, bj) = minc*(F', bj), which
yields F u 1 € nbc(M) by Lemma 1.2.

Furthermore, this shows that Pj e IA(F). Thus F is not a homology facet
for the lexicographic shelling of BC(M)_when F = B\1, and B\l is the only
homology facet covered by the sphere E, which proves (iii).

_In general, the reduced broken-circuit complex is not the union of the spheres
£B, in contrast to the situation for the independence complex [3, Cor. 7.8.5]:
this can be seen, e.g., in [3, Example 7.4.4(b)].

Analogously to [3, (7.42)], we can also write explicit expressions for the cycles
ffB'

where Aj = {aj, ..., a{.}< for 2 < j < k, and thus aj = PJ.

Definition 1.8. A homotopy basis for a space T is a map from a wedge of spheres
into T that induces a homotopy equivalence.

In this sense the spheres SB in fact form a homotopy basis for T := BC(M):
there is an obvious way to map the wedge of spheres Vfle/Jnbc(M) ~EB into ^ (smce

vertex 2 lies in each of the spheres £B), and this map is a homotopy equivalence
(again by the contractible subcomplex lemma).

2. /9-Systems and Geometric Semilattices

In the following we consider the geometric lattice of flats L associated with M.
We use 0,1 to denote the minimal and maximal elements of L, respectively. With
the additional assumption that M is simple (without loops or parallel elements)
we get that the atoms (elements covering 0) are in bijection to the ground set
[n]. For any flat y e L we denote by Oy C [n] the set of elements of y, with
06 = {loops of M} = 0 and nf = [n].

The affine analogue of the geometric lattice is the poset
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which is a geometric semilattice in the sense of Wachs and Walker. We refer to
[17] for a comprehensive study of such posets. By [17, Thm. 3.2] we can use (*)
as a definition for geometric semilattices.

An important observation from [17] is that L°, in fact, determines L uniquely.
The poset L° U 1 is a graded lattice of length r. A further result is that the
poset L° is shellable (that is, its order complex A(L°) is a shellable simplicial
complex). This was shown in [17] by proving that L° U 1 has a recursive atom
ordering in the sense of [7]; that is, it is CL-shellable.

In the following we want to strengthen this result. L°u1 is in fact EL-shellable:
the cover relations of Lo U1 can be labeled in such a way that (if we always read
labels from bottom to top) in every interval [x, y] C. L° U 1 the lexicographically
smallest maximal chain is the unique increasing one. This condition ensures (see
[3, Section 7.6], [2]) that the lexicographic order on the maximal chains yields
a shelling for the order complex /}(L°\0) and furthermore that the homology
facets for that shelling correspond exactly to the maximal chains with decreasing
labels. Note for this that the topologically interesting part of L° is the proper part
~L° := L°\0, whereas A(L°) and A(L°j1) are cones and are thus contractible.

The EL-shelling we describe amounts to a special choice in the class of CL-
shellings described by Wachs_and Walker. In Theorem 2.4 we will see that
the decreasing chains of A(L°] are labeled_by the /3nbc-bases. This shows in
particular that the complexes BC(M) and A(L°) are homotopy equivalent; we also
use Theorem 2.4 to show that the natural map p : sd(BC(M)) —> A(L°) induces
a homotopy equivalence between the reduced broken-circuit complex BC(M) and
the proper part ~L° = Lo\0. In particular, u transports the basic cycles sd#&B
from sd(BC(M)) to A(L°)

The reader may want to compare our approach with that of [8, Thm. 3.12],
in which a map in the opposite direction TT : L° —> BC(M) is shown to be a
homotopy equivalence with different tools.

Let's get going. For x e L° U 1 let A(x) be the lexicographically first basis of
M/(1U s;). Inductively, this can be described as A(x) = a1 U A(Ux U 01), where
a1 is the smallest nonloop of M/(1U Dx).

Now, to label the edges of L° U 1 we define the following for every cover
relation x < y in L° U1:

This defines an edge labeling on the poset L° U 1; see Figure 2(b) for a small
example. For all coatoms x e L° u 1 we have A(x) = A(1) = 0, and thus
(x(x, 1), A(x, 1)) = (1, 1). We order the labels lexicographically, with (x, A) <1
(X', A') if and only if either 0 = x<x ' = 1 o r x = x/ and A < A'.
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Figure 2. Geometric semilattice L° corresponding to the matroid (M, 1) of Figure 1. (a) Note that
if the barycentric subdivision of the cycle of Figure 1(b) is mapped to Lo, then it covers the whole
proper part; at the same time part of the cycle (at the vertex 3) is collapsed, (b) Description of the

EL-labeling of the edges of L° U 1. The elements x € LoU 1 are indexed by A(x). The decreasing
chain—corresponding to a homology facet—is drawn with thicker lines.

LEMMA 2.1. Let x<y < 1 in L°, and let A := A(x, y). Then we have
A(x) = A(y) w {A'}, with A' = A if x(x, y) = 0 and A' < A if x(x, y) = 1.

Proof. Let M' := M/(1 U Dx); then A(x) is the lexicographically smallest basis
of M', and A(y) is the lexicographically smallest basis of M'/\. Constructing
A(y) greedily, we see that it coincides with A(x) a {b1,..., bk< in all entries
except for the point where for the first time A 6 {b1,..., bi, at which point 6<
is not taken into A(y), and bi < A. Here A(y) = A(x)\bi for bi = A' < A, with
equality if and only if x = 0. D

We are now ready to show the main result of this section.

THEOREM 2.2. Let L° = L^{1} be a geometric semilattice. Then the labeling
(x <• y) i-+ (x(x, y), A(x, y)) defines an EL-shelling of L° u 1; that is, for every x <y
the maximal chain

with the lexicographically smallest sequence of labels is the unique maximal chain in
[x, y] that has increasing labels.

Proof. By induction on r(y) - r(x) we will show that the lexicographically
first chain from x to y has labels (0, a1),..., (0, ai, (1, ai+1),..., (1, ak), where
{a1, ..., ai} = (DynA(x))< , and that {ai+1, ..., ak} is the lexicographically first
basis of M(Oy)/Oxi, in increasing order. In particular, the lexicographically first
chain is increasing.

For this consider x <• z < y. First assume that Dy n A(x) £ 0. By Lemma 2.1



292 ZIEGLER

we get that Dy n A(x) D By n A(z) and thus min(dy/ n A(x)) < min(Oj/ n A(z)\
with "<" if z = x1. Similarly, if OynA(x) = 0, then we get Dy\Dx D Dj/\Dz
and thus min(Dy/\Dx) < min(Dy/\Dz), with "<" if z = x1.

Now assume that there is a different chain cx,y : x = x0 <• x1 <• • • • <• x'k = y
with increasing labels. By induction on length we may assume x1 ^ x1. We
write Ai = (xi, Ai) := A(xi-1, xi) and, similarly, Ai = (Xi, Ai) := A(xi._1, xi). By
construction we know that (x1, A1) < (x'1 A').

Case 1: If x1 = X' = 1. then we get a contradiction from the linear case, as
in [2] and [3, Lemma 7.6.2]: we know A1 = min(Oy/\Dx), and from monotonicity
we get Xi = Xi = 1 for all i > 1. This implies A1 = A' for some i > 1, and thus
Ai = (1, Ai) = (1, A1) < (1, A') = A1, so cx,y is not increasing.

Case 2: If x1 = 0 and x' = 1, then we get from the definitions Dy n A(x) = 0
and A1 = min(nu/nA(x)). Since c'x,v is increasing, we have Xi = 1 for all i. Thus
the labels of c'x,y are given by G'i = min(Dxi_1\Dx'). From the linear case (as
above) we know that such a chain can only be increasing if A1' = min(Duy\x),
which implies A'1 < A1.

From Lemma 2.1 we conclude that A(x1') = A(x)\L' for some A' < A1' < A1.
Hence A1 e D y n A(x1), and by induction on length we know that the only
increasing chain from x1 to y has the first label (0, A1). But we know xi' = 1 for
all i, a contradiction.

Case 3: If xi = xi = 0. then consider the smallest i > 1 with xi+1 =
x(x', xi+1) = 1. Since A1 < A1 with A1, A1' e A(x), we see from Lemma 2.1
that all elements of A(x'i)\A(x'1) are greater than A'1 Thus we have A1 e A(xi'),
and we get by case 2 that the labels on the chain x' <• • • • <• x'k = y are not
increasing. D

Given any EL-shelling of a bounded poset P, one also has a shelling of
the order complex A(P) of the proper part P = P\{0,1}. Furthermore, the
homology facets of this shelling of A(P) correspond to the chains of P with
decreasing labels [3, Prop. 7.6.4]. To identify them for the above EL-labeling of
P = L° u 1 we need another lemma.

LEMMA 2.3. Let B = {b 1 , . . . , br_1, 1}> be a basis of M, listed decreasingly. Then
for 1 < i < r - 1

Proof. For i = 1, b1 £ IA(B) implies the existence of 61 := 'minc*(B,b1) < b1

such that B' := (B\B1) U 1\ is a basis. Now b1 > max(B') > max(A(0)) for the
lexicographically first basis A(0) implies that b1 A(0).

Conversely, A(0) contains an element from c*(5, 61). Now from b1 > maxj4(0)
(which always holds) and b1 & A(0) we get that c*(B, b1]) n A(0) contains an
element that is smaller than 61; thus b1 £ IA(B).



MATROID SHELLABILITY 293

For i > 1 consider M' := M/{b1,..., bi-1} and its basis B' := B\{b1,..., bi-1}.
Then we get c*M,(B} 6.) = c'M(B', bi) and AM({b1 , . . . , bi-1}) - AM(0) by defi-
nition, which reduces the situation to the basis B' of M' and thus to the case
1 = 1. n

THEOREM 2.4. The maximal chains of L° U 1 wi'f/i decreasing labels are exactly the
chains

for the finbc-bases B = {61(..., 6r_1, 1}> e /3nbc(Af). Their labels are given by

Proof. Given B as stated, define xi := {b1, ..., bi}, which yields a maximal chain.
We want to see that it has decreasing labels as claimed. From part "=>" of
Lemma 2.3 we get bi £ -A()xi-1). Now consider any bi 6 Oxionx^. If bi' < bi,
then A := c(B1 bi) C {61,... bi -1,bi, .bi , bi, bi> and bi = min(A), so B contains a
broken circuit, contrary to assumption. If b' > bi, then B1 := (B\bi)^Vbi is a basis
with {bi,b'* C c*(B', b'i) = c*(B, bi) by Lemma 1.1; hence 6i< A (x i - 1 ) by part
"=^-" of Lemma 2.3. Thus we have Oxi n A (x i - 1 ) = 0, and B defines a chain
with the correct labels. _

For the converse, since the last edge of every chain has label A(xr_1, 1) =
(1, 1), we get for every decreasing chain that x(xi-1i,xi) = 1 for all i; that is,
Dxi- n A(Xi_1) = 0 and bi := A(xi-1_, xi) = min(Dxi/Dxi-1). This yields that B =
{b1, ..., br_1, 1} is an nbc-basis in decreasing order. Setting xi,- := {b1,...,bi,},
we know bi< e Oxi- and Dxi n A(Xi_1) = 0; thus bi ^ A(Xi-1), from which part
"<=" of Lemma 2.3 yields bi ^ IA(B) for 1 < i < r - 1. Thus IA(B) = {1} and
B e ^nbc(M). D

The final goal of this section is to construct a map u: sd(BC(M)) —> 2\(L°\0)
and to show that it is a homotopy equivalence. (We know that the complexes
are homotopy equivalent, but we need an explicit map in this direction in order
to transport the cycles aB to A(L°).) For this, we use the following lemma.

LEMMA 2.5. Let r : A —> A' be a simplicial map of finite simplicial complexes of
the same dimension. Assume that A and A' have shellings such that

(i) T yields a bijection r :F1->F' between the homology facets that maps every
homohgy facet of A onto a homology facet of A', and

(ii) T maps the nonhomology facets of A into those of A', i.e., r (U F0) Q U-F0-

Then r is a homotopy equivalence.
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Proof. We use that A0 := U-f0 and A'0 := UF' are contractible subcomplexes
of A, respectively A'. Thus the vertical maps in the diagram

are homotopy equivalences by the contractible subcomplex lemma [4, (10.2)].
Furthermore, r is a map between wedges of spheres: since r : \$F1 —> \$F1

is a homeomorphism, we see that r is a homeomorphism, and the diagram
commutes. From this we get that r ~ (V)-1 OTOTT, using some homotopy inverse
to TT', which proves the claim. D

In the following let PBC(m) be the face poset of BC, that is, the set of all

faces, ordered by inclusion. This includes a minimal element 0 e PBC(M)

corresponding to 0 e BC(M). Note that the order complex A(PBC(M) is the

barycentric subdivision sd(BC(M)).

THEOREM 2.6. The matroid closure operator defines an order- and rank-preserving
map

The induced simplicial map of order complexes

is a homotopy equivalence.

Proof. For any A e BC(M) we have that A W 1 e BC(M) is an independent set;
thus 1 £ A, and A e L° has rank \A\. The closure map is clearly order preserving.

By Theorem 2.4 the maximal chain in PBC(M)

for B = {B1,...,Br-1,1}> is mapped to the maximal chain in L°

Now we use the (simple) fact that if A is any shellable simplicial complex, then
its barycentric subdivision sd(A) is shellable as well. Moreover, the construction
of [2, Thm. 5.1] shows that we can prescribe a homology facet of sd(A) within
every homology facet of A. Applied to A = BC(M), with the use of Theorem
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1.4(ii), this means that P (M, has a shelling in which the homology facets are

exactly given by {dB '• B € nbc(M)}.
Thus we can apply Lemma 2.5, once we have shown that for B e /9nbc(M) no

other maximal chain

is mapped to cB. Thus assume that d# exists, and set

We have to show that b' = bi for all i.
For this we have bi, b' e dx i Dx i - 1 , with bi = min(Dx i\Dx i -1) from the proof

of Theorem 2.4, and thus bi < bi for all i. Let i be minimal such that bi< bi.
Then we get A := c(B\ bi) C {b', ..., bi, b'}, with bi < bi and with bi < bj = b'

for j < i. Hence bi = min A, and B' contains a broken circuit. This contradiction
shows that dB = dB and Lemma 2.5 finishes the proof. D

COROLLARY 2.7. If L° = {x e L:1 & x} is the geometric semilattice associated to
a base-pointed matroid (M, 1) of rank r, then the cycles

form a basis for Hr-2(4(.L0\0); Z). In fact, they are the basic cycles associated to
the shelling of A(L°\0) given by Theorem 2.2.

We do not know whether the cycles u# o sd#(<B) are spherical in general. It
is not clear that they have ±1 coefficients on all of their simplices.

3. Geometric Semilattices and Afflne Hyperplane Arrangements

The following well-known proposition identifies the combinatorial structure of
an affine hyperplane arrangement A over any field.

PROPOSITION 3.1. Let A be an affine hyperplane arrangement over a field k.
Then the set L° := {f| A0 = 0 : A0 C A} of nonempty intersections of subsets of A,
ordered by reverse inclusion (including a minimal element corresponding to the empty
intersection), is a geometric semillatice.

Proof. Consider a linearization or projectivization A of A that includes the
hyperplane H^ at infinity. The intersection lattice L of A is a geometric lattice
in which a distinguished atom OOQ corresponds to #,„.

Under the canonical embedding A "-+ A the nonempty flats of A corre-
spond exactly to those flats of A* that are not contained in H<»; that is,
L° = L\[aoo, 1] - L^. D
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obtained by linear extension of <f> over the simplices of A(P) is a homotopy equivalence.

This was first proved by Goresky and MacPherson [14, III.2.3], There are
various simple alternative proofs. It is easily derived from contractible carrier
or nerve lemmas [4, Section 10], as shown in [6, Prop. 4.1], and it follows as a
special case of the diagram technique of Ziegler and Zivaljevid [20, Thm. 2.1].
Also, it is easy to explicitly construct a homotopy inverse along the lines of
[14, III.2.5]; see [19]. For the special case of hyperplane arrangements one can
also apply Quillen's fiber lemmas [4, (10.5)], as shown in [13, Thm. 3.12], or
Whitehead's theorem, as shown in [9].

Combining Theorem 2.5 with Lemma 3.2, we get the following result, which
amounts to an explicit construction of basic cycles for the homology of any affine
hyperplane arrangement in terms of its affine matroid.

THEOREM 3.3. Let A be a finite real or complex hyperplane arrangement. Let L°
be the associated geometric semilattice. Then the map $ constructed in Lemma 3.2
induces a homotopy equivalence

We are considering only the cases of real or complex arrangements here.
To unify their treatment one might at this point be tempted to generalize
to arbitrary affine c-arrangements in the sense of Goresky and MacPherson
[14, p. 239]: arrangements of codimension c in some RN such that every
nonempty intersection has a codimension that is a multiple of c. However,
affine 2-arrangements like the one given by the subspaces V1 = {x = y = 0},
V2 = {z = w - 0}, and V3 = {x = z = 1} in R4 show that this does not work in
general: for this arrangement L° u 1 is not even graded. (It does not help to
require that N = cd - 1.)

For general c-arrangements it is easy to see that all intervals of the intersection
semilattice L° are geometric lattices [14, III.4.1]; thus L0 is a bouquet of geometric
lattices in the sense of [15]. However, this is not sufficient to make L° into
a geometric semilattice (see [17, Thm. 2.1]), which would guarantee reasonable
topological properties for A(L°\0).

The connection between the topology of an affine hyperplane arrangement and
its geometric semilattice is a very special case of the following fact.

LEMMA 3.2. Let A be a finite set of affine subspaces in a real vector space, and let
P be a poset that is isomorphic to all the nonempty intersections of subspaces in A,
ordered by reverse inclusion. Let 4> '• P —> \JAbe an arbitrary map which to every
p€ P assigns a point on the corresponding subspace Vp € A Then the map

296
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In particular, UA A is homotopy equivalent to a wedge of 3(M) (r - 2)-spheres, where
M is the matroid of rank r associated with L°. Furthermore, the cycles

form a basis for H r - 2(U A; Z) and a homotopy basis for U A in the sense of
Definition 1.8.

In Figure 3, the map # is illustrated for an arrangement whose semilattice is
given by Figure 2(a).

Figure 3. Arrangement with base-pointed matroid (M, 1). Circles indicate possible points <j>(x) for
x e L°\0, and thicker lines indicate the corresponding image of $# °M#(?135)-

4. Geometry of Afflne Hyperplane Arrangements

In [13] Dayton and Weibel study affine hyperplane arrangements A in kn+1

without reference to matroid-theory language. We will translate their results in
square brackets. Dayton and Weibel consider only arrangements A [with affine
matroid (M, g)] that are "admissible" [that is, A is sufficiently generic, so that
g 6 C for every circuit C of M]. They introduce an invariant g(A) [= B (M)]
for every such arrangement and derive its basic properties. Then they define
polysimplicial spheres [the arrangements given by the facets of a product of
simplices] and show that every admissible arrangement has a basic set of such
spheres [i.e., a set of spheres satisfying a recursion such as that of Theorem
1.5]. This main result [13, Prop. 2.7] can thus be seen as a special case of our
Theorem 3.3.

Now specialize to k = R. To get a set of basic cycles for U A one could take
the boundaries of the bounded regions. However, this does not generalize to the
complex case. (Note also that the regions cannot be characterized by their sets
of facet hyperplanes: arbitrarily many regions can be bounded by all hyperplanes
[16].)
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Instead, one might try to find subarrangements with exactly one bounded region,
such as those given by a product of simplices. More generally (consider the
facet planes of a square pyramid), the arrangements with B ( M ) = 1 correspond
to series-parallel graphs [10]. They are basic objects in the category of base-
pointed matroids (M, g), as constructed by Brylawski [10]. However, our map
<£ o /x, as well as Dayton and Weibel's embeddings of polysimplicial spheres, are
inherently nonlinear. In fact, in general there need not be any full-dimensional
subarrangements with /3 = 1 that could support a linear spherical matroid cycle
in A. This is demonstrated in our final result. The following construction
essentially applies the "Lawrence construction" [5, Section 9.3] to the uniform
matroid U2,n+2-

PROPOSITION 4.1. For every n > 1 there exists an arrangement An = {H1, • • •, H2n+2}
of 2n + 2 real affine hyperplanes in R2n with exactly n bounded In-dimensional regions
such that for every i e {1, ..., 2n + 2}, A\Hi has no bounded region.

Proof. Let U2,n+2 denote the uniform matroid of rank 2 on the set [n + 2]. This
matroid can be coordinatized by the matrix

corresponding to the affine arrangement of n + 1 points 0, 1, ..., n on the
affine line R. Clearly, the number of bounded regions of this arrangement is
B(U2, n+2) = n.

Let U2,n+2 be obtained by doubling all points of U2,n+2 except the first one,
yielding a matroid of rank 2 on [2n + 3] with the property that U2,n+2/* has a
loop for all i > 1. This matroid is represented by

It still has B(U2,n+2) = n, since extension of parallel elements does not change
the B-invariant [12],

Now dualization yields the matroid Mn := (U2, .n+2)* of rank 2n + 1 on [2n + 2]2
with /3(Mn) = n, which has the property that every deletion of an element other
than 1 has a coloop. Furthermore, every cocircuit of U2,n+2 has at least 2n +1 > 2
elements, so Mn is a simple matroid. It can be coordinatized by
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Using row transformations that make the first column into a unit vector, we
find that the corresponding affine arrangement An can be represented by
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