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LETTER TO THE EDITOR

General Non-Rotating Perfect-fluid Solution with
an Abelian Spacelike ¢; Including Only One Isome-
try
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The general solution for non-rotating perfect-fluid spacetimes admit-
ting one Killing vector and two conformal (non-isometric) Killing vec-
tors spanning an abelian three-dimensional conformal algebra (Cs3) act-
ing on spacelike hypersurfaces is presented. It is of Petrov type D; some
properties of the family such as matter contents are given. This fam-
ily turns out to be an extension of a solution recently given in [9] using
completely different methods. The family contains Friedman-Lema#ttre—
Robertson-Walker particular cases and could be useful as a test for the
different FLRW perturbation schemes. There are two very interesting lim-
iting cases, one with a non-abelian G, and another with an abelian G
acting non-orthogonally transitively on spacelike surfaces and with the
fluid velocity non-orthogonal to the group orbits. No exam ples are known
to the authors in these classes.
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Very few exact perfect fluid solutions of Einstein field equations with a
low degree of symmetry are known even though they may prove important
for the study of inhomogeneities in the Universe or in parts of the Universe.
The high complexity of the inhomogeneities of the real Universe makes
the modeling of such structures using exact solutions intractable. Thus,
perturbation schemes (see e.g. Refs. 1,2 and references therein) are usu-
ally used in order to understand the evolution of such inhomogeneities (in
a Friedmann-Lemattre-Robertson—Walker background). However, these
perturbation schemes smooth out any unexpected behaviours due to the
high non-linearity of the theory of general relativity. These possible new
behaviours can only be fully understood by finding and analyzing exact
solutions of Einstein field equations. Moreover, they can be significant in
testing the ranges in which the linear approximation of the perturbation
theory is valid. In order to accomplish these objectives it is necessary and
convenient to find an increasing number of exact solution with less possi-
ble symmetries. In the recent past, the use of conformal Killing vectors
has proved useful in finding new families of exact solutions with a two-
dimensional isometry group (the so-called G2, cosmologies). For instance,
the general perfect-fluid solution with a two-dimensional isometry group
acting orthogonally transitively [3] on spacelike orbits and admitting one
conformal Killing vector is known [4,5]. The next natural step is trying to
determine the perfect-fluid solutions when the spacetime admits one isom-
etry and two conformal Killing vectors (all of them being spacelike). The
simplest case is when this three-dimensional conformal algebra is abelian.
Since we are interested in cosmological models we will also impose that
the fluid velocity is non-rotating (although rotating cosmological models
are also of great interest, their study is significantly more difficult than the
non-rotating one) and that p+ p is positive at least in an open region (p
and p being the energy-density and pressure of the fluid respectively). In
this letter we present the general solution of Einstein field equations under
these assumptions.’

The spacetimes admitting an abelian C3 algebra of conformal Killing
vectors, with one Killing vector and two conformal Killing vectors (ckvs)
acting on spacelike hypersurfaces, admit coordinates (using Defrise—Carter
theorem, Ref. 8) in which the line-element reads

2

ds’> = 0*’(y,z, 1) | - + M(1)dx* + P(ndy* + S(ndz*|, (1)

M(t)

where M, P and S are arbitrary functions of # and the conformal factor Q

> We exclude the conformally flat families since all of them are known [7].
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is an arbitrary function of ¢, y and z. The metric (1) admits one Killing
vector Ox and two ckvs O, and O.. The main result of this letter is the
following.

The general non-rotating non-conformally flat perfect-fluid solution of Ein-
stein’s field equations (having p+ p > 0 somewhere) with one Killing and
two conformal Killing vectors spanning an abelian Lie algebra acting on
spacelike hypersurfaces is

N(l— a)/ a dl2

ds? = W) | _ + A(ndx? + e dy? + /42, ()
QU+ e/ e(z) A(1)
where o is a non-vanishing constant, the function A(t) reads

A(t) = r0+r1t1'a+r2t1+a (3)

(ro, r1 and ry are arbitrary constants), and the functions N(y), Q(z) sat-
isfy the following trivial differential equations:

2 2
dN dg
< ) = 052(7'1]\/2 - V1), < ) = Otz(er2 —v2), Vi, Vv2 const.
dy dz

Thus, the metric is completely explicit and very simple in form. The
velocity one-form of the fluid is

N o/2a < (N, lQZd>
z g,

u= Tt w/2a \]E dt + ;j\'/—dy " a0 (4)
where R stands for
- a t1+a
Rzr0+vlv+vz7 (5)

This expression must be strictly positive in order to have a perfect-fluid
spacetime. When R < 0 the matter contents is a tachyon fluid and R = 0
represents a null fluid. For certain values of the parameters the spacetime
has a region where the matter contents is a perfect fluid, there exists a
transition hypersurface where the fluid becomes null (with pressure, in
general) and there is also a non-empty open region where the perfect fluid
is tachyonic. This kind of behaviour is very common when solving perfect-
fluid Einstein field equations in non-comoving coordinates (see Ref. 5 for
other explicit examples of this fact). From (4) we learn that the fluid
is highly tilted with respect to the orbits of the conformal group. It is
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orthogonal to the Killing vector 0, but it is not orthogonal to either of the
two conformal Killings (and consequently it is not orthogonal to the three-
dimensional conformal orbits). It is convenient to define a new function t
by

N 1/ a

Ql/a ’

so that the fluid velocity one-form can be rewritten in a compact form as

T=1

d7T
_\/rON(1+a)/aQ(a— /a 4 V1‘L’1" a4 VQ‘L'H

u=

This expression shows that the fluid velocity is hypersurface orthogonal
and therefore non-rotating, which is one of our main assumptions. The
hypersurfaces orthogonal to the fluid are given by = = const and therefore
7 is a cosmic time for the spacetime. The energy density and pressure are
(using this new time 7)

3 V)
p= (o) oo+ (1—a) Ha
(1+a)/a
o A A
+ 4 (1 -—a ).L_ZQ(I— a)/a’
6
(1+ ¢l + Sa)vz (1 —a)(5a - 1Dy (6)
- 4!~ @ 4l*e
o N(ta)/a
+ :(1 -—a ).L_ZQ(I— a)/a’
which imply
RN(1+a)/a

P+p__(1 OZ) ZQ(I—(X)/O(’

and therefore the energy condition p+p > 0 is fulfilled everywhere provided
the constant « is restricted to o> < 1. The family of solutions is invariant
under the simultaneous changes a <>-ca, y <>z, N <>0Q. Thus, we can
assume without loss of generality that « is strictly positive and then the
energy condition imposes

0<a<l.

Expression (6) shows that the spacetime is singular at = = 0 where a big
bang singularity occurs. Assuming ro > 0 there always exist a non-empty
open region near the big bang singularity where both the density and pres-
sure are positive. For vi and v> non-negative we have R > 0 everywhere
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(so that the matter contents is perfect fluid in the whole spacetime) and
the energy-density is positive everywhere.

The Petrov type of the spacetime is D and in a null tetrad adapted
to the two repeated null principal directions

1N a)/Za
= h Q(1+a)/2a \]ng
N - a)/Za

kz?g(lwvm \/7 \/de

the only non-vanishing Weyl spinor component reads

2 (1+ @)/ a
-1
v, = ro(a )0 ) (7)
122N @)/

These expressions show that the fluid velocity does not lie in the two-
plane generated at each point by the repeated null directions. Both null
directions are geodesic and non-rotating and they are shearing and ex-
panding. Furthermore, the acceleration of the fluid i does not lie in the
plane generated by 1 and k (see Ref. 7).

From (7) we have that the conformally flat subcases of the solution
are obtained when either ¢ = 1 or ro = 0. The metric with a = 1 is de
Sitter (v2 > 0), anti-de Sitter (v2 < 0) or Minkowski (v2 = 0). When
ro = 0 (arbitrary a) the condition R > 0 (5) implies that at least one
of the vi, v> must be positive. The fluid satisfies a barotropic equation
of state (6) and therefore the spacetime must be a Friedmann—Lemattre—
Robertson—Walker (FLRw) cosmology (see e.g. Ref. 6).

It is remarkable that the general family we present in this letter is
an extension of a solution recently found in [9] using completely different
methods. The two families coincide when either v or v, are positive and,
therefore, the solutions with v; < 0 and vy < 0 presented here are new.
In [9], the authors use the Kerr—Schild transformation to find perfect-fluid
solutions starting from a FLRw seed metric. This seed metric is exactly
the subcase ro = 0, vi > 0 in (2) (written in different coordinates). After
performing the Kerr—Schild transformation, they find a family of solutions
which is equivalent® to the subfamily v; > 0 (or v2 > 0) in (2). The so-
lutions with v; <0, v < 0 were not found using the Kerr—Schild method
in [9] because their conformally flat limit is not FLrRw. Instead, one gets

% The two coordinate systems are different and therefore it is not obvious that the two

families coincide.
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a tachyon fluid (admitting a G¢) when v; < 0 and v, < 0 (or equiva-
lently vi < 0 and v, < 0) and a radiation solution admitting G7 when
vi = v2 = 0. It can be seen, however, that the whole family presented
here can be generated using the Kerr—Schild ansatz starting from the seed
metric (2) with ro = 0. This fact is most remarkable since the Kerr—Schild
transformation and the existence of conformal Killing vectors have no ap-
parent relationship. Thus, the family of perfect-fluid solutions (2) has
two completely different and apparently unrelated characterizations as the
most general solution with an abelian spacelike C3 including one isometry
and the most general solution which can be found from the metric with
ro = 0 using the Kerr—Schild transformation. The possible reason for such
an unexpected connection should be a matter for further investigation.
The analysis of the Killing eguations for the metric (2) shows that

there is only one Killing vector k; = O, except for the three following
subcases (apart from o = 1 and ro = 0 which have been discussed above).
A) When r1 = r2 = 0, vi < 0 and v2 < 0 (therefore, this is a new

solution not included in Ref. 9) the metric admits a non-abelian G and
the line-element can be written in the form

(I- @)/ o
2_ 22X 2 2 l+aq 2 1- aq.2
ds* =D Z(1+a)/a[_dl +dx”+ ¢ “dy” + ¢ “dz7]
(where D cannot be reabsorbed into the coordinates). This metric has
only two Killing vectors,

Pl c_, 0, 0 l-a 8 lta @
T oax or Tox 2 Yay T 2 ‘oz

with commutator [ZI,ZZ] = Zl. Zl is spacelike everywhere, but Zz changes
its spacelike, null and timelike character through the spacetime. The fluid
velocity also changes its character. It is timelike (and thus a perfect fluid)
in a region near the big-bang and it becomes spacelike for big enough val-
ues of 7. It can be proved that in the region where the matter contents is
perfect fluid (the physical region) the Killing%vector k> is spacelike every-
where. After the fluid has become tachyonic, k> becomes timelike and thus
the spacetime is stationary. As far as we know, this solution is the first ex-
plicit exact solution for a perfect fluid with a non-abelian two-dimensional
maximal isometry group (see Ref. 10 for a discussion of some properties
of non-abelian G, perfect-fluid spacetimes).

B) When r; = vi = 0 (i.e N, = 0) and Q. # 0 the metric has an
abelian G, acting on spacelike orbits. The two Killings are Jr and 0,
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(there is a similar case when Q. = 0 and N, # 0, then the Killings are
obviously Oy and 0.).

C) When v, = v; = 0 (then necessarily r; and r, must be non-negative
and we can write them as r1 = ¢}, r2 = ¢3). The metric takes the form

ds?

2 _ (1- a¢)cry- (1+a)caz
ds” = e 1t a o
ro + 5t + 't

+ (70 + C%l1+a+ C%ll— a)dXZ + l1+ady2 + tl— adZZ ) (8)

and the perfect-fluid satisfies a barotropic equation of state for a stiff fluid,

2
MI_—Qle(a— Deiy+t(1+a)erz >0
> .

P=pP= 4¢

Since this metric has vi = v» = 0 it is not contained in the family pre-
viously found in%[9]. This metric has two Killing vectors, k1 and k>, and
one homothety /4 (assuming c¢i or ¢2 non-zero, otherwise the metric is a
Bianchi I cosmology) given by

v _ 0
ki = ox’
7 o o
kz—(1+a)czay+(l—a)61az,

=
Il

(1+ oz)mi -(1- Ot)Czi,
Oy

oz

which are commuting and spacelike everywhere. The one-form associated
with ki is clearly integrable while the one-form associated with k2 is not
only non-integrable (assuming c¢i and ¢ non-zero, otherwise the metric is
a so-called diagonal cosmology, Ref. 3) but also satisfies

ki Ak2 Adkz £ 0,

which means that the orbits of the two-dimensional group are not surface
orthogonal and thus the isometry group is not orthogonally transitive. In
addition the fluid velocity is not orthogonal to the isometry group orbits.
This solution belongs to A(ii) in Wainwright’s classification of G» cos-
mologies [3]. Very few exact solutions in this class are known and to the
best of our knowledge all of them have the fluid velocity orthogonal to the
isometry group orbits [11,12]. This is a general property for B(i) and B(ii)
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classes, but it is an added assumption for A(i) and A(ii) classes. In our
case the fluid velocity is not orthogonal to the isometry group orbits and
as far as we know this is the first example with this property.

As a final comment, let us emphasize that the family of solutions (2)
is given explicitly in terms of elementary functions and is of very simple
form, despite the low isometry group. Thus, it may be suitable for testing
the range of validity of the different FLRw perturbation schemes. In ad-
dition, the ro parameter controls the deviation from FLRW in a very neat
way and hence any possible disagreement between the exact model and
the predictions of the perturbation schemes can easily be detected and
interpreted.

ACKNOWLEDGEMENTS

This work was partly supported by a NATO Science Fellowship. M.M.
wishes to thank Ministerio de Educacion y Ciencia for financial support
under grant EX95 40985713.

REFERENCES

1. Coles, P., Lucchin, F. (1996). Cosmology: The Origin and Evolution of Cosmic
Structure (John Wiley & Sons, New York).

2. Ellis, G. F. R. (1995). In Inhomogeneous Cosmological Models, A. Molina and J. M.
M. Senovilla, eds. (World Scientific, Singapore).

. Wainwright, J. (1981). J. Phys. A: Math. Gen. 14 1131.

. Carot, J., Coley, A. A., Sintes, A. M. (1996). Gen. Rel. Grav. 28, 311.

. Mars, M., Wolf, T. (1997). To appear in Class. Quantum Grav.

. Ellis, G. F. R.(1971). In Proc. International School of Physics “Enrico Fermi,”
XLVII — General Relativity and Cosmology (Varenna, 30 June—12 July 1969),
B. K. Sachs, ed. (Academic Press, New York).

7. Kramer, D., Stephani, H., MacCallum, M. A. H., and Herlt, E. (1980). Exact Solu-
tions of Einstein’s Field Equations (Cambridge University Press, Cambridge).
8. Defrise-Carter, L. (1975). Commun. Math. Phys. 40, 273.

9. Senovilla, J. M. M., Sopuerta, C. F. (1994). Class. Quantum Grav. 11, 2073.

10. Van den Bergh, N. (1988). Class. Quantum Grav. 5, 861.

11. Wils, P. (1991). Class. Quantum Grav. 8, 361.

12. Van den Bergh, N. (1988). Class. Quantum Grav. 5, 167.

AN L AW



