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General Non-Rotating Perfect-¯ u id Solution with

an Abelian Spacelike C3 Including Only One Isome-

try
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The genera l solut ion for non-rotat ing perfect -¯ uid spacet imes admit-

t ing one Killing vect or and two conformal (non-isomet ric) Killing vec-

tors spanning an abelian three-d imensional conformal algebra (C3 ) act -

ing on spacel ike hypersurfaces is presented. It is of Petrov type D; some

propert ies of the family such as matter contents are given . T his fam -

ily turns out to be an ex tension of a solut ion recent ly given in [9] using

completely diŒerent methods. T he fam ily contains Friedman ± Lemaõ̂ t re ±

Robert son ± Walker part icular cases and could be useful as a test for the

diŒerent flrw perturbat ion schem es. T here are two very interest ing lim-

it ing cases, one with a non-abelian G 2 and another with an abelian G 2

act ing non-orthogonally t ransit ively on spacelike surfaces and with the

¯ uid velocity non-orthogonal to the group orbits. No exam ples are known

to the authors in these classes.
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Very few exact perfect ¯ uid solut ions of Einstein ® eld equat ions with a

low degree of symmetry are known even though they may prove important

for the study of inhomogeneit ies in the Universe or in parts of the Universe.

The high complexity of the inhomogeneit ies of the real Universe makes

the modeling of such structures using exact solut ions intractable. Thus,

perturbat ion schemes (see e.g. Refs. 1,2 and references therein) are usu-

ally used in order to understand the evolut ion of such inhomogeneit ies (in

a Friedmann± Lemâõ tre± Robertson± Walker background) . However, these

perturbat ion schemes smooth out any unexpected behaviours due to the

high non-linearity of the theory of general relat ivity. These possible new

behaviours can only be fully understood by ® nding and analyzing exact

solut ions of Einstein ® eld equat ions. Moreover, they can be signi® cant in

testing the ranges in which the linear approxim at ion of the perturbat ion

theory is valid. In order to accomplish these ob jectives it is necessary and

convenient to ® nd an increasing number of exact solut ion with less possi-

ble symmetries. In the recent past , the use of conformal Killing vectors

has proved useful in ® nding new families of exact solut ions with a two-

dimensional isometry group (the so-called G2 cosmologies) . For instance,

the general perfect-¯ uid solut ion with a two-dimensional isometry group

acting orthogonally transit ively [3] on spacelike orbit s and admit ting one

conformal Killing vector is known [4,5]. The next natural step is trying to

determine the perfect -¯ uid solut ions when the spacet ime admits one isom-

etry and two conformal Killing vectors (all of them being spacelike) . The

simplest case is when this three-dimensional conformal algebra is abelian.

Since we are interested in cosmological models we will also impose that

the ¯ uid velocity is non-rot at ing (although rotating cosmological models

are also of great interest, their study is signi® cant ly more di� cult than the

non-rotating one) and that r + p is posit ive at least in an open region (r

and p being the energy-density and pressure of the ¯ uid respectively) . In

this letter we present the general solut ion of Einstein ® eld equat ions under

these assumpt ions.5

The spacet imes admit ting an abelian C3 algebra of conformal Killing

vectors, with one Killing vector and two conformal Killing vectors (ckvs)

acting on spacelike hypersurfaces, admit coordinat es (using Defrise± Carter

theorem, Ref. 8) in which the line-element reads

ds
2

= V
2
(y, z, t) ±

dt2

M ( t)
+ M (t)dx

2
+ P (t)dy

2
+ S( t)dz

2
, (1)

where M , P and S are arbit rary functions of t and the conformal factor V

5 We exclude the conformally ¯ at families since all of them are known [7].
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is an arbit rary function of t, y and z . The metric (1) admits one Killing

vector ¶ x and two ckvs ¶ y and ¶ z . The main result of this letter is the

following.

The general non-rotatin g non-conformally ¯ at perfect-¯ uid solution of Ein -

stein’ s ® eld equation s (havin g r + p > 0 somewhere) with one Killing and

two conformal Killing vectors spann ing an abelian Lie algebra acting on

spacelike hypersurfaces is

ds
2

=
N ( 1 - a) / a (y)

Q( 1+ a ) / a (z )
±

dt2

A(t)
+ A(t)dx

2
+ t

1+ a dy
2

+ t
1- adz

2
, (2)

where a is a non-van ishin g constan t, the function A( t) reads

A(t) = r0 + r1 t
1- a + r2 t

1+ a (3)

(r0 , r1 and r2 are arbitrary constan ts), and the function s N (y), Q(z ) sat-

isfy the followin g trivial diŒerential equation s:

dN

dy

2

= a2
(r1N

2
± v1 ),

dQ

dz

2

= a2
(r2Q

2
± v2 ), v1 , v2 const .

Thus, the metric is complet ely explicit and very simple in form. The

velocity one-form of the ¯ uid is

u = ±
N ( 1- a ) / 2a

Q ( 1+ a ) / 2a

1

Ö R
d t +

tN ,y

aN
d y ±

tQ,z

aQ
d z , (4)

where R stands for

R º r0 + v1

t1- a

N 2
+ v2

t1+ a

Q2
. (5)

This expression must be strictly posit ive in order to have a perfect-¯ uid

spacet ime. When R < 0 the matter contents is a tachyon ¯ uid and R = 0

represents a null ¯ uid. For certain values of the parameters the spacet ime

has a region where the matter contents is a perfect ¯ uid, there exists a

transit ion hypersurface where the ¯ uid becomes null (with pressure, in

general) and there is also a non-empty open region where the perfect ¯ uid

is tachyonic. This kind of behaviour is very common when solving perfect-

¯ uid Einstein ® eld equat ions in non-comoving coordinat es (see Ref. 5 for

other explicit examples of this fact). From (4) we learn that the ¯ uid

is highly tilted with respect to the orbit s of the conformal group. It is
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orthogonal to the Killing vector ¶ x but it is not orthogonal to either of the

two conformal Killings (and consequent ly it is not orthogonal to the three-

dimensional conformal orbit s) . It is convenient to de® ne a new function t

by

t º t
N 1 / a

Q1 / a
,

so that the ¯ uid velocity one-form can be rewritten in a compact form as

u = ±
d

r0 N ( 1+ a ) / aQ ( a- 1) / a + v1t 1- a + v2 t 1+ a
.

This expression shows that the ¯ uid velocity is hypersurface orthogonal

and therefore non-rotating, which is one of our main assumptions. The

hypersurfaces orthogonal to the ¯ uid are given by t = const and therefore

t is a cosmic time for the spacet ime. The energy density and pressure are

(using this new time t )

r =
3

4
(1 + a)

2 v2

t 1- a
+

3

4
(1 ± a)

2 v1

t 1+ a

+
r0

4
(1 ± a2

)
N ( 1+ a ) / a

t 2Q ( 1 - a) / a
,

p = ±
(1 + a) (1 + 5a)v2

4t 1- a
+

(1 ± a)(5a ± 1)v1

4t 1+ a

+
r0

4
(1 ± a2

)
N ( 1+ a ) / a

t 2Q ( 1 - a) / a
,

(6)

which imply

r + p =
1

2
(1 ± a2

)
RN ( 1+ a ) / a

t 2 Q( 1 - a ) / a
,

and therefore the energy condit ion r+ p > 0 is ful® lled everywhere provided

the constant a is restricted to a2 < 1. The family of solut ions is invariant

under the simultaneous changes a « ± a, y « z , N « Q. Thus, we can

assume without loss of generality that a is strictly posit ive and then the

energy condit ion imposes

0 < a < 1.

Expression (6) shows that the spacet ime is singular at t = 0 where a big

bang singularity occurs. Assuming r0 > 0 there always exist a non-empty

open region near the big bang singularity where both the density and pres-

sure are posit ive. For v1 and v2 non-negat ive we have R > 0 everywhere
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(so that the matter contents is perfect ¯ uid in the whole spacet ime) and

the energy-density is posit ive everywhere.

The Petrov type of the spacet ime is D and in a null tetrad adapted

to the two repeated null principal direct ions

l =
1

Ö 2

N ( 1 - a) / 2a

Q ( 1+ a ) / 2a

d t

Ö A
+ Ö A d x ,

k =
1

Ö 2

N ( 1 - a) / 2a

Q ( 1+ a ) / 2a

d t

Ö A
± Ö A d x ,

the only non-vanishing Weyl spinor component reads

C 2 =
r0 (a2 ± 1)Q ( 1+ a) / a

12t2 N ( 1 - a) / a
. (7)

These expressions show that the ¯ uid velocity does not lie in the two-

plane generated at each point by the repeated null direct ions. Both null

direct ions are geodesic and non-rotating and they are shearing and ex-

panding. Furthermore, the accelerat ion of the ¯ uid Çu does not lie in the

plane generat ed by l and k (see Ref. 7) .

From (7) we have that the conformally ¯ at subcases of the solut ion

are obtained when either a = 1 or r0 = 0. The metric with a = 1 is de

Sitter (v2 > 0) , ant i-de Sitter (v2 < 0) or Minkowski (v2 = 0). When

r0 = 0 (arbit rary a) the condit ion R > 0 (5) implies that at least one

of the v1 , v2 must be posit ive. The ¯ uid satis® es a barotropic equat ion

of state (6) and therefore the spacet ime must be a Friedmann± Lemâõ tre±

Robertson± Walker (flrw) cosmology (see e.g. Ref. 6).

It is remarkable that the general family we present in this letter is

an extension of a solut ion recently found in [9] using completely diŒerent

methods. The two families coincide when either v1 or v2 are posit ive and,

therefore, the solut ions with v1 £ 0 and v2 £ 0 presented here are new.

In [9], the authors use the Kerr± Schild transformat ion to ® nd perfect-¯ uid

solut ions starting from a flrw seed metric. This seed metric is exact ly

the subcase r0 = 0, v1 > 0 in (2) (written in diŒerent coordinat es). After

performing the Kerr± Schild transformation, they ® nd a family of solut ions

which is equivalent 6 to the subfamily v1 > 0 (or v2 > 0) in (2). The so-

lut ions with v1 £ 0, v2 £ 0 were not found using the Kerr± Schild method

in [9] because their conformally ¯ at limit is not flrw . Instead, one gets

6 The two coordinate syst em s are diŒerent and therefore it is not obvious that the two

families coincide.
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a tachyon ¯ uid (admitting a G6 ) when v1 < 0 and v2 £ 0 (or equiva-

lently v1 £ 0 and v2 < 0) and a radiat ion solut ion admit ting G 7 when

v1 = v2 = 0. It can be seen, however, that the whole family presented

here can be generated using the Kerr± Schild ansatz start ing from the seed

metric (2) with r0 = 0. This fact is most remarkable since the Kerr± Schild

transformation and the existence of conformal Killing vectors have no ap-

parent relat ionship. Thus, the family of perfect-¯ uid solut ions (2) has

two completely diŒerent and apparent ly unrelat ed characterizat ions as the

most general solut ion with an abelian spacelike C3 including one isometry

and the most general solut ion which can be found from the metric with

r0 = 0 using the Kerr± Schild transformat ion. The possible reason for such

an unexpected connect ion should be a matter for further invest igat ion.

The analysis of the Killing equat ions for the metric (2) shows that

there is only one Killing vector
®
k1 = ¶ x except for the three following

subcases (apart from a2 = 1 and r0 = 0 which have been discussed above) .

A) When r1 = r2 = 0, v1 < 0 and v2 < 0 (therefore, this is a new

solut ion not included in Ref. 9) the metric admits a non-abelian G2 and

the line-element can be written in the form

ds
2

= D
2 y( 1- a ) / a

z ( 1+ a) / a
[ ± dt

2
+ dx

2
+ t

1+ ady
2

+ t
1- a dz

2
]

(where D cannot be reabsorbed into the coordinat es) . This metric has

only two Killing vectors,

®
k1 =

¶
¶ x

,
®
k2 = t

¶
¶ t

+ x
¶
¶ x

+
1 ± a

2
y

¶
¶ y

+
1 + a

2
z

¶
¶ z

,

with commutator [
®
k1 ,

®
k2 ] =

®
k1 .

®
k1 is spacelike everywhere, but

®
k2 changes

its spacelike, null and timelike character through the spacet ime. The ¯ uid

velocity also changes it s character. It is timelike (and thus a perfect ¯ uid)

in a region near the big-bang and it becomes spacelike for big enough val-

ues of t . It can be proved that in the region where the matter contents is

perfect ¯ uid (the physical region) the Killing vector
®
k2 is spacelike every-

where. After the ¯ uid has become tachyonic,
®
k2 becomes t imelike and thus

the spacet ime is stationary. As far as we know, this solut ion is the ® rst ex-

plicit exact solut ion for a perfect ¯ uid with a non-abelian two-dimensional

maximal isometry group (see Ref. 10 for a discussion of some propert ies

of non-abelian G 2 perfect-¯ uid spacetimes) .

B) When r1 = v1 = 0 (i.e N ,y = 0) and Q ,z /= 0 the metric has an

abelian G 2 acting on spacelike orbit s. The two Killings are ¶ x and ¶ y
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(there is a similar case when Q,z = 0 and N ,y /= 0, then the Killings are

obviously ¶ x and ¶ z ).

C) When v2 = v1 = 0 (then necessarily r1 and r2 must be non-negat ive

and we can write them as r1 = c2
1 , r2 = c2

2 ). The metric takes the form

ds
2

= e
( 1 - a) c 1 y - ( 1+ a ) c 2 z

±
dt2

r0 + c2
2 t1+ a + c2

1 t1- a

+ (r0 + c
2
2 t

1+ a + c
2
1 t

1- a )dx
2

+ t
1+ ady

2
+ t

1- a dz
2

, (8)

and the perfect-¯ uid satis® es a barotropic equat ion of state for a stiŒ¯ uid,

p = r =
r0 (1 ± a2 )

4t2
e

( a- 1 ) c 1 y + ( 1+ a ) c 2 z
> 0 .

Since this metric has v1 = v2 = 0 it is not contained in the family pre-

viously found in [9]. This metric has two Killing vectors,
®
k1 and

®
k2 , and

one homothety
®
h (assuming c1 or c2 non-zero, otherwise the metric is a

Bianchi I cosmology) given by

®
k1 =

¶
¶ x

,

®
k2 = (1 + a)c2

¶
¶ y

+ (1 ± a)c1
¶
¶ z

,

®
h = (1 + a)c1

¶
¶ y

± (1 ± a)c2
¶
¶ z

,

which are commuting and spacelike everywhere. The one-form associat ed

with
®
k1 is clearly integrable while the one-form associat ed with

®
k2 is not

only non-int egrable (assuming c1 and c2 non-zero, otherwise the metric is

a so-called diagonal cosmology, Ref. 3) but also satis® es

k1 Ù k2 Ù d k2 /= 0,

which means that the orbit s of the two-dimensional group are not surface

orthogonal and thus the isometry group is not orthogonally transit ive. In

addit ion the ¯ uid velocity is not orthogonal to the isometry group orbit s.

This solut ion belongs to A(ii) in Wainwright ’ s classi® cation of G 2 cos-

mologies [3]. Very few exact solut ions in this class are known and to the

best of our knowledge all of them have the ¯ uid velocity orthogonal to the

isometry group orbit s [11,12]. This is a general property for B(i) and B(ii)
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classes, but it is an added assumption for A(i) and A(ii) classes. In our

case the ¯ uid velocity is not orthogonal to the isometry group orbit s and

as far as we know this is the ® rst example with this property.

As a ® nal comment, let us emphasize that the family of solut ions (2)

is given explicit ly in terms of elementary functions and is of very simple

form, despite the low isometry group. Thus, it may be suitable for testing

the range of validity of the diŒerent flrw perturbat ion schemes. In ad-

dit ion, the r0 parameter cont rols the deviat ion from flrw in a very neat

way and hence any possible disagreement between the exact model and

the predict ions of the perturbat ion schemes can easily be detected and

interpreted.
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