Skip to main content
Log in

Reliability of PMMA bone cement fixation: fracture and fatigue crack-growth behaviour

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Fracture mechanics tests were performed to characterize the fracture toughness and fatigue crack-growth behaviour of polymethylmethacrylate (PMMA) bone cement, commonly used in joint replacement surgery. Compact tension specimens of various thicknesses were prepared and tested in both air and Ringer’s solution. Contrary to previous reports citing toughness as a single valued parameter, the PMMA was found to exhibit resistance-curve behaviour with a plateau toughness of ∼0.6 MPa m1/2 in air, and ∼2.0 MPa m1/2 in Ringer’s solution. The increased toughness in Ringer’s solution is thought to arise from the plasticizing effect of the environment. Under cyclic loads, the material displayed true mechanical fatigue failure in both environments; fatigue crack-growth rates, da/dN, were measured over the range ∼10-10 to 10-6 m/cycle and found to display a power-law dependence on the stress intensity range, ΔK. The cement was found to be more resistant to fatigue-crack propagation in Ringer’s solution than in air. Wear debris was observed on the fatigue fracture surfaces, particularly those produced in air. These findings and the validity of using a linear-elastic fracture mechanics approach for viscoelastic materials are discussed in the context of providing more reliable and fracture-resistant cemented joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. CHARNLEY, in “Acrylic cement in orthopedic surgery” (Williams and Wilkins, Baltimore, 1970).

    Google Scholar 

  2. F. ERDOGAN and G. D. GUPTA, J. Appl. Mech. 38 (1971) 937.

    Google Scholar 

  3. A. S. LITSKY and R. M. ROSE, J. Ortho. Res. 8 (1990) 623.

    Google Scholar 

  4. U. E. PAZZAGLIA, Arch. Ortho. Traum. Surg. 109 (1990) 83.

    Google Scholar 

  5. M. JASTY, W. J. MALONEY, C. R. BRAGDON, D. O. O'CONNOR, T. HAIRE and W. H. HARRIS, J. Bone Joint Surg. (Br) 73-B (1991) 551.

    Google Scholar 

  6. E. J. CHEAL, M. SPECTOR and W. C. HAYES, J. Ortho. Res. 10 (1992) 405.

    Google Scholar 

  7. B. MJOBERG, Acta Ortho. Scan. 57 (Suppl) (1986) 5.

    Google Scholar 

  8. E. M. EVANS, M. A. R. FREEMAN, A. J. MILLER and B. VERNON-ROBERTS, J. Bone Joint Surg. (Br) 56 (1974) 626.

    Google Scholar 

  9. P. A. REVELL, B. WEIGHTMAN, M. A. R. FREEMAN and B. VERNON-ROBERTS, Arch. Ortho. Traum. Surg. 81 (1978) 167.

    Google Scholar 

  10. S. R. GOLDRING, M. JASTY, M. ROELKE, K. K. PETRISON, F. R. BRINGHURST, A. L. SCHILLER and W. H. HARRIS, in Non-Cemented Total Hip Arthroplasty, Proceedings of the 3rd Annual Bristol-Myers/Zimmer Orthopaedic Symposium, Phoenix, March 1987, edited by R. H. Fitzgerald, Jr. (Raven Press, New York, 1988) p. 35.

    Google Scholar 

  11. S. B. GOODMAN, “The effects of micromotion and particulate materials on tissue differentiation, “Acta Ortho. Scan. 65 (Suppl. 258) (1994) 1.

    Google Scholar 

  12. C. T. WANG and R. M. PILLIAR, J. Mater. Sci. 24 (1989) 3725.

    Google Scholar 

  13. V. M. GHARPURAY, L. M. KEER and J. L. LEWIS, J. Biomech. Eng. 112 (1990) 22.

    Google Scholar 

  14. S. P. JAMES, T. P. SCHMALZRIED, F. J. MCGARRY and W. H. HARRIS, J. Biomed. Mater. Res. 27 (1993) 71.

    Google Scholar 

  15. G. R. IRWIN, in “Handbuch der Physik VI”, Vol. 6, edited by S. Flugge (Springer, Berlin, 1958) p. 558.

    Google Scholar 

  16. L. D. T. TOPOLESKI, P. DUCHEYNE and J. M. CUCKLER, J. Biomed. Mater. Res. 26 (1992) 1617.

    Google Scholar 

  17. B. POURDEYHIMI, H. D. WAGNER and P. SCHWARTZ, J. Mater. Sci. 21 (1986) 4468.

    Google Scholar 

  18. J. L. HAILEY, I. G. TURNER and A. W. MILES, Adv. Biomater. 10 (1992) 325.

    Google Scholar 

  19. C. T. WANG and R. M. PILLIAR J. Mater. Sci. 24 (1989) 2391.

    Google Scholar 

  20. L. M. BARKER, Eng. Fract. Mech. 9 (1977) 361.

    Google Scholar 

  21. R. W. HERTZBERG, in “Deformation and fracture mechanics of engineering materials” (John Wiley & Sons, Inc., New York, 1989) p. 388.

    Google Scholar 

  22. A. G. ATKINS and Y.-W. MAI, in “Elastic and plastic fracture“ (Ellis Horwood Limited, Chichester, 1985) p. 44, 401.

    Google Scholar 

  23. S. SAHA, in Proceedings of the Eighth Annual Conference of the IEEE/Engineering in Medicine and Biology Society, Fort Worth, November 1986, edited by G. V. Kondraske and C. J. Robinson (IEEE, New York, 1986) p. 1672.

    Google Scholar 

  24. T. L. ANDERSON, in “Fracture mechanics: fundamentals and applications” (CRC Press, Inc., Boca Raton, 1991) p. 131.

    Google Scholar 

  25. T. H. COURTNEY, in “Mechanical behaviour of materials” (McGraw-Hill Publishing Company, New York, 1990) p. 65.

    Google Scholar 

  26. R. A. SCHAPERY, in Encyclopedia of Materials Science and Engineering, edited by Robert Cahn (Pergamon Press, Oxford, 1986) p. 5043.

    Google Scholar 

  27. J. R. RICE, J. Appl. Mech. 35 (1968) 379.

    Google Scholar 

  28. C. D. BENCHER, R. H. DAUSKARDT and R. O. RITCHIE, J. Spacecraft Rockets 32 (1995) 328.

    Google Scholar 

  29. J. D. LANDES and J. A. BEGLEY, in Proceedings of the Eighth National Symposium on Fracture Mechanics, Providence, August 1974, edited by J. R. Rice and P. C. Paris, (American Society for Testing and Materials, Philadelphia, 1976) p. 128.

    Google Scholar 

  30. K. OHJI, K. OGURA, and S. KUBO, Trans. Japan. Soc. Mech. Eng. 42 (1976) 350.

    Google Scholar 

  31. K. M. NIKBIN, G. A. WEBSTER and C. E. TURNER, in Proceedings of the Ninth National Symposium on Fracture Mechanics, Pittsburgh, August 1975, edited by J. L. Swedlow and M. L. Williams (American Society for Testing and Materials, Philadelphia, 1976) p. 47.

    Google Scholar 

  32. T. L. ANDERSON, in “Fracture mechanics: fundamentals and applications” (CRC Press, Inc., Boca Raton, 1991) p. 256.

    Google Scholar 

  33. G. MARTIN, T. FETT and D. MUNZ, J. Eur. Ceram. Soc. 15 (1995) 643.

    Google Scholar 

  34. U. RAMAMURTY, A. S. KIM, S. SURESH and J. J. PETROVIC, J. Amer. Ceram. Soc. 76 (1993) 1953.

    Google Scholar 

  35. T. L. ANDERSON, in “Fracture mechanics: fundamentals and applications” (CRC Press, Inc., Boca Raton, 1991) p. 259.

    Google Scholar 

  36. H. RIEDEL and J. R. RICE, in Proceedings of the Twelfth National Symposium on Fracture Mechanics, edited by P. C. Paris (American Society for Testing and Materials, Philadelphia, 1980) p. 112.

    Google Scholar 

  37. H. RIEDEL, in “Fracture at high temperatures” (Springer-Verlag, Berlin, 1987) p. 308.

    Google Scholar 

  38. V. KUMAR, M. D. GERMAN and C. F. SHIH, in “An engineering approach for elasticplastic fracture analysis,” EPRI NP-1931 (Electric Power Research Institute, Palo Alto, CA, 1981) p. 3.

    Google Scholar 

  39. D. J. CHWIRUT, J. Biomed. Mater. Res. 18 (1984) 25.

    Google Scholar 

  40. T. L. NORMAN, V. KISH, K. HUSTOSKY, and J. D. BLAHA, in “Advances in bioengineering”, edited by J. M. Tarbell American Society of Mechanical Engineers, 26 (1993) 247.

  41. D. R. ASKELAND, in “The Science and Engineering of Materials” (PWS Publishing Company, Boston, 1994) p. 490.

    Google Scholar 

  42. M. JASTY, J. P. DAVIES, D. O. O’CONNOR, D. W. BURKE, T. P. HARRIGAN and W. H. HARRIS, Clin. Orthop. 259 (1990) 122.

    Google Scholar 

  43. S. S. HAAS, G. M. BRAUER and G. D. DICKSON, J. Bone Joint Surg. 57-A (1975) 380.

    Google Scholar 

  44. ASTM Standard E399-90, in “1994 ASTM Annual Book of Standards,” Vol. 3.01 (American Society for Testing and Materials, Philadelphia, 1994) p. 673.

    Google Scholar 

  45. ASTM Standard E647-95, in “1995 ASTM Annual Book of Standards,” Vol. 3.01 (American Society for Testing and Materials, Philadelphia, 1995) p. 578.

    Google Scholar 

  46. R. H. DAUSKARDT and R. O. RITCHIE, Closed Loop 17 (1989) 7.

    CAS  PubMed  Google Scholar 

  47. C. SHEU, R. H. DAUSKARDT and L. DE JONGHE, J. Mater. Sci. 28 (1993) 2196.

    Google Scholar 

  48. H. TADA, P. C. PARIS and G. R. IRWIN, in “Stress analysis of cracks handbook” (Paris Productions, Inc./Del Research Corp., St. Louis, 1985).

    Google Scholar 

  49. J. C. NEWMAN, in Proceedings of the Seventh National Symposium on Fracture Mechanics, College Park, August 1973, edited by P. C. Paris and G. R. Irwin (American Society for Testing and Materials, Philadelphia, 1974) p. 105.

    Google Scholar 

  50. J. E. SRAWLEY, Int. J. Fract. 12 (1976) 475.

    Google Scholar 

  51. A. SAXENA, S. J. HUDAK, J. K. DONALD and D. W. SCHMIDT, J. Test. Eval. 6 (1978) 167.

    Google Scholar 

  52. G. H. ARONSON and R. O. RITCHIE, ibid. 7 (1979) 208.

    Google Scholar 

  53. D. A. UTAH, W. H. CULLEN, R. O. RITCHIE, R. H. STENTZ and R. WILLIAMS, in “Metals handbook, 9th edition, Volume 8, Mechanical Testing”, edited by J. R. Newby, J. R. Davis and S. K. Refsnes (American Society for Metals, Metals Park, OH, 1985) p. 376.

    Google Scholar 

  54. P. K. LIAW, H. R. HARTMANN and W. A. LOGSDON, J. Test. Eval. 11 (1983) 202.

    Google Scholar 

  55. T. M. WRIGHT and R. P. ROBINSON, J. Mater. Sci. 17 (1982) 2463.

    Google Scholar 

  56. C. M. RIMNAC, T. M. WRIGHT and D. L. MCGILL, J. Bone Joint Surg. 68-A (1986) 281.

    Google Scholar 

  57. R. W. HERTZBERG, in “Deformation and fracture mechanics of engineering materials” (John Wiley & Sons, Inc., New York, 1989 ) p. 579.

    Google Scholar 

  58. A. G. ATKINS and Y.-W. MAI, in “Elastic and plastic fracture“ (Ellis Horwood Limited, Chichester, 1985) p. 408.

    Google Scholar 

  59. R. H. DAUSKARDT, D. B. MARSHALL and R. O. RITCHIE, J. Amer, Ceram. Soc. 73 (1990) 893.

    Google Scholar 

  60. R. H. DAUSKARDT, M. R. JAMES, J. R. PORTER and R. O. RITCHIE, ibid. 75 (1992) 759.

    Google Scholar 

  61. R. O. RITCHIE, Int. Met. Rev. 20 (1979) 205.

    Google Scholar 

  62. J. L. TZOU, C. H. HSUEH, A. G. EVANS and R. O. RITCHIE, Acta. Metall. 33 (1985) 117.

    Google Scholar 

  63. K. S. YI, S. J. DILL and R. H. DAUSKARDT, ibid. 44 (1996) in review.

  64. R. P. KAMBOUR, C. L. GRUNER and E. E. ROMAGOSA, Macromolecules 7 (1974) 248.

    Google Scholar 

  65. N. BROWN, in “Methods of experimental physics”, Vol. 16, Part C, edited by R. A. Fava (Academic Press, New York, 1980) p. 233.

    Google Scholar 

  66. R. H. DAUSKARDT, R. O. RITCHIE, J. K. TAKEMOTO and A. M. BRENDZEL, J. Biomed. Mater. Res. 28 (1994) 791.

    Google Scholar 

  67. R. O. RITCHIE and J. LANKFORD (eds), “Small fatigue cracks” (The Metallurgical Society of AIME, Warrendale, PA, 1986) p. 665.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

NGUYEN , N.C., MALONEY , W.J. & DAUSKARDT , R.H. Reliability of PMMA bone cement fixation: fracture and fatigue crack-growth behaviour. Journal of Materials Science: Materials in Medicine 8, 473–483 (1997). https://doi.org/10.1023/A:1018574109544

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018574109544

Keywords

Navigation