Skip to main content
Log in

Lagrangian for the tJ Model Constructed from the Generators of the Supersymmetric Hubbard Algebra

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In order to describe the dynamics of the tJ model, two different families of first-order Lagrangians in terms of the generators of the Hubbard algebra are found. Such families correspond to different dynamical second-class constrained systems. The quantization is carried out by using the path-integral formalism. In this context the introduction of proper ghost fields is needed to render the model renormalizable. In each case the standard Feynman diagrammatics is obtained and the renormalized physical quantities are computed and analyzed. In the first case a nonperturbative large-N expansion is considered with the purpose of studying the generalized Hubbard model describing N-fold-degenerate correlated bands. In this case the 1/N correction to the renormalized boson propagator is computed. In the second case the perturbative Lagrangian formalism is developed and it is shown how propagators and vertices can be renormalized to each order. In particular, the renormalized ferromagnetic magnon propagator coming from our formalism is studied in details. As an example the thermal softening of the magnon frequency is computed. The antiferromagnetic case is also analyzed, and the results are confronted with previous one obtained by means of the spin-polaron theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Arrigoni, E., Castellani, C., Grilli, M., Raimondi, R., and Strinati, G. (1994). Physics Report 241, 291–369.

    Google Scholar 

  • Baskaran, G., Zou Z., and Anderson, P. W. (1987). Solid State Communications 63, 973.

    Google Scholar 

  • Baym, G. and Kadanoff, L. (1961). Physical Review B: Condensed Matter 24, 287.

    Google Scholar 

  • Coleman, P., Hopkinson, J., and Pépin, C. (2001). Physical Review B: Condensed Matter 63, 140411.

    Google Scholar 

  • Faddeev, L. D. and Jackiw, R. (1988). Physical Review Letters 60, 1692.

    Google Scholar 

  • Foussats, A. and Greco, A. (2002). Large-N expansion based on the Hubbard-operator path-integral representation and its application to the tJ model. Physical Review B 65, 1951.

    Google Scholar 

  • Foussats, A., Greco, A., Repetto, C., Zandron, O. P., and Zandron, O. S. (2000). Journal of Physics A: Mathematcal and General 33, 5849.

    Google Scholar 

  • Foussats, A., Greco, A., and Zandron, O. S. (1999). Annals of Physics New York 275, 238.

    Google Scholar 

  • Foussats, A. and Zandron, O. (2001). Path-integral representation and Feynman diagrammatics for the generalized Hubbard model, unpublished paper.

  • Gehlhoff, L. and Zeyher, R. (1965). Physical Review B: Condensed Matter 52, 4635.

    Google Scholar 

  • Grilli, M. and Kotliar, G. (1990). Physical Review Letters 64, 1170.

    Google Scholar 

  • Greco, A. and Zeyher, R. (1996). European Physical Letters 35, 115.

    Google Scholar 

  • Izyumov, A. (1997). Physics·Uspekhi 40, 445.

    Google Scholar 

  • Jayaprakash, C., Krishnamurthy, H. R., and Sarker, S. (1989). Physical Review B: Condensed Matter 40, 2610.

    Google Scholar 

  • Kane, C. L., Lee, P. A., Ng, T. K., Chakraborty, B., and Read, N. (1990). Physical Review B: Condensed Matter 41, 2653.

    Google Scholar 

  • Kotliar, G. and Liu, J. (1988a). Physical Review B: Condensed Matter 38, 5142.

    Google Scholar 

  • Kotliar, G. and Liu, J. (1988). Physical Review B: Condensed Matter 38, 5142.

    Google Scholar 

  • Le Guillou, J. C. and Ragoucy, E. (1995). Physical Review B: Condensed Matter 52, 2403.

    Google Scholar 

  • Manousakis, E. (1991). Reviews of Modern Physics 53, 11.

    Google Scholar 

  • Martinez, G. and Horsch, P. (1991). Physical Review B: Condensed Matter 44, 317.

    Google Scholar 

  • Mattis, D. C. (1981). The theory of Magnetism I, Springer-Verlag, New York.

    Google Scholar 

  • Schmitt-Rink, S., Varma, C. M., and Ruckenstein, A. E. (1988). Physical Review Letters 60, 2793.

    Google Scholar 

  • Tandon, A., Wang, Z., and Kotliar, G. (1999). Physical Review Letters 83, 2046.

    Google Scholar 

  • Wang, Z. (1992). International Journal of Modern Physics B 6, 155.

    Google Scholar 

  • Wiegmann, P. B. (1988). Physical Review Letters 60, 821.

    Google Scholar 

  • Wiegmann, P. B. (1989). Nuclear Physics B 323, 311.

    Google Scholar 

  • Zeyher, R. and Greco, A. (1998). European Physics Journal B 6, 473.

    Google Scholar 

  • Zeyher, R. and Kulíc, M. (1996). Physical Review B: Condensed Matter 53, 2850.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Zandron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foussats, A., Repetto, C., Zandron, O.P. et al. Lagrangian for the tJ Model Constructed from the Generators of the Supersymmetric Hubbard Algebra. International Journal of Theoretical Physics 41, 1053–1082 (2002). https://doi.org/10.1023/A:1016087227499

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016087227499

Navigation