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Abstract. This paper presents the design and evaluation of a text categorization method based on the Hierarchical
Mixture of Experts model. This model uses a divide and conquer principle to define smaller categorization problems
based on a predefined hierarchical structure. The final classifier is a hierarchical array of neural networks. The
method is evaluated using the UMLS Metathesaurus as the underlying hierarchical structure, and the OHSUMED
test set of MEDLINE records. Comparisons with an optimized version of the traditional Rocchio’s algorithm
adapted for text categorization, as well as flat neural network classifiers are provided. The results show that the use
of the hierarchical structure improves text categorization performance with respect to an equivalent flat model. The
optimized Rocchio algorithm achieves a performance comparable with that of the hierarchical neural networks.
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1. Introduction

A system that performs text categorization aims to assign appropriate labels (or categories)
from a predefined classification scheme to incoming documents. These assignments might
be used for varied purposes such as filtering, or retrieval. Given the rapid growth of in-
formation, automatic text categorization is an important goal. This task has been explored
by many researchers in the Information Retrieval (IR), and the Artificial Intelligence (AI)
communities. Different approaches such as decision trees (ID 3) (Moulinier and Ganascia
1996), rule learning (Apte et al. 1994), neural networks (Ng et al. 1997, Wiener et al.
1995), linear classifiers (Lewis et al. 1996), K -nearest neighbor (KNN) algorithms (Yang
and Pedersen 1997), support vector machine (SVM) (Joachims 1997), and Naive Bayes
methods (Lewis and Ringuette 1994, McCallum and Nigam 1998) have been explored.
Interestingly it is only recently that researchers (Koller and Sahami 1997, McCallum et al.
1998, Mladenić 1998, Ng et al. 1997, Weigend et al. 1999) have tried to take advantage of
the hierarchical structure available in certain classification schemes, e.g. Medical Subject
Headings (MeSH), Yahoo! topic hierarchy.

The hierarchical structure of a classification scheme reflects relations between concepts
in the domain covered by the classification. The hierarchy typically encodes a set inclusion
relation, also called IS-A relation, between category members. For example, in a classifi-
cation of living things the set of animals includes the set of fish which includes the set of
trouts. Thus a directional (IS-A) hierarchical link connects the narrower concept of ‘trout’
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to ‘fish’ which in turn has a similar connection to ‘animal’. The IS-A relation is asymmetric
(e.g. all dogs are animals, but not all animals are dogs) and transitive (e.g., all pines are
evergreens, and all evergreens are trees; therefore all pines are trees). We believe that given
such a hierarchical classification the properties used to categorize an entity as a ‘trout’ must
be more closely related to the properties for the class ‘fish’ in comparison to the proper-
ties corresponding to the class ‘evergreens’. We suggest that by ignoring the conceptual
configurations that accompany classification schemes one may limit the potential of text
categorization methods. Thus our primary research goal is to explore the hypothesis that
a text categorization procedure capable of exploiting the conceptual connections between
categories is more effective than a procedure that is not designed to exploit such information.

More specifically, we explore a categorization strategy designed to exploit the hierar-
chical structure underlying the UMLS (Unified Medical Language System) Metathesaurus
(National Library of Medicine 1999) and test its effectiveness using the OHSUMED test
collection (Hersh et al. 1994). Our hierarchical classifier is inspired by the Hierarchical
Mixture of Experts model proposed by Jordan and Jacobs (1993). Built as a collection of
neural networks, our classifier should scale to larger collections of categories and documents
because it divides the categorization problem into a set of related sub-problems.

We present experiments that explore the value of our hierarchical classifier in comparison
to a non hierarchical (flat) baseline classifier and a state-of-the-art implementation of the
Rocchio classifier. Part of our research goal is to study feature selection as well as the
selection of training examples within the overall goal of exploring hierarchical classifiers.

In Section 2 we present the theoretical background of the Hierarchical Mixture of Experts
model and in Section 3 the details of its implementation. Sections 4 and 5 explain the
different methods used for feature selection and training set selection while Sections 6 and
7 describe the experimental collection and the evaluation measures respectively. Section 8
presents the details of the experiments performed. Section 9 presents an analysis of results
while Section 10 compares our approach with other work in hierarchical text categorization.
Section 11 presents our conclusions and future research plans.

2. Theoretical framework

The Hierarchical Mixture of Experts (HME) model is a supervised feedforward network
that may be used for classification or regression (Jordan and Jacobs 1993). It is based on the
principle of “divide and conquer” in which a large problem is divided into many smaller,
easier to solve problems whose solutions can be combined to yield a solution to the complex
problem. Various methods for subdividing large problems have been proposed. The simplest
approach is to divide the problem into sub-problems that have no common elements, also
called a “hard split” of the data. The optimum solution of the smaller problems can then be
chosen on a “winner-takes-all” basis. Classification and Regression Trees (CART) (Breiman
et al. 1984) are based on this principle. Stacked Generalization (Wolpert 1993) also uses a
hard split of the data and a weighted sum with weights derived from the performance of the
smaller problems in their partition space. In contrast, HME divides the large problem into
sub-problems that can have common elements—a “soft split” of the elements into a series
of overlapping clusters. The outputs of the simple problems are combined stochastically to
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Figure 1. Hierarchical mixture of experts model.

obtain a global solution. The model has two basic components: gating networks and expert
networks. The gating networks, located at the intermediate level nodes of the tree, receive
the input x(m) (a vector x of m input features representing a document) and produce scalar
output that weights the contribution of the child networks. The expert networks, located
at the leaf nodes, receive the input x(m) to produce an estimate of the output. An example
HME with binary branching is shown in figure 1. This HME may be seen as a cascade of
networks that works in a “bottom-up” fashion: the input is first presented to the experts
that generate an output, then the output of the experts are combined by the second level
gates, generating a new output. Finally the outputs of the second level gates are combined by
the root gate to produce the appropriate result y(n) (a vector y of n components where n is the
number of outputs). The

∑
nodes in the tree represent the convex sum of the output of the

child nodes which is computed as y(n) = ∑
j g j y(n)

j where g j is the output of the gate and
y(n)

j is the output of the corresponding child node.
In the original model proposed by Jordan and Jacobs all the networks in the tree are linear

(perceptrons). The expert network produces its output y as a generalized linear function of
the input x:

y = f (Ux) (1)
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where U is a weight matrix and f is a fixed continuous non linear function. The vector x
is assumed to include a fixed component with value one to allow for an intercept term. For
binary classification problems, f (·) is the logistic function, in which case the expert outputs
are interpreted as the log odds of “success” under a Bernoulli probability model. Other
models (e.g., multi-way classification, counting, rate estimation and survival estimation)
are handled by making other choices for f (·).

The gating networks are also generalized linear functions. The i th output of the gating
network is the “softmax” function of the intermediate variable ψi (Bridle 1989, McCullagh
and Nelder 1989).

gi = eψi

∑
j=1,...,l eψ j

(2)

where l is the number of child nodes of the gating network, and the intermediate variable
ψi is defined as:

ψi = vT
i x (3)

where vi is a weight vector and T is the transpose operation. The gi s are positive and sum
to one for each x. They can be interpreted as providing a “soft” partitioning of the input
space.

The output vector at each nonterminal node of the tree is the weighted sum of the output
of the children below that nonterminal. For example, the output at the i th nonterminal in
the second layer of the two-level tree in figure 1 is:

y(n)
i =

∑

j

gi · j y
(n)
i · j (4)

where j = 1, . . . , l, l is the number of child nodes connected to the gate, y(n)
i · j is the output

of expert j which is a child of gate i , and gi · j is the j th output of the gate i . Note that since
both the g’s and the y’s depend on the input x, the output is a nonlinear function of the
input.

The general HME model is very flexible. One may choose a function f (Eq. 1) for
the gate and expert decision modules that is appropriate for the application. Moreover,
since gates and experts depend only upon the input x, one may choose either bottom-up
or top-down processing whichever is appropriate for the problem. In our variation of the
HME model we use a binary classification function at the gates. Also, we train and use
our model top-down. The choice of this direction was made based upon the number of
categories. As will be described in detail later, we have a collection of 119 categories in the
dataset and moreover aim towards a scalable categorization procedure that can handle large
classification schemes. The UMLS classification presently has more than 350, 000 concepts
while the full OHSUMED dataset has about 14, 000 concepts. A bottom-up approach would
be very inefficient given that there is an expert module for each category. The computational
requirements are especially severe when the decision module at each expert node is a neural
network. In contrast our top-down approach along with a binary classification at each gate
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Figure 2. Modified hierarchical mixture of experts model.

restricts the number of expert networks to be activated for a given document. It may be
observed that in studies using the bottom-up HME approach the number of categories
was small as for example 26 for handwriting recognition and 52 for speech recognition
(Waterhouse 1997). In this study we choose the more efficient direction and postpone the
exploration of bottom-up processing for future research.

In our model, given a binary function a gate is trained to yield a value of 1 if the example
document is categorized with any of its descendent concepts. For example, in our domain
the gate for the general concept of “Heart Disease” is trained to yield a 1 if the document
is categorized by any of its specific categories such as “Coronary Thrombosis”.

During testing, the categorization task starts at the root node and its gate decides whether
the most general concept is present in the document. If this is true, then all the second
level nodes make their decisions and the process repeats until it reaches the leaf nodes.
Observe that only the experts connected to gates that output the value 1 are activated thus
reducing the response time during classification.1 Figure 2 presents our modified HME
classifier model. A key difference depicted is at the gating networks which use binary
functions.

To give a statistical interpretation of our model we define Z1, . . . , Zj as the path of gates
from the root node to the gate j that is the parent of an expert εk that assigns category k.
Let x(m) be the input features that represent a document, and y(n) the output vector of the
categories assigned to the document. The probabilistic interpretation of our hierarchical
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Figure 3. Example of a backpropagation network with 5 inputs.

model is as follows:

P
(
y(n)

∣∣ x(m)
) =

n∑

k=1

P
(
Z1 = 1

∣∣ x(m)
)
P

(
Z2 = 1

∣∣ Z1 = 1, x(m)
)
. . .

P
(
Z j = 1

∣∣ Z1 = 1, . . . , Z j−1 = 1, x(m)
)
P

(
εk = 1

∣∣ x(m)
)

The hierarchical structure in a HME model is predefined2 in our case by the hierarchy
of the “Heart Disease” subset of the UMLS classification system. Moreover, the HME
hierarchy is generally limited to the classes that appear in the training set. Given our training
set (described later) we are able to use only 103 concepts of the 119 in the “Heart Disease”
subset.

There are several alternatives for training a HME model. Jordan and Jacobs (1993)
and Waterhouse (1997) use a method based on expectation maximization. They assume
that the classification follows a multinomial model, which implies that an object can be
assigned to one and only one of the multiple categories available for classification. This is
a 1-of-K classification task which may be viewed as a competition problem. In contrast,
we are interested in a k-of-K (multi-way) classification problem which is equivalent to k
independent 1-of-2 classifications (McCullagh and Nelder 1989, Rumelhart et al. 1996). To
allow for multi-way classification we use backpropagation neural networks in both gates and
experts and use a gradient descent method for training. The gates are trained to recognize
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whether or not any of the categories of their descendants is present in the document. The
experts are trained to recognize the presence or absence of particular categories.

The backpropagation networks that we use have three layers (see figure 3). We have
tested several configurations and these results will be discussed in detail later. In general,
our neural networks have m nodes in the input layer corresponding to the set of m features
selected for each expert (or gate), the middle layer has n nodes, and the output layer is
a single node. In this case the sigma nodes are responsible for combining the outputs of
the gate i and expert j to obtain the kth component yk = gi yi · j (where k = 1..n) of the
output Y (n)

i at each intermediate node of the HME. Observe that the general model allows
for experts to have an output vector of size n. Our implicit assumption for this paper is that
each category assignment is independent.

Given an appropriate set of features and a training set of manually categorized documents,
the backpropagation network learns to make the appropriate decisions. Observe that for
experts and gates the set of positive examples is different. The set of positive examples for
the experts is a subset of the positive examples of any ancestor gate. As a consequence, two
identical neural networks trained with these different subsets learn different probabilistic
functions. The backpropagation neural network as an expert node learns to use the input
to estimate the desired output value (category), while as a gate it computes the confidence
value of the combined outputs of its children.

3. Implementation of the HME

We want to build a classifier that is able to effectively use the structured knowledge con-
tained in the UMLS Metathesaurus (National Library of Medicine 1999). In particular we
are interested in the hierarchical relationships which link general concepts to the more
specific ones. The 1999 UMLS Metathesaurus contains about 350, 000 concepts collected
by combining 79 vocabularies for the health sciences. In this study we limit ourselves to
MeSH (Medical Subject Headings)3 which is one of the 79 vocabularies. Since documents
in the OHSUMED test collection are a subset of MEDLINE, they have been manually
categorized with MeSH terms. Each MEDLINE document is assigned between 8 and 10
MeSH concepts. Thus our categorization task is a multi-way classification problem. In our
model the gates represent the general concepts of this hierarchy.

Interestingly, the manual assignment of a high level MeSH category is not automatically
determined by the assignment of its lower level categories. That is, the fact that a document
is assigned the category “angina unstable” does not automatically grant it the assignment
of any of the ancestors in the tree (“Heart diseases”, “Myocardial Ischemia”, “Coronary
Diseases”, or “Angina Pectoris”). In fact the manual assignment of such high level categories
is usually done when the MEDLINE document is about the topic at the associated level of
generality or abstraction. Therefore in our model, each nonterminal node is represented by
two networks. The first is the expert network for the node’s category while the second is a
gating network representing the general concept at that level of the classification scheme.
Thus at the “Heart Diseases” node there is a gate that learns to recognize the general concept
(representing all the documents that are about any of its descendants), and an expert network
that learns to assign this specific category “Heart Diseases”. Note that from this point on
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Figure 4. A part of the UMLS hierarchy for the heart diseases subtree.

unless explicitly specified, we mean both categories and concepts when we use the word
‘category’.

For the purpose of comparing results with other studies we will show the results obtained
using only the MeSH subtree of “Heart Diseases”. (Figure 4 shows a part of this hierarchy).
However, our method especially given its top-down processing, is general and can be applied
to the whole set or to any other subset of the UMLS.

4. Feature selection

In text categorization the set of possible input features consists of all the different words
that appear in a collection of documents. This is usually a large set since even small text
collections could have hundreds of thousands of features. Reduction of the set of features
to train the neural networks is necessary because the performance of the network and the
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cost of classification are sensitive to the size and quality of the input features used to train
the network (Yang and Honovar 1998). A first step towards reducing the size of the feature
set is the elimination of stop words, and the use of stemming algorithms. Even after that is
done the set of features is typically too large to be useful for training a neural network.

Two broad approaches for feature selection have been presented in the literature: the
wrapper approach, and the filter approach (John et al. 1994). The wrapper approach attempts
to identify the best feature subset to use with a particular algorithm. For example, for a neural
network the wrapper approach selects an initial subset and measures the performance of
the network; then it generates an “improved set of features” and measures the performance
of the network. This process is repeated until it reaches a termination condition (either a
minimal value of performance or a number of iterations). The filter approach, which is more
commonly used in text categorization, attempts to assess the merits of the feature set from
the data alone. The filtering approach selects a set of features using a preprocessing step,
based on the training data. In this paper we use the filter approach, but we plan to explore
the wrapper approach in future research. We select three methods that have been used in
previous works: correlation coefficient, mutual information, and odds ratio. During feature
selection we first delete all instances of 571 stop words from the MEDLINE records, and
then use Porter’s algorithm to stem the remaining words. We eliminate those stems that
occur in less than 5 documents in the training collection. Since feature selection is done for
each category, based on its zone (explained later) we also remove stems that occur in less
than 5% of the positive example documents. We then rank the remaining stems by the feature
selection measure and select a pre-defined number of top ranked stems as the feature set.

4.1. Correlation coefficient

Correlation coefficient C is a feature selection measure proposed by Ng et al. (1997) and is
defined as:

C(w, c) = (Nr+Nn− − Nr−Nn+)
√

N√
(Nr+ + Nr−)(Nn+ + Nn−)(Nr+ + Nn+)(Nr− + Nn−)

(5)

where Nr+(Nr−) is the number of positive examples of category c in which feature w

occurs(does not occur), and Nn+(Nn−) is the number of negative examples of category c
in which feature w occurs(does not occur). This measure is derived from the χ2 measure
presented by Schütze et al. (1995), where C2 = χ2. The correlation coefficient can be
interpreted as a “one-side” χ2 measurement. The χ2 measure has been reported as a good
measure for text categorization by Yang and Pedersen (1997). The correlation coefficient
promotes features that have high frequency in the relevant examples but are rare in the non
relevant documents. When features are ranked by this method, the positive values correspond
to features that indicate presence of the category while the negative values indicate absence
of the category. In contrast, the χ2 ranks features higher if they more strongly indicate the
presence or the absence of a category. That is, more ambiguous features are ranked lower.
We compared the χ2 and correlation coefficient for feature selection using neural networks
with the same architecture. We found that the neural networks trained with features selected
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using correlation coefficient outperformed those trained using χ2 in 78 out of 103 categories.
This confirms similar results reported by Ng et al. (1997). Note that Yang and Pedersen
(1997) use an average of the χ2 value across categories to measure the goodness of a term
in a global sense, while we use it for local (category-level) feature selection.

In contrast with mutual information, both χ2 and correlation coefficient produce nor-
malized values because they are based on the χ2 statistic. However, the normalization does
not hold for low populated cells in the contingency table. This makes the scores of χ2 and
correlation coefficient for low frequency terms unreliable. This is one reason for removing
rare features as described before.

4.2. Mutual information

Mutual information is a measure that has been used in text categorization by several re-
searchers (Schütze et al. 1995, Yang and Pedersen 1997). This method is based on the mutual
information concept developed in information theory. For a feature w and a category c it is
defined as:

I (w, c) = log
P(w ∧ c)

P(w) × P(c)
(6)

where P(w) is the probability of the term w occurring in the whole collection, P(c) is the
probability of the category c occurring in the whole collection, and P(w ∧ c) is their joint
probability.

Yang and Pedersen (1997) used mutual information4 to measure the goodness of a term
in a global feature selection approach by combining the category specific scores of a term
in two ways:

Iavg(w) =
n∑

i=1

P(ci )I (w, ci ) (7)

Imax(w) = n
max
i=1

{I (w, ci )} (8)

where n is the number of categories.
In contrast, we use feature selection to evaluate the goodness of a term with respect to

individual categories. In other words, we do not average the values of mutual information
over multiple categories. This variation may be sufficient to produce the different results
that we obtain (described later). Yang and Pedersen also point out that the score produced
by mutual information is strongly influenced by the marginal probabilities of terms. This is
evident from the following equivalent formula:

I (w, c) = log P(w | c) − log P(w) (9)

For terms with equal conditional probability P(w | c), rare terms will have higher scores
than common terms. This implies that the scores of terms with extremely different



HIERARCHICAL TEXT CATEGORIZATION 97

Figure 5. Graph of odds ratio. The x axis represents P(w | pos), while the y axis represents the P(w | neg).

frequencies might still not be comparable. Our frequency threshold described earlier, com-
pensates for this effect.

4.3. Odds ratio

Odds ratio was proposed originally by van Rijsbergen et al. (1979) for selecting terms
for relevance feedback. Odds ratio is used for the binary-valued class problem where the
goal is to make a good prediction for one of the class values (Rijsbergen et al. 1979). It
is based on the idea that the distribution of features on the relevant documents is different
from the distribution of features on the non-relevant documents. It has been recently used
by Mladenić (1998) for selecting terms in text categorization. The odds ratio of a feature
w, given the set of positive examples pos and negative examples neg for a category c, is
defined as follows:

OddsRatio(w, c) = log
P(w | pos)(1 − P(w | neg))

(1 − P(w | pos))P(w | neg)
(10)

Observe that this formula can also be interpreted as the sum of the logarithm of the
ratios of the distribution of the feature on the relevant documents (log P(w | pos)

(1−P(w | pos)) ) and on
the non-relevant documents (log (1−P(w | neg))

P(w | neg)
). If a document appears in more than half of

the relevant documents the logarithm of the ratio on the relevant documents is positive. In
contrast a feature is penalized if it appears in more than half of the non-relevant documents.
In other words, a feature that appears frequently in the relevant documents and infrequently
in the non relevant documents will have a high score. Figure 5 shows a graph of the odds
ratio. The function presents singularity points when P(w | pos) = 1 or when P(w | neg) = 0
(we map this case to the highest positive value). Also the logarithm is not defined when
P(w | pos) = 0 or when P(w | neg) = 1 (we map this case to the smallest negative value).

Mladenić (1998) report that odds ratio was the most successful feature selection method
for a hierarchical Bayesian classifier compared to mutual information, cross entropy, infor-
mation gain, and weight of evidence.
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In this study we select features for both expert and gating networks using correlation
coefficient, mutual information and odds ratio methods.

5. Training set selection

A supervised learning algorithm requires the use of a training set in which each element
has already been correctly categorized. One would expect that the availability of a large
training set (such as OHSUMED) will be beneficial for training the algorithm. In practice
this does not seem to be the case. The problem occurs when there is also a large collection
of categories with each assigned to a relatively small number of documents. This then
creates a situation in which each category has a small number of positive examples and an
overwhelming number of negative examples. When a machine learning algorithm is trained
to learn the assignment function with such an unbalanced training set, the algorithm will
learn that the best decision is to not assign the category. The overwhelming amount of
negative examples hides the assignment function. To overcome this problem an appropriate
set of training examples must be selected. We call this training subset the “category zone”.
This notion of category zone is similar to the local regions described in Wiener et al. (1995),
and Ng et al. (1997) but is inspired by the query zone proposed by Singhal et al. (1997) for
text routing. Their “query zoning” is based on the observation that in a large collection a
query will have a set of documents that constitutes its domain. Non-relevant documents that
are outside the domain are easy to identify, but it is more difficult to differentiate between
relevant and non-relevant documents within the query domain. Singhal et al. (1997) define
a procedure that tries to approximate the domain of the query and then they use this domain
to train their routing method. We suggest that in text categorization, each category also has
its own domain. It will be easier to train a learning algorithm with those documents from
the category domain and also potentially achieve better categorization performance. We
explore two different methods for building the category zone. The first method creates the
category zone using a method similar to that presented by Singhal et al. (1997). This first
category zone that we call centroid-based is created as follows:

1. Take all the positive examples for a category and obtain their centroid.
2. Using this centroid as a query perform retrieval and obtain the top 10, 000 documents.

This subset will contain most if not all of the positive examples and many negative
examples that are at least “closely related” to the domain of the category.

3. Obtain the category zone by adding any unretrieved positive examples to the set obtained
in the previous step.

This method creates category zones that have at least 10, 000 documents and the size
increases for categories that have positive examples outside the retrieved set.

The second method for creating the category zone uses a Knn approach in which the
category zone consists of the set of K nearest neighbors for each positive example of the
category. This method will produce variable sized category zones. We explored several
values of K (10, 50, 100 and 200). Our main concern with this method was to obtain a
training set large enough to train a neural network without overfitting.
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Figure 6. Example record from OHSUMED.

6. Experimental collection

We use the OHSUMED collection created by Hersh and his collaborators (Hersh et al. 1994).
This collection has 348, 543 records from the MEDLINE collection from 1987 to 1991.
Each record from this collection has several fields (see figure 6). We use the following: title
(.T), and abstract (.W). In the training set we also use the MeSH (.M) field which represents
the manual categorization decisions for the MEDLINE documents. We selected the 233, 455
records that have titles, abstracts and MeSH categories (the remaining do not have abstracts).
The first four years of data dated 1987 through 1990 (183,229 records) are used for training,
and the year 1991 (50,216 records) is used for testing. This corresponds to the same split as
used by Lewis et al. (1996). We also use the 119 categories from the Heart Disease subtree
of the Cardiovascular Diseases tree structure of the UMLS.5 However, only 103 of these
119 categories have positive examples in the training set. Thus we limit our experiments to
these 103 categories. We further divide this set of 103 categories into three sets:

– High frequency categories (HD-49): This includes all categories with at least 75 examples
in the training set. This set contains 49 categories (which is the same as the set of high
frequency categories used by Lewis et al.).

– Medium frequency categories (HD-28): This set includes all categories with frequencies
between 15 and 74 in the training set. This set contains 28 categories (this is equivalent
to the second set of categories used by Lewis et al.).
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Figure 7. Tree for the 119 categories of the heart diseases sub-tree.

– Low frequency categories (HD-26): This set includes all categories with frequencies
between 1 and 14 in the training set. This set contains 26 categories.

We report results on these three subsets as well as on the complete set of categories (HD-
119).6 The first two subsets allow us to analyze performance separately for different levels
of positive evidence and also allow us to compare results with other published research with
the same collection (Lewis et al. 1996).

The 119 “Heart Diseases” categories form a 5 level tree where the first level corresponds
to the root node and the fifth level has only leaf nodes. The number of gates in each level
starting from the root is 1, 11, 9, and 3 (see figure 7).

7. Evaluation measures

In order to evaluate a binary decision task we first define a contingency matrix representing
the possible outcomes of the classification as shown in Table 1. Several measures in the IR
and AI communities have been defined based on this contingency table. Table 2 shows the
formulas of these measures and the corresponding names used in each community.
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Table 1. Contingency table for binary classification.

Class Positive (C+) Class Negative (C−)

Assigned positive (A+) a b
(True Positives) (False Positives)

Assigned negative (A−) c d
(False Negatives) (True Negatives)

Table 2. Efficiency measures for binary classification defined in the Information Retrieval (IR) and Artificial
Intelligence (AI) communities.

IR AI

recall (R) Sensitivity a
a+c

precision (P) Predictive value(+) a
a+b

fallout Predictive value(−) b
b+d

Accuracy a+d
a+b+c+d

Specificity d
b+d

error rate b+c
a+b+c+d

In IR measures that combine recall and precision have been defined: break-even point
(BEP), and Fβ measure. BEP was proposed by Lewis (1992) and is defined as the point at
which recall equals precision. van Rijsbergen’s Fβ measure (van Rijsbergen 1979) combines
recall and precision into a single score:

Fβ = (β2 + 1)P × R

β2 P + R
= (β2 + 1)a

(β2 + 1)a + b + β2c
(11)

F0 is the same as precision, F∞ is the same as recall. Intermediate values between 0
and ∞ are different weights assigned to recall, and precision. The most common values
assigned to β are 0.5 (recall half as important as precision), 1.0 (recall and precision equally
important) and 2.0 (recall twice as important as precision). If a, b and c are all 0, Fβ is
defined as 1 (this occurs when a classifier assigns no documents to the category and there
are no related documents in the collection).

None of the measures are perfect or appropriate for every problem. For example, recall
(sensitivity), if used alone might show deceiving results, i.e. a system that assigns the
category to every document will show perfect recall (1.0). Accuracy, on the other hand
works well if the number of positive and negative examples are balanced, but in extreme
conditions it too might be deceiving. If the number of negative examples is overwhelming
compared to the positive examples then a system that assigns no documents to the category
will obtain an accuracy value close to 1.

As pointed out by Schapire et al. (1998), BEP also shows some problems. Usually the
value of the BEP has to be interpolated. If the values of recall and precision are too far
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then BEP will show values that are not achievable by the system. Also the point where
recall equals precision is not informative and not necessarily desirable from the user’s
perspective.

van Rijsbergen’s F measure is the best suited measure, but still has the drawback that it
might be difficult for the user to define the relative importance of recall and precision. We
report F1 values because it allows us to compare results with other researchers who have
used the same dataset (Lam and Ho 1998, Lewis et al. 1996, Yang 1996). In general the F1

performance is reported as an average value. There are two ways of computing this average:
macro-average, and micro-average. With macro-average the F1 value is computed for each
category and these are averaged to get the final macro-averaged F1. With micro-average
we first obtain the global values for the true positive, true negative, false positive, and false
negative decisions and then compute the micro-averaged F1 value using the micro-recall
and micro-precision (computed with these global values). The results reported in this paper
are macro-averaged F1. This allows us to compare our results with those of other researchers
working with the OHSUMED dataset.

8. Experiments

There are two main questions that we address in this research (1) Does a hierarchical
classifier built on the HME model improve performance when compared to a flat classifier?
(2) How does our hierarchical method compare with other text categorization approaches?
With these two research questions in mind we present a series of experiments using the
OHSUMED collection.

8.1. Baselines

Our first baseline represents a classical Rocchio classifier which is described in the next
section. Our second baseline is a flat neural network classifier. Comparing the performance
of the HME classifier against the flat classifier will allow us to answer our first research
question. Comparing the HME method with a Rocchio classifier as well as with other
published results will allow us to answer our second research question. Thus we have
implemented a Rocchio classifier, a HME classifier, and a flat neural network classifier
which are detailed next.

8.2. Rocchio classifier

Rocchio’s algorithm was developed in the mid 1960’s to improve queries using relevance
feedback. It has proven to be one of the most successful feedback algorithms. Rocchio
(1971) showed that the optimal query vector is the difference vector of the centroid vectors
for the relevant and the non-relevant documents. Salton and Buckley (1995) included the
original query (Qorig) to preserve the focus of the query, and added coefficients (α, β and γ )



HIERARCHICAL TEXT CATEGORIZATION 103

to control the contribution of each component. The mathematical formulation of this version
is:

�Qnew = α �Qorig + β
1

R

∑

d∈rel

�d − γ
1

N − R

∑

d /∈rel

�d (12)

where �d is the weighted document vector, R = |Rel| is the number of relevant documents,
and N is the total number of documents. Any negative components of the final vector �Qnew

are set to zero. Several techniques have been proposed to improve the effectiveness of
Rocchio’s method: better weighting schemes (Singhal et al. 1996), query zoning (Singhal
et al. 1997), and dynamic feedback optimization (Buckley and Salton 1995).

As pointed out by Schapire et al. (1998) most of the studies that use Rocchio as a baseline
have constructed a weak version of the classifier (Lam and Ho 1998, Lewis et al. 1996, Yang
1996,1999). They also show that a properly optimized Rocchio’s algorithm could achieve
quite competitive performance. We have noticed that Rocchio’s classifiers benefit from an
optimal feature selection step. To make a fair comparison between the neural networks
and the Rocchio classifiers we use the set of features selected using correlation coefficient
and the same category zones used to train the neural network classifiers for each category.
Observe that this is an important difference with respect to previously published research
that use Rocchio classifiers (in all these studies the vector is computed over the whole set of
features). Since we use feature selection measures that select features indicative of presence
of the category, each classifier has its centroid vector defined in a different subspace (the
sub-space of the selected features) generated from the category zone.

We build a Rocchio classifier by presenting training examples from the category zone
and computing the weights of the classifier using Rocchio’s formula. We then rank the full
training collection according to the similarity with this classifier vector. A threshold (τ ) on
the similarity value that maximizes the F1 measure (described in the evaluation measures
section) is selected. The optimal Rocchio classifier for a category is then a weighted vector
of selected features along with a similarity threshold.

During the evaluation phase we compute similarity between the optimal Rocchio clas-
sifier vector and the test document vectors and assign the class to all documents above the
threshold τ .

8.3. Hierarchical mixture of experts

Our HME approach is represented in figure 2. First a zone of domain documents is identified
for each category as explained before. Next feature selection is applied within each category
zone to extract the “best” set of features. We tested all three feature selection methods in
our experiments. Then for each expert network a backpropagation neural network is trained
using the corresponding category zone and the selected set of features. Similarly, each
gating network is also a backpropagation network. However a gate’s training subset is the
combined category zones of its descendants in the classification hierarchy. Feature selection
for the gate is then performed on its combined subset. This strategy of combining zones
from descendent nodes for a gate is reasonable if we consider the fact that gates represent
hierarchical concepts and not particular categories as described before in Section 3.
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The input feature vectors for documents are weighted using t f × id f weights where t f
is the frequency of the term in the document, and id f is the inverse document frequency
defined as:

idf = log
N

n
(13)

where N is the total number of documents in the training collection, and n is the number
of documents that contain the term in the training collection.

Experts and gates are trained independently using the following parameters: learning
rate = 0.5, error tolerance = 0.01, maximum number of epochs = 1, 000. These parameter
values are fixed for all our experiments. The training of each network takes between 15
to 30 minutes for an expert (depending on the number of examples), and around 60 to 90
minutes for a gating network using a HP-700 workstation. Using 15 workstations and a
dynamic scheduling program specifically designed for this task we trained the 103 experts
and the 21 gating networks in about 8 hours.

Once experts and gates have been trained individually we assemble them according to
the UMLS hierarchical structure. Since the output of each network is a real value be-
tween 0 and 1, we need to transform each output value into a binary decision. This step
is called thresholding. We do this by selecting thresholds that optimize the F1 values for
the categories. We use the complete training set to select the optimal thresholds. Since
we are working with a modular hierarchical structure we have several choices to per-
form thresholding. Our approach is to make a binary decision in each of the gates and
then optimize the threshold on the experts using only those examples that reach the leaf
nodes.

Observe that computing the optimal thresholds for binary decisions at the gates and the
experts is a multidimensional optimization problem. We decided to optimize the gates by
grouping them into levels and finding the value of the threshold at each level that maximizes
the average F1 value for all the experts. Each expert’s threshold is then optimized to maxi-
mize the F1 value of the examples in the training set that reach the expert. In order to constrain
the potentially explosive combination of parameters we decide to fix the thresholds for the
gates across all our experiments. For this purpose we conducted a preliminary experiment
in which we search the best combination of thresholds per level varying each threshold on
fixed values and computing performance on the whole training set. The optimal thresholds
were set to 0.01, 0.005, 0.01 and 0.01 for levels 1(root), 2, 3 and 4 respectively. These values
were obtained by selecting the best results over 1, 764 threshold combinations (0.005, 0.01,
0.05, and 0.10 for level 1, 0.005, 0.01, 0.05, 0.10, 0.15, 0.20, . . . 0.95 for levels 2, 3 and 4).7

This experiment was run using correlation coefficient for feature selection and a standard
configuration of 25 input nodes and 50 hidden nodes. The best threshold are fixed across all
runs.

The test set is processed using the trained networks assembled hierarchically with the
established thresholds for each level of gates and each expert network.
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8.4. Flat neural network classifier

In order to assess the advantage gained by exploiting the hierarchical structure of the
classification scheme, we built a flat neural network classifier. We decided to build a flat
modular classifier that is implemented as a set of 103 individual expert networks. This is
similar to our Rocchio model where the training phase results in a set of 103 classifier
vectors. In this model the experts are trained independently using the optimal feature set
and the category zone for each individual category. The thresholding step is performed by
optimizing the F1 value of each expert using the entire training set. These are the values
that we report in the next section for the flat neural network classifier. Observe also that the
use of this model allows us to assess the contribution of adding the hierarchical structure,
i.e., our first research question.

9. Results

As stated before, we report results on the “Heart Diseases” sub-tree. We present results
on this set of 103 categories (HD-119) and on three frequency-based subsets of categories
HD-49, HD-28 and HD-26 as defined in Section 6.

9.1. Effect of feature selection and the neural network architecture

It may be observed that network architecture and feature selection methods must be studied
in combination. In fact, at a basic level feature selection is one of the factors that define the
configuration of the network. Given the many complex combinations in terms of feature
selection methods and numbers of nodes in the different layers for both the expert and
gating networks we approach the problem in stages. We follow a top-down approach that
optimizes the gates and then the experts.

First we focused our attention on the gating networks. We used experts with 25 input
features and 50 nodes in the hidden layers. We then explored 5, 10, 25, 50, 100, and 150
input features for the gating networks with hidden layer that had twice the number of input
nodes. We also tried all three different feature selection methods (Mutual Information, Odds
Ratio and Correlation Coefficient). This experiment was done only on the “high frequency
categories” (HD-49) because they allow appropriate training of the neural networks and
also because the variance between different training runs is smaller than the variance for
lower frequency categories.

Interestingly the differences between the three feature selection methods on the gating
networks are not significant. Thus we only report results on the 18 different combinations
obtained using correlation coefficient in the gates. Table 3 shows an increase in perfor-
mance between 5 and 25 features and a slight decrease for networks with larger number of
input nodes. It is possible for this slight decrease to be caused by the limit in the number
of iterations (1, 000) that a network was allowed to run during training. Usually a larger
network needs more iterations on the training set to converge to an optimal value. Observe
that all the three feature selection methods show no significant differences either for the
gates or for the expert networks. This was somewhat surprising since Yang and Pedersen
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Table 3. Effect of the number of input nodes to the gating networks and the feature selection methods for the
expert networks (the feature selection method for the gating networks is correlation coefficient).

Expert networks

Gating networks
No. of inputs Corr. coef. Odds ratio Mutual inf.

5 0.4455 0.4531 0.4589

10 0.4604 0.4695 0.4712

25 0.4984 0.4961 0.4956

50 0.4894 0.4903 0.4900

100 0.4894 0.4929 0.4840

150 0.4827 0.4890 0.4850

Flat 0.4449 0.4488 0.4548

All expert networks have 25 input features selected by the indicated
feature selection method, 50 nodes in the middle layer, and 1 output.
The last row shows performance of the flat classifier. (Performance
is measured in macro-averaged F1 on the HD-49 set.)

(1997) reported that mutual information does not perform well compared to other meth-
ods. As noted before, instead of averaging values across multiple classes to find the merit
of the features from a global perspective, we use mutual information for local feature se-
lection. We also discard rare terms that will in general be ranked very high by mutual
information.

We further explored feature selection using mutual information by running our experi-
ments without discarding rare terms and selecting the top 25 features. The average precision
for the HD-49 subset was 0.05 and 0.20 for the flat neural network and the HME model
respectively. This is significantly lower than the performance obtained when we discard low
frequency terms and shows conclusively that mutual information alone is not a good feature
selection measure unless we address its major weakness and discard low frequency terms.
This might also be addressed by selecting a larger number of input features. However, this
will go against our goal of reducing the number of input features to improve training and
processing time for the neural networks.

After optimizing the gates we address the number of input nodes for the expert networks
by exploring them individually, i.e., independent of the hierarchical structure. We tested
expert networks with 5, 10, 25, 50, 100, and 150 input features. In each case we used twice
the number of input nodes for the hidden layer and three feature selection methods. The
best result was obtained using 25 input features with 50 nodes in the hidden layer.

Having determined the optimal number of inputs, next we explore the effect of the size
of the hidden layer for our networks. (Note that so far we have only explored the simple
strategy of having twice the input nodes in the middle layer.) Table 4 shows the variations
in performance with different sizes of the middle layer. In this case all networks have 25
inputs and a single output node. The best performance is obtained with expert networks that
have 6 nodes in the hidden layer. The difference between 6 and 10 nodes is relatively small.
We ran similar experiments on the gating networks varying the size of the middle layer
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Table 4. Effect of the number of hidden nodes on the expert networks.

No. of hidden nodes Flat NN HME

6 0.5033 0.5241

10 0.4807 0.4975

25 0.4320 0.4824

50 0.4479 0.4867

All expert networks have 25 input features se-
lected with the correlation coefficient feature se-
lection method. (Performance is measured by
macro-averaged F1 on the HD-49 set.)

Table 5. Effect of the number of hidden nodes on the gating networks.

No. of hidden nodes HME

6 0.5219

10 0.5202

25 0.5241

50 0.5158

All expert networks have 25 input
features and 6 hidden nodes. The
gates have 25 inputs selected with
correlation coefficient(Performance
is measured by macro-averaged F1

on the HD-49 set.)

(6, 10, 25, 50) and found that the best size of the hidden layer was 25 (Table 5). However,
the difference between these runs is very small. Observe also that the flat neural networks
have their best performance when the number of nodes in the hidden layer is 6. This is
not surprising since a smaller hidden layer tends to produce a better generalization of each
category.

In the following sections we present results using neural networks with 25 inputs, 6
hidden nodes and 1 output for the experts and 25 inputs, 25 hidden nodes and 1 output for
the gating network.

9.2. Comparing the category zone methods

As mentioned before, we explore two different types of category zones: The centroid-based
category zone and the Knn-based category zone. We compare these two zoning strategies
with respect to their zone sizes as well as classifier performance.

The centroid-based category zone generates zones that have at least 10,000 examples.
For our training set of 103 categories we found that this type of category zone has an
average size of 10,027 with a maximum of 10,778 while 75% of the zones are below
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Table 6. Comparison of categorization performance using the centroid-based and Knn-based category zones.

Centroid-based zone Knn-based zone

Flat NN HME Flat NN HME

HD-49 0.5033 0.5241 0.5042 0.5150

HD-28 0.3589 0.4304 0.3613 0.4159

HD-26 0.5653 0.5794 0.4599 0.4828

HD-119 0.4797 0.5126 0.4542 0.4798

Values are macro-averaged F1 over the respective set of cate-
gories on the test set (50, 216 documents).

10,010. The Knn-based category zone generate zones with sizes proportional to the number
of positive examples in the category. We found that “compact” categories have in general
small category zones. We explore different values of K (10, 50, 100, and 200). Small values
of K are problematic for low frequency categories because they tend to generate a very small
training set that the neural network overfits easily. Thus we settled for K = 200 because it
produces category zones large enough for the rare categories as well as zones of reasonable
size for the more frequent categories. For our 103 categories we found that the average
size of the Knn-based category zone is 6,098 examples with a maximum of 35,917, and a
minimum of 200. 75% of the category zones generated by this method are below 6,814. As
mentioned before the category zone for a gate is the union of the individual category zones
of its descendants in the hierarchy.

To measure the impact of each zoning method we trained both gating and expert networks
with the documents of the corresponding zones. The categorization results on the test set are
shown in Table 6. There are small differences in performance across zones for classifiers
in the high frequencies (HD-49) set and for those classifiers in the medium frequencies
(HD-28) set. However, these differences are not statistically significant.

The low frequency categories (HD-26) show a statistically significant difference in favor
of the centroid-based zones for both flat and hierarchical classifiers. A detailed analysis
showed that the high value of this difference is due in part to the contribution of some
categories that have one or zero examples in the test set. For these categories the function
becomes more of a hit or miss function.8 Since these category zone training sets have at least
10,000 examples the classifier learns to reject most of the documents and in consequence it
gets an F1 value of 1.0 for most of them. In contrast, the Knn-based zones for low frequency
categories generate a smaller zone and the neural networks trained with them tend to assign
at least a few documents. The classifiers trained with centroid-based zones outperform the
Knn-based classifiers on 13 categories, while the classifiers trained on Knn-based zones
outperform the centroid-based classifiers only on 5 categories (in the remaining 8 categories
there is no difference between them).

On the whole set HD-119 the classifiers trained with centroid-based zones outperform
those trained with the Knn-based zones. However this difference is statistically significant
only for the HME classifiers. Given our results with these two zoning methods we sug-
gest that centroid-based category zones are the most appropriate for training hierarchical
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Table 7. Comparison between the flat NN, HME and the optimized Rocchio classifiers.

Flat NN HME Opt-Rocchio

Macro HD-49 0.5033 0.5241 0.5491

Avg F1 HD-28 0.3589 0.4304 0.5176

HD-26 0.5653 0.5794 0.4524

HD-119 0.4797 0.5126 0.5161

Variance HD-49 0.02589 0.02298 0.02470

HD-28 0.06746 0.06773 0.05467

HD-26 0.17879 0.14583 0.16775

HD-119 0.08000 0.06754 0.06877

classifiers that span categories of varying frequencies. The same conclusion may be made
for flat classifiers but with somewhat reduced confidence.

9.3. Comparing HME, flat NN, and optimized Rocchio

Table 7 shows the performance of our flat neural network, the HME model and the optimized
Rocchio classifier, all trained using the centroid-based zoning method and features selected
using correlation coefficient. The HME classifier consistently outperforms the flat neural
network classifier in all category sets. The difference is statistically significant for HD-29,
HD-28 and HD-119. Another important feature that we must point out is that our HME
model has lower variance in performance in all the category sets. This result confirms the
theoretical claim by Jordan and Jacobs that soft splitting is a variance reduction method
(Jordan and Jacobs 1993). This is in general a desirable property of a classifier since this
indicates performance that is more stable across categories. Comparing the HME against
the optimized Rocchio classifier we note that Rocchio significantly outperforms the HME
on the HD-49 and HD-28 categories while the HME significantly outperforms Rocchio for
the HD-26 categories. However, there is no significant difference between both classifiers
on the HD-119 set. As suggested by a reviewer, the good performance of the Rocchio
classifier may in part be due to the particular combination of category zoning and feature
selection methods used for our classifiers. To remind the reader, first a centroid-based
category zone is identified for each category. This zone of documents is then used for
feature selection. Although this approach is a “filter” approach (described in Section 4)
the specifics of the centroid-based category zoning technique suggests that the approach is
more of a “wrapper” for the Rocchio classifier while it is definitely a “filter” for the neural
net models. Unfortunately the expense of a wrapper approach for the neural net models
prohibits us from further exploration of this aspect. This is one of the limitations of the
neural net models. Our Rocchio results also emphasize the conclusion by Schapire et al.
that when the Rocchio classifier is properly trained, it performs as well as other methods
(Schapire et al. 1998). This result is in contrast with the performance of Rocchio classifiers
observed by other researchers (Lam and Ho 1998, Lewis et al. 1996, Yang 1999).
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Table 8. Number of documents that pass each gate in the test set.

Level 1 # of doc.
(root) Heart Diseases ≥ threshold

Level 2 Level 3 9,238

1.1 Arrhythmia 1,464
1.1.1 Heart block 176
1.1.2 Pre-excitation syndromes 45
1.1.3 Tachycardia 583

1.2 Endocarditis 293
1.2.4 Endocarditis, Baterial 216

1.4 Heart defects congenital 1,187
1.3.5 Heart septal defects 277
1.3.6 Transposition of great vessels 57

1.6 Heart failure,congestive 1,591

1.7 Heart rupture 377

1.8 Heart valve diseases 1,592

1.9 Myocardial diseases 4,281
1.9.7 Cardiomyopathy, Hypertrophic 102

1.10 Pericarditis 447

1.11 Myocardial Ischemia 5,769

1.11.8 Coronary diseases 3,343
1.11.9 Myocardial infarction 2,570

A detailed analysis of the behavior of the HME with respect to the flat neural network
shows that the threshold for the hierarchical classifier is less than or equal to the threshold
for the flat classifier in 95 of the 103 categories. This is an expected result because the
intermediate layers perform a pre-filtering of “bad candidate texts” hence the experts re-
ceive a smaller number of examples. Since the optimization process sets these thresholds to
maximize the F1 values in the training set, when the “bad matches” have been filtered the
algorithm is able to set a lower threshold that increases the number of true positives without
significantly increasing the number of false positives. The idea is to have a hierarchy that
is good at filtering false positives.

Table 8 shows the number of documents that pass through each gate in the test set.
The number of documents in the test collection is 50,216. The root node filters most of
the documents since only 9, 238 pass through it. Observe that gates 1.11, 1.11.8, and
1.11.9 allow a big portion of the documents to pass to the lower levels. This is be-
cause they contain two of the categories with the highest number of training examples
(“Coronary Diseases”, and “Myocardial Infarction”). We expected this to harm the per-
formance of the rest of the categories in these subnodes but in practice this did not
happen. For example, only 2 of the 8 categories in the Coronary Diseases subtree (not
shown in the table) have a slightly lower performance in the HME model than in the flat
classifier.
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Table 9. Performance comparison between the flat NN, HME and Rocchio classifiers, and classifiers in Yang
(1996) (Y) and Lewis et al. (1996) (L).

Lewis et al. (1996)

Method
Yang (1996)

HD-119 HD-49 HD-28

Y:LLSF 0.55 – –

Y:ExpNet 0.54 – –

Y:STR 0.38 – –

L:Rocchio – 0.44 0.33

L:EG – 0.50 0.39

L:WH – 0.55 0.39

Flat NN 0.564 0.503 0.358

HME 0.557 0.524 0.430

Opt-Rocchio 0.558 0.549 0.518

9.4. Comparing results with other published works

The OHSUMED collection has been used by very few researchers for text categorization.
Moreover, to the best of our knowledge only two studies have used its entire set of 14, 000
MeSH categories (Lam et al. 1999, Yang 1996). The main reason for this is that many
text categorization methods do not scale to such a large dataset. Yang (1996), Lewis et al.
(1996), and Lam and Ho (1998) have published results using the subset of categories from
the “Heart Diseases” sub-tree (HD-119). This has become a standard set for comparing
results for text categorization in the OHSUMED collection. However, when reading these
three works carefully we found that each paper uses a different test set and report results
on a different number of categories.

Lewis et al. use the set of 183, 229 documents from 1987 to 1990 for training and all
the 50, 216 documents from the year 1991 as a test set. Our experiments follow exactly
this partition with a further reduction for training (using zoning techniques) but the test set
is the same. Table 9 shows that our flat neural network model performs at the same level
for HD-49 and slightly worse for HD-28, as the Exponentiated Gradient (EG) algorithm in
Lewis et al. (1996). EG is the second ranked and the top ranked algorithm for HD-49 and
HD-28 respectively in Lewis et al. (1996). (Note that the last three rows of the table show
results from our work that are most comparable). The HME model on the other hand shows
a performance slightly lower (4.7%) than the top ranked Widrow-Hoff (WH) for HD-49
but significantly higher than the best (10.2%) performance for HD-28. Both the flat NN
and HME outperform the Rocchio classifier reported as a baseline by Lewis et al. (1996).
Interestingly, our optimized Rocchio classifier performs at the same level as WH for HD-49
but significantly better than all other classifiers for HD-28.

Yang (1996) conducts a very different experiment by reducing the collection to only
those documents that are positive examples of the categories of the HD-119. This limits the
training set to 12, 284 documents and the test set to 3, 760 documents. She explains that the
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reason for such reduction is the scalability of the LLSF method which needs to compute a
Singular Values Decomposition, a procedure that cannot be performed efficiently on a large
matrix. However, this simplification creates a partition of the OHSUMED collection that is
structurally different from the one originally proposed by Lewis et al. In order to explore
differences we used our trained classifiers on this reduced test set (with the same thresholds
as before). The results obtained are 0.525, 0.521 and 0.530 for the flat neural networks, the
HME and optimized Rocchio respectively. Observe that for our hierarchical model, Yang’s
reduction is equivalent to having a perfect classifier at the root node of the tree and thus
using only gates at levels 2, 3 and 4. We then ran a second experiment where although
we did not retrain the neural networks or Rocchio classifiers on the reduced training set,
threshold selection was done only on the set of 12, 824 positive examples in the training set
(instead of using the whole set of 183, 229 documents of the training set) and the gates in
levels 2, 3 and 4 were used. The results for our flat neural networks, HME and optimized
Rocchio classifiers on this reduced subset are 0.564, 0.557, and 0.558 respectively, scores
which are significantly higher than those we found using the Lewis et al. partition. These
scores are about the same as the ones reported by Yang for the LLSF and ExpNet classifiers,
and significantly above Yang’s baseline STR classifier. Interestingly the HME model does
not outperform the flat neural network model in this constrained experiment. We looked
closely at each category and found that this was due to the fact that our originally trained
gates discard documents that are relevant to their descendants which then impacts the final
performance of the classifier. Although performance may be improved if we train the gates
using only the set of positive examples,9 we believe that our original categorization task is
more realistic since we include both positive and negative examples in the test set.

Lam and Ho (1998) report results of experiments using the Generalized Instance Set
(GIS) algorithm. They use the documents from 1991 and take the first 33,478 documents
for training and the last 16,738 documents for testing. In contrast to Yang’s reduction, this is
more consistent with the partition proposed by Lewis et al. because it retains all documents
from the collection (not just the positive examples). Lam and Ho report results using micro
averaged BEP on the set of 84 categories that have at least one example in both training and
test sets. We tested our previously trained HME model in this reduced test set and obtained
a micro-averaged BEP value of 0.502 which is significantly lower than their performance
of 0.572 for their GIS algorithm with Rocchio generalization. In future research we will
train and test our HME model using their data set.

Joachims (1999) has also published results for the OHSUMED collection using support
vector machines. His work uses the first 20, 000 documents of the year 1991 dividing it
into two sets of 10, 000 documents each that are used for training and testing respectively.
He reports impressive results but his text categorization task is very different from the ones
in the previously discussed works. Joachims assumes that if a category in the UMLS tree
is assigned then its more general category in the hierarchy is also present. Although this is
similar to our definition of gates, the difference is that he uses only the high level disease
categories. This simplifies the categorization task considerably and probably explains the
good results obtained in the reported SVM experiments. The focus on general disease cate-
gories alone prevents comparison of Joachims’ results with any of the previously published
results. We did not run our experiments limited to high level disease categories. However,
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we consider that the use of SVM can be a good choice for building an architecture like the
one we have proposed, and we plan to explore this in our future research.

We believe that the combination of category zoning and feature selection gives a signifi-
cant boost to Rocchio performance. Optimized versions of the Rocchio classifier in previous
work have focused on query zoning and dynamic feedback optimization (Schapire et al.
1998). We are not aware of any previous work on reducing the set of features used in the
centroid vector for text categorization purposes.10 Observe that our feature selection method
favors features indicative of the presence of the category and discards features that indicate
the absence of the category. Feature selection has an important impact because similarity
computation between the document and the centroid vector are made only on the subspace
formed by the selected features.

10. Comparison with related work in hierarchical categorization

We now focus on methods exploring the hierarchical structures of classification schemes.
Koller and Sahami (1997) and Sahami (1998) proposed a hierarchical approach that

trains independent Bayesian classifiers for each node of the hierarchy. The classification
scheme then starts at the root and greedily selects the best link to a second level classifier.
This process is repeated until a leaf is reached or until no child node is a good candi-
date. Observe that their method selects a single path (the one with highest probability) and
assigns all the categories in the path to the document. According to their approach, the
hierarchical structure is used as a filter that activates only a single best classification path.
Also errors in classification at the higher levels are irrecoverable in the lower levels. They
tested their results in the Reuters collection defining as higher nodes in the hierarchy those
categories that subsume other categories. Although similar in spirit, our approach differs
in the classification assignment model. We separate the identification of general concepts
from the assignment of general categories. Our approach also activates more than a single
path in the hierarchy in contrast to their “the winner takes all” approach. There is also an ob-
vious difference in the machine learning algorithm since they use Bayesian classifiers while
we use neural networks. However in future work we plan to explore Bayesian classifiers
within the HME approach.

Ng et al. (1997) build their hierarchical classifier using perceptrons. Each node of the
hierarchical tree is represented by a perceptron. They distinguish two types of nodes, leaf
nodes and non-leaf nodes. They apply this to the Reuters corpus where the categories reflect
a geographical/topical hierarchy. Their hierarchy has as a first level all the possible countries,
and for each country different topics are defined, e.g., economics and politics. The leaf nodes
are specific categories of the second level (e.g., for economics they have communications,
industry, etc.). The hierarchical classifier receives a document and checks whether it belongs
to any of the first level nodes (the root node only connects to the different country nodes). If
the tested document activates any of the first level nodes, then the descendant categories of
that node are tested recursively. If at any of the non-leaf nodes the process finds that none of
its children is a good candidate, then the categorization stops at that branch of the recursion.
The output of the classifier is the final set of leaf nodes reached in the recursion (zero, one
or more). This is similar to the Pachinko machine proposed by Koller and Sahami (1997)
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but with multiple outputs instead of a single output. Our approach is similar to Ng et al.
(1997) in that we also use a top-down approach. The difference is in the type of classifier.
We use non-linear classifiers in each node while they use linear classifiers. Although the
combination of the linear classifiers in the hierarchy creates a non-linear classifier some
studies have shown that this covers a limited number of non linear problems11 (Jordan
and Jacobs 1993, Waterhouse 1997). Our approach also differs significantly in the way
feature selection and subset training selection is done. Although their experiments also use
correlation coefficient for feature selection their results for the hierarchical classifier are
well below other methods that use the Reuters collection. They report F1 values of 0.52 for
the best automatic feature selection method and 0.728 for the manually selected features
(which is considerable lower than 0.85 (Yang 1999)). Their best results with the hierarchical
classifier are obtained using manually selected features. We believe that their good results
may be a consequence of manual feature selection. Furthermore, our approach based on
category zones combined with exploiting the hierarchy is more robust and allows us to get
results similar to some of the best methods reported in the literature.

McCallum and his collaborators have been working in text categorization specifically
targeting the problem of classifying web pages (McCallum et al. 1998). Their approach
is based on Bayesian classifiers. They use the hierarchical classification structure to im-
prove the accuracy of Bayesian classifiers using a statistical technique called shrinkage that
smoothes parameter estimates of a child node with its ancestors in order to obtain more
robust estimates. The Bayesian classification schemes involve estimating the parameters of
the model from the training collection and then applying the shrinkage method to improve
the estimates using the predefined hierarchy of categories. The classification of the test set
is performed by computing the posterior probability of each class given the words observed
in the test document, and selecting the class with the highest probability. Their experiments
show that shrinkage improves the performance when the training data is sparse, reducing
the classification error by up to 29%. Our approach is totally different from McCallum’s
approach in terms of the classification method used, as well as the assumptions in the cat-
egorization task. Observe that their approach assumes that a document belongs to a single
category and their model reflects it by selecting the most probable classification.

Mladenić (1998) also explored hierarchical structures using the Yahoo! hierarchy to
classify web pages. Her approach builds a Bayesian classifier. For each node in the subject
hierarchy a classifier is induced. To train each of the non-leaf classifiers a set of positive
examples is defined as all the positive examples of the node (the intermediate nodes are
also valid categories) plus the positive examples of any descendants. These examples are
weighted according to their position in the tree. The classification process works as described
before for the Bayesian classifiers with the set of categories with predicted probability
≥0.95 are assigned. Our approach differs from Mladenić’s work in terms of the classifier
algorithms used, as well as the way in which the hierarchy is used for feature selection.
Her main effort is in creating a weighting scheme for combining probabilities obtained at
different nodes of the tree.

The work on topic spotting by Wiener et al. (1995) inspired us to try our approach using
HME. During the review process of this article they published a sequel to their work applied
to hierarchical classifiers (Weigend et al. 1999). They use a meta-topic network using a two
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level hierarchy for the Reuters collection and present results that are competitive with those
of other methods. Our work differs from theirs in the definition of the gates (our gates behave
like binary filters while their meta-topic network helps more to weight the contribution of
the experts). Our work also extends the hierarchical model to more than two levels an idea
that is suggested but not developed in Weigend et al. (1999). Finally, our evaluation on
the OHSUMED collection instead of the Reuters collection allows us to test the benefit of
exploiting a real hierarchical classification scheme.

We think that our main contribution is a general method for combining the hierarchical
structure of a classification with feature selection and category zones. The zones contain
small but optimal subsets of documents that yield features suitable for training neural
networks. Our approach shows that even with a set of only 25 features per node, we can get
results that are comparable with other methods that use larger feature sets.12

11. Conclusions

This paper presents a machine learning method for text categorization that takes advantage of
pre-existing classification hierarchical structures. In response to our first research question
we find that exploiting the hierarchical structure via the HME model increases performance
significantly. In response to our second research question we find that although the HME
approach is equivalent in performance to an optimized Rocchio approach for the full set
of categories, the Rocchio approach is better for medium and high frequency categories
while HME is better for the remaining low frequency ones. In comparison with previous
results with the Rocchio classifier we find that the approach benefits from category zoning
for training set selection followed by feature selection. These results confirm the results
published by Schapire et al. (1998) that a carefully trained Rocchio algorithm might perform
as well as other more sophisticated methods.

Our method should scale to large test collections and vocabularies because it divides the
problem into smaller tasks that can be solved in shorter time. The top-down processing
approach tested here was selected specifically with scalability in mind. Category zoning
is also very valuable for large collections since it counters the overwhelming presence of
negative examples.

With respect to the feature selection methods tested, we found no significant difference
in performance between correlation coefficient, odds ratio, and mutual information when
they are used for local feature selection. In particular our results with mutual information,
which has been reported before as a poor method when used for global feature selection
(Yang and Pedersen 1997), point towards the importance of addressing the weaknesses of
feature selection methods on low frequency terms.

To close, the results obtained by the HME model are comparable with those reported
previously in the literature, and significantly better than our flat neural network classifier.
For future work we would like to try different ways to construct the hierarchical structure
such as using support vector machines. We would also like to change the training strategy
to use a variation of boosting adapted to the hierarchical approach. We also hope to improve
the performance of our classifier by adding richer features (i.e., n-grams, or phrases) that
have been reported to help in the text categorization process (Mladenić 1998). Finally, we
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plan to explore whether the use of different classifiers, such as linear classifiers and SVM
show the same improvements obtained using neural networks.
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Notes

1. Hybrid neural trees have been proposed by d’Alché–Buc et al. (1994) using a method called Trio-Learning to
build a decision tree whose nodes are neural networks. Trio-learning uses a decision tree algorithm to partition
the examples into positive and negative classes and recursively builds the hierarchy. Similar to CART this
method performs a “hard split” of the set of examples at each level. Observe that our model uses a predefined
hierarchical structure. Another difference is that we use a “soft split” of the data that allows overlapping
clusters.

2. It should be noted that Waterhouse has proposed a HME model that dynamically generates the hierarchical
structure (waterhouse 1997).

3. Observe that we could have used the MeSH hierarchy directly. We decided to use the UMLS hierarchy because
it provides a conceptual mapping that has been extended to many areas of the health sciences.

4. There is some confusion with the term “mutual information”. For instance, it has been used by other researchers
(McCallum et al. 1998) to refer to the measure that Yang and Pedersen (1997) present as “information gain”.

5. We use the 1994 version of the UMLS.
6. We label this set HD-119 in order to stay consistent with the labeling in Yang (1996) even though there are

actually only 103 categories with positive examples in the training set.
7. Since we only have two gates in level 4 we set their optimal values to the same values of the gates in level 3.

This gives us 4 × 21 × 21 = 1,764 possible combinations for the thresholds in the gates.
8. Categories with no examples in the test set will have F1 = 0 if a document is assigned to the class or F1 = 1

if no documents are assigned to the class.
9. In fact, in experimentation with Knn zoning which uses a smaller training set that more closely resembles the

positive examples, HME was better than the flat neural network classifier.
10. During the review of this article two works that use feature selection in the context of a Rocchio approach

have been published. (Caropreso et al. 2001, Galavotti et al. 2000)
11. This is due to the fact that the high level nodes can only create linear boundaries between adjacent expert

regions in the input space.
12. Most (Ng et al. 1997, Weigend et al. 1999, Wiener et al. 1995) have used feature sets of 200 or more features

per category. In Lewis et al. (1996) the authors have used all features present in the collection.
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