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Abstract. We present a thorough analysis of the capabilities of the linear combination (LC) model for fusion of
information retrieval systems. The LC model combines the results lists of multiple IR systems by scoring each
document using a weighted sum of the scores from each of the component systems. We first present both empirical
and analytical justification for the hypotheses that such a model should only be used when the systems involved
have high performance, a large overlap of relevant documents, and a small overlap of nonrelevant documents.
The empirical approach allows us to very accurately predict the performance of a combined system. We also
derive a formula for a theoretically optimal weighting scheme for combining 2 systems. We introduced—the
difference between the average score on relevant documents and the average score on nonrelevant documents—as
a performance measure which not only allows mathematical reasoning about system performance, but also allows
the selection of weights which generalize well to new documents. We describe a number of experiments involving
large numbers of different IR systems which support these findings.
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1. Introduction

In the past, neural network models which have been applied to the Information Retrieval
problem have typically used very large feature vectors (document and query vectors) which
are traditionally used in IR systems (see for example, Crestani 1994, Wong et al. 1993,
Boughanem et al. 1993). Unfortunately, the resulting large networks generally require
large numbers of training examples, a rare commodity in the IR setting. Although work
using Latent Semantic Indexing (Deerwester et al. 1990) to reduce the number of features
has met with some success (Vogt et al. 1999), LSI is itself computationally expensive.

Perhaps a wiser approach can be found in fusion, where the results from multiple IR
systems are combined to generate a single (hopefully better) list of potentially relevant
documents in response to presentation of a single query to a number of component systems.
Fusion allows a significant reduction in the number of features, often to just one feature
per system—typically the system’s estimate of the document’s probability of relevance. As
such, a fusion neural network model can be much smaller than a traditional one based on
document vectors. Fusion also allows leveraging of the component systems in several ways
by exploiting a number of effects (from Diamond 1998):

• The Skimming Effect happens when retrieval approaches represent documents differ-
ently and thus retrieve different relevant items. A combination model that takes the
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top-ranked items from each of the retrieval approaches (i.e., “skims” the results lists)
could then not only increase recall (due to the different relevant documents) but also
precision (assuming the systems have a higher density of relevant documents near the
beginning of their results lists).
• The Chorus Effect occurs when several retrieval approaches suggest that an item is

relevant to a query; this tends to be stronger evidence for relevance than that of a sin-
gle approach. A combination model which ranks documents in the intersection of the
retrieved lists higher would be able to exploit this effect.
• The Dark Horse Effect occurs because a retrieval approach may produce unusually

accurate (or inaccurate) estimates of relevance for some documents, relative to the other
retrieval approaches. In order to exploit this effect, a combination model would have to
condition its combination technique on the document being scored, “listening” to one
system more than another based on some features of the document.

It should be noted that when choosing how to combine the results from different IR systems,
the Dark Horse Effect is at odds with the Chorus Effect—one argues for listening to just one
system, while the other advocates listening to them all. Likewise, a large Chorus Effect cuts
into the possible gain from the Skimming Effect—if the combination model only upranks
documents in the intersection of results lists, then the gains in recall from skimming become
nearly impossible. These phenomena argue for a sophisticated fusion model which is able
to predict when these effects will occur and take advantage of them. Such models would
almost certainly need to make use of training data in the form of user feedback in order to
fine tune their performance.

Small neural network fusion models may allow easier training, but their simplicity in-
flicts a penalty—they lack expressive power because they have so few parameters (see
Hertz et al. 1991). Thus, it seems likely that the possible improvement in performance
from these models would be limited. In this article, we examine in detail one such fu-
sion model: the linear combination of scores (LC). The LC model has been used by
many IR researchers with varying degrees of success: (Bartell et al. 1994, Kantor 1995,
Knaus et al. 1995, Selberg and Etzioni 1996, Shaw and Fox 1995), and (Vogt et al. 1997).
Our analysis of the model reveals what types of systems the model works best with, and
explores techniques for training the model.

This article has the following format. First we describe the model and the specific prob-
lems we are examining, along with the data we use and assumptions. Next, we both empiri-
cally and mathematically derive explanations for when it makes sense to use the LC model.
This also leads to an expression for the performance and the optimal weighting of an LC
fusion system. Finally, we describe experiments in training the LC model, and a training
technique which generalizes to large numbers of systems as well as more complicated mod-
els. Through these analyses, we gain insight into why and when the LC model works well.

2. Background

2.1. The LC Model

The linear combination model calculates the real-valued relevanceρ of a documentx to a
queryq based on the weightsw = (w1, w2, . . . , ws) given to each of thes individual IR
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systems, and their estimates of relevanceρi :

ρ(w, x,q) =
s∑

i=1

wiρi (x,q)

This value is then used to rank the documents. For only two IR systems, this simplifies to:

ρ(w1, w2, x,q) = w1ρ1(x,q)+ w2ρ2(x,q) (1)

However, all that really matters is the ranking given by the combined system. Thus, for the
case of two systems, only the ratio of the two weights and the relationship of the signs on
the weights are important, and equation (1) can be replaced by one using a single weight:

ρ(w, x,q) = sin(w)ρ1(x,q)+ cos(w)ρ2(x,q) (2)

where sin(w) = w1 and cos(w) = w2. This formulation allows for all possible relationships
of the signs of the two weights (+/+,+/-,-/+,-/-) and all possible ratiosw1/w2 (assuming
adequate machine precision).

The LC model is more flexible than others which have been tried in the past. Most of
them consist of a single choice of parameters, such as the sum of scores or the maximum
score, or a fixed weighting based on individual system performance (see Belkin et al. 1995,
Shaw and Fox 1995, Kantor 1995). The difference with our approach is that we will use
a search procedure to optimize the weights based on metrics of system performance. The
LC model is also equivalent to the simplest kind of neural network, a single layer net (see
Hertz et al. 1991). The addition of a squashing function on the output unit does not add
any power, as it would not change the ranking induced by the combined system.

2.2. The Data

Our study of fusion necessitates the availability of a large number of IR systems. We have
chosen to use the entries in the TREC5 adhoc track (Harman 1997). TREC (Text REtrieval
Conference) is an annual conference sponsored by the National Institute of Standards and
Technology, in which participants are given very large text corpora and submit the results
of their retrieval techniques in a sort of contest. Specifically, in the adhoc track, each
participant submits the top 1000 documents returned by their system in response to 50
queries supplied by NIST, and each participant can submit up to 4 runs. In TREC5, 61 runs
were submitted, for a total of 3050 lists of 1000 documents, each of which we treat as a
separate IR “system”.

One issue arises when combining such lists of top-ranked documents—what score should
be given to documents returned by one system but not the other? We have assumed that
for such documents, the system which did not return them gave them a score of zero. In
so doing, we also had to eliminate any negative scores for documents, because otherwise
the unreturned documents would get ranked above those with negative scores. We did this
by adding the absolute value of the lowest score to all documents for any system which



154 VOGT AND COTTRELL

had negative scores. We believe that zero scores for unseen documents is a reasonable
choice—the vast majority of documents are not relevant, and most systems give a zero
score to nonrelevant documents.

2.3. Problems Addressed

A common dichotomy used by fusion researchers is the difference between data fusion and
collection fusion. The former takes place in a setting when all of the IR systems involved
have access to the same text collection. The latter is used when the collections searched
by all IR systems are disjoint. Because of our use of TREC entries, which consist of lists
of 1000 or fewer documents, our work falls under the label of data fusion, but it is not data
fusion in the purest sense. This is because it is possible for a document to be in the list
returned by one system and not in the list of the other. Thus, our work falls somewhere
between data and collection fusion.

Another distinction is in the types of IR problems. TREC distinguishes two main prob-
lems: adhoc and routing. Adhoc retrieval occurs when the text collection is relatively static,
and new queries are constantly being submitted by users. In contrast, routing has a standing
query, and new documents are arriving which need to be filtered according to that query.

The difference between these two tasks is important in the context of the LC model. For
the routing task, a new set of weights can be trained for each standing query. However, for
the adhoc task, one set of weights must be applied for all queries. Clearly, the routing task
should be easier to solve using this model, since the weights can be tuned on a per-query
basis.

3. Limitations of the LC Model

Using the LC model does not always result in an improvement in performance. Previous
work using the TREC data has shown that even on the training set, significant improvement
is achievable for less than half of the possible combinations (Vogt and Cottrell 1998a). Why
is it that it works sometimes and not others? When does the LC model work?

In this section we use two techniques, one empirical and one analytical, to determine the
sources of the LC model’s power. In the process, we gain a deeper understanding of why
it works, its limitations, and which systems can be successfully combined using the LC
model.

3.1. Empirical Analysis2

We introduce here a technique for analyzing the behavior of fusion models and apply it to
the LC model. The technique involves measuring various properties of the component IR
systems, and using them in a linear regression to predict the performance of the combination.
By examining how the measures are weighted by the regression, we gain an intuitive feel
for when using the model pays off. Our technique works surprisingly well—the resulting
regression can predict the performance of unseen combinations very accurately (on the test
set,r 2 = 0.95).3
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3.1.1. Method Our data set is all 61 TREC5 entries on the first 20 queries—1220 lists of
up to 1000 documents. For each query, there are 1830 possible pairs of systems. We begin
by making a number of measures of all 36,600= 1830×20 triples of system pairs/queries.
These measures are meant to indicate either how well each system performs or how similar
the two systems are to each other. The performance measures include average precision
(indicated byP) and a statistical measure of rank correlation between the system and
the relevance judgments (J) (Bartell et al. 1994). Average precision was used because it
incorporates both precision and recall into one measure.J is defined as:

J =
∑

x,x′:xÂqx′ ρ(w, x,q)− ρ(w, x′,q)∑
x,x′:xÂqx′ |ρ(w, x,q)− ρ(w, x′,q)|

wherex Âq x′ indicates the user prefers documentx to documentx′ on queryq. Note that
J has a maximum value of 1 when the numerator and denominator are the same (i.e., the
IR system ranks documents exactly as the user would), and a minimum value of−1 when
the opposite is true. These two measures are subscripteda for the better of the two systems
andb for the worse (as measured byP). The pairwise similarity measures include:

• Guttman’s Point Alienation (GPA) (Guttman 1978)—a measure of how similar two rank-
ings are to each other, which is calculated as:

GPA=
∑

x,x′(ρ1(x,q)− ρ1(x′,q))(ρ2(x,q)− ρ2(x′,q))∑
x,x′ |ρ1(x,q)− ρ1(x′,q)||ρ2(x,q)− ρ2(x′,q)|

• the number of documents in the intersection of the two lists of returned documents (I ),
• the correlation coefficient from a linear regression of the scores of documents in the

intersection of the two systems (C), which is actually ther 2 value of a regression which
uses one system’s scores to predict the other’s,
• the number of relevant documents returned by one system but not the other, divided by

the total number of relevant documents returned by that system (U for uniqueness),
• Lee’s (Lee 1997) overlap measures,Orel andOnonrel, which measure the proportion of rele-

vant and nonrelevant documents in the intersection of the two lists. These two measures
are calculated as:

Orel = 2× Irel

R1+ R2

Ononrel= 2× Inonrel

N1+ N2

where Ri is the number of relevant documents andNi is the number of nonrelevant
documents returned by systemi , respectively, and
• the ratio of the performance of the two systems:Pb/Pa, since Ng (1998) found this to be

an important predictive factor of the improvement of the combination.
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Also, because it seemed likely that measuring the similarity of the two systems on relevant
documents is more important than on nonrelevant ones, the first three measures were also
calculated using only relevant documents, and are denoted: GPArel, Irel, andCrel. One last
measure, GPAni (for “not irrelevant”) is the GPA using pairs of documents where at least
one document is relevant.

After normalizing the scores for each system on each query by dividing by their respective
means we found the optimal combination for each possible pair. For each query and each pair
of systems, the single weightw was chosen by optimizing average precision using golden
section search (Press et al. 1995), and the bestw was used to generate a combined system
(of 1000 documents) according to Eq. (2). Golden section search is a simple bracketing
optimization technique for finding local maxima of single variable functions which does
not require gradient information. Hence, it is useful in this case, becauseP cannot be
differentiated with respect to the weightw. Because systems were combined on a per-
query basis, this experimental setup most accurately simulated the routing task.

We then performed a multiple linear regression using the aforementioned measures as
predictor variables and the average precision of the optimal combination as the target. 80%
of the pairs (29,280 total—the “training set”) were used in the regression.

3.1.2. Results Table 1 presents the results of the multiple linear regression. Measures
are sorted by decreasingF value, indicating roughly how important each measure is in
predicting the average precision of the optimally combined system. All measures above
the horizontal line in the table contribute to some degree (as indicated byF values much
larger than 1), and have significance ofp < 0.005. Ther 2 = 0.94 value indicates that the
fit of the model is very accurate. Furthermore, the model generalizes extremely well to new
data—when the remaining 20% of the pairs (the “test set”) were plugged into the model,
r 2 = 0.95.

Positive regression coefficients in Table 1 can be interpreted as meaning that the cor-
reponding measures should be maximized in order to maximize the performance of the
combined system. Likewise, measures with negative coefficients should be minimized.
This leads to the following conclusions: the better system should have high performance
(Pa andJa have positive coefficients), whereas the performance of the worse system may
or may not be good (Pb andJb have opposite signs). The positive coefficients on GPA
andCrel indicate that the two systems should generally rank documents in their intersection
similarly and the distribution of scores by both systems should be similar to each other.
On the other hand, the negative coefficients on GPArel and GPAni indicate that each system
should rankrelevantdocuments differently than the other system. Finally, the negative co-
efficient onOnonrel means that the two systems should retrieve different sets of nonrelevant
documents.

The table leads to conflicting conclusions about the overlap of relevant documents. The
negative coefficients forUa andUb indicate that both systems should not return unique
relevant documents, whereas the negative coefficient onOrel indicates they should. As it
turns out, the negative coefficient onOrel is inaccurate becauseOrel is directly related toUa

andUb by 1
2Orel
= 1

1−Ua
+ 1

1−Ub
. The regression simply accounts for the effect of uniqueness

usingUa andUb alone.
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Table 1. Results of linear regression.

Measure Normalized regression coefficient F

Pa 0.8990 105226.5632

Ua −0.1267 433.7695

Ub −0.0386 357.3758

Jb 0.0428 338.4343

GPAni −0.0363 229.5316

Ja 0.0276 193.4874

Orel −0.0546 60.1901

Pb −0.0188 37.1321

Crel 0.0120 33.8159

Ononrel −0.0444 23.0822

GPA 0.0131 20.9807

Irel 0.0080 14.707

GPArel −0.0082 6.2473

Pb/Pa −0.0054 4.5710

I −0.0129 1.7961

C 0.0022 1.1175

Results of a linear regression for predicting the combination’s average
precision (r 2 = 0.94). Positive coefficients indicate the measure
should be maximized, and negative coefficients indicate it should be
minimized.

In fact, by repeating the regression using onlyPa,Pb,Orel and Ononrel, we can predict
the combined system’s precision with nearly the same accuracy as the original regression
(r 2 = 0.94, see Table 2). This table shows that the following three conclusions about when
it makes sense to use the LC model are strongest, namely when:

• at least one exhibits good performance,
• both return similar sets of relevant documents, and
• both return dissimilar sets of nonrelevant documents.

The discussion ofUa,Ub vs. Orel above, and the inclusion of a second regression (in
Table 2), point to a subtle difficulty in our use of regression—the problems of correlated
predictor variables and variable selection. The typical technique for dealing with large
numbers of predictor variables is to select a subset of relevant variables via stepwise re-
gression or some similar approach. Unfortunately, these approaches do not fare well when
the predictor variables are well correlated, as is the case for the variables used in the above
regressions (every measure is correlated with at least one other measure withr 2 > 0.2).
Thus, it was necessary for us to spot variable correlations manually. It was also necessary for
us to examine various different subsets of the predictor variables, based on the correlations
and our own hypotheses of which would prove most informative.
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Table 2. Results of linear regression on a subset of predictors.

Measure Normalized regression coefficient F

Pa 0.9366 191543.1029

Orel 0.1021 2249.4031

Ononrel −0.0581 975.4101

Pb −0.0228 119.1705

3.1.3. Predicting Improvement In the above analysis, we try to predict the performance of
the combined system. Ng (1998) argued that a more important measure of the effectiveness
of fusion is the amount of improvement gained by using the fusion over just using one of the
two systems. Thus, in addition to the above analysis, we also used the measures to predict
two metrics of improvement:P− Pa and (P− Pa)/Pa.

The regression usingP−Pa as the target generated coefficients of the same sign, similar
magnitude, and same order of importance as those reported in Table 1,exceptfor the
coefficient onPa, which was still the most significant measure, but now had a large negative
coefficient. This is to be expected, since it would probably be difficult to improve systems
which are already very good. Ther 2 for this regression was 0.12 (and only 0.04 on the
test data), so it seems that predicting the raw improvement using a linear regression is more
difficult than predicting the actual performance. This makes sense since the performances
of the individual systems are included as a predictor variables, and it seems likely that
these would weigh heavily in the performance of the combination (as Table 1 confirms), but
there are no corresponding predictor variables for the improvement. Despite this fact, the
conclusions drawn from this regression would be the same as those drawn from the original
regression on performance.

Table 3 reports the results of the regression to predict the second measure of improvement:
(P− Pa)/Pa. Because of the lowr 2 (0.06), conclusions drawn from this analysis alone
are dubious. However, since all of the significant coefficients are of the same sign and
relative magnitude as those for the other definition of improvement, we once again support
the conclusions from the original regression.

3.2. Mathematical Analysis

The conclusions in the previous section were arrived at empirically, and give little insight into
why they may be true. We now provide a mathematical justification for these hypotheses.
Furthermore, we mathematically derive an expression for the optimal weighting and from
this derivation arrive at an expression for the performance of an LC model. As in the
empirical case, we concentrate on the routing problem only.

3.2.1. d as a Performance MeasureOur analysis hinges on the use ofd as a performance
measure. d is equal to the difference between the system’s mean score on all positive
examples (relevant documents)p̄ and the mean score on all negative examples (nonrelevant
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Table 3. Results of linear regression.

Measure Normalized regression coefficient F

Pa −0.2322 410.9723

Ua −0.4326 295.9000

Ub −0.1251 219.4178

Orel −0.2402 68.1932

GPAni −0.0684 47.7767

C 0.0449 27.0335

Ononrel −0.1907 24.9586

Pb/Pa 0.0356 11.7822

Irel −0.0234 7.2895

Pb −0.0273 4.5785

GPArel −0.0270 3.9932

Jb 0.0171 3.1843

Crel 0.0093 1.1863

GPA 0.0110 0.8724

I 0.0230 0.3327

Ja 0.000 0.0000

Results of a linear regression for predicting the combination’s
improvement(P− Pa)/Pa (r 2 = 0.06).

documents)̄n. As such,d is only applicable in the situation where documents need to
be placed in one of two categories (relevant and nonrelevant). Without loss of generality,
we assume the scores have been normalized to the interval [0, 1], to make values ofd
comparable across systems.d is equal to the numerator ofDc from signal detection theory
(Egan 1975).Dc normalizes this difference by the standard deviations of the positive and
negative example score distributions:

Dc = p̄− n̄√
σPσN

A variation of Dc called the Swets measure has been examined before in the information
retrieval setting (van Rijsbergen 1979, p. 157):

S= p̄− n̄
1
2(σP + σN)

However, despite their statistically based theoretical attractiveness and the excellent argu-
ment put forth by Swets, neitherDc nor S have ever caught on as a basis for performance
evaluation in IR. Before proceeding with our analysis based ond, we first justify its use as
a performance measure. Our first step is to argue forDc as a performance metric.
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First, we argue that IR systems typically distribute scores according to an exponential dis-
tribution. Figure 1 shows the empirical distribution of two typical IR systems from TREC5
after scores have been normalized to [0, 1]. These are typical in the sense that they are
close to the average distribution over all 61 TREC5 entries. Note that these distributions are
summed over all 50 queries for each system. Figure 2 shows two atypical distributions. The
curves in these graphs do not show the typical consistent dropoff of number of documents
with higher scores. These atypical curves must be due the particular scoring function used
by each system, and may also be an artifact of the summing over all 50 queries. However,
the important thing to note is that thetypical distribution not only has the appearance of a
negative exponential, but as figure 3 shows, it also has the property that its mean is approxi-
mately equal to its standard deviation—a property of all negative exponential distributions.
Note that this property is stronger for the negative score distributions (the negative score
histogram has lower variance), indicating that these scores are more reliably distributed in
this manner.

According to signal detection theory (Egan 1975 (p. 136)), the proper coefficient of
discrimination for a negative exponential distribution isDc. This coefficient measures the
efficacy of the system which is attempting to separate the positive examples from the
negative. Intuitively,Dc makes sense since it is maximized by increasing the scores (and
thus decreasing the ranks) on relevant documents, and minimizing nonrelevant scores.

Thus,Dc is both a theoretically proper and an intuitive measure of IR system performance.
We now argue for the use ofd, the numerator ofDc. As previously noted,d is simply the
mean score of relevant documents minus the mean score of nonrelevant. Since we assume
scores which are normalized to [0, 1], this means that a perfect IR system would haved = 1,
since all documents would have a score of 1 and all nonrelevent documents a score of 0.
Likewise, the worst possible IR system would haved=−1. Real IR systems typically have
a positived (the average across all of the TREC5 entries isd = 0.175, with minimum of
−0.657 and maximum of 0.999).

First, we note thatd is very highly correlated withDc (r 2 = 0.93), so that optimizing one
would most likely optimize the other. This makes sense, sinceDc is a normalized version
of d. d is also very well correlated with traditional IR measures like average precision
(for the LC model on TREC5 data,r 2 = 0.78). Furthermore,d can be directly interpreted
in terms of the probability ranking principle. If an IR system ranks documents according
to their true probability of relevance, then all of the relevant documents would have high
scores (and nonrelevant would have low scores), leading to a larged. Thus,d maintains
the intuitiveness ofDc. However,d has a simpler algebraic form—a property which we
exploit in our analysis below. Finally, as we will show later, optimizingd has effects
similar to optimizing average precision directly (as would be expected due to their high
correlation). For all of these reasons, we claim thatd is a reasonable measure of IR system
performance.

3.2.2. Mathematical Support for the 3 HypothesesThe Appendix presents details of a
mathematical derivation for the performance of an optimally combined system. The two
major conclusions from the derivation are that:
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Figure 1. Smoothed histogram oftypical relevant and nonrelevant score distributions (from entries LNaDesc1
and genrl2).
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Figure 2. Smoothed histogram ofatypical relevant and nonrelevant score distributions (from entries INQ302
and ibms96b).
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Figure 3. Histograms of the difference between the mean and the standard deviation for positive example scores
( p̄− σP, left) and negative example scores (n̄− σN , right) on the 61 TREC entries. Note that both are centered
near 0 and the negative score histogram has smaller variance.

1. the optimal weightwopt to use when combining two systems (a and b) satisfies the
equation:

tan(wopt) = δa

δb

2. the combined system’s performance when using this weight is:

dopt ∝ δ2
a + δ2

b

whereδa = αp p̄a−αnn̄a, andδb = βp p̄b−βnn̄b, and the coefficients on the score averages
are defined by:

αp = Pa + Pab

Pab+ Pa + Pb

βp = Pb + Pab

Pab+ Pa + Pb

αn = Na + Nab

Nab+ Na + Nb

βn = Nb + Nab

Nab+ Na + Nb

wherePa indicates the number of relevant documents returned only by systema, Pb is the
same for systemb, Pab is the number of relevant documents in the intersection, and theN’s
refer to number of nonrelevant documents, with subscripts taking the same meanings as for
relevant.
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In other words, the weight is a function of the ratio of the component systems’ perfor-
mances, as mediated by ratios of the number of documents in the overlaps. The performance
of the combination is a direct function of these mediated performance values.

In order to maximizedopt, it would be best to maximize bothδa andδb. It is easy to show
that since 0≤ αp, αn, p̄a, n̄a ≤ 1, δa is optimal whenαp = 1 andαn = 0. Similarly, when
p̄a = 1 andn̄a = 0 (i.e., whenda is maximized),δa is maximal. Similar arguments hold
for δb, βp, βn, p̄b andn̄b.

We are now in a position to address the three hypotheses: Linear combination is warranted
when,

1. at least one system exhibits good performance,
2. both systems return similar sets of relevant documents,
3. both systems return dissimilar sets of nonrelevant documents.

The first point follows directly from the fact thatδa andδb are maximal whenda = p̄a− n̄a

anddb = p̄b − n̄b are maximal. The second two points can be concretely supported as
follows. Recall thatδa is optimal whenαp = 1 andαn = 0. Sinceαp = Pa+Pab

Pa+Pb+Pab
, it is

equal to 1 whenPb = 0. Likewise,βp = 1 whenPa = 0. Thus,δa andδb are optimal
when both systems return nouniquerelevant documents (i.e., they maximize the overlap
of relevant documents). Conversely, sinceαn = Na+Nab

Na+Nb+Nab
, it goes to 0 asNb→∞. The

same argument holds forβn. So,δa andδb are optimal when both systems are retrieving
different sets of nonrelevant documents.

3.2.3. Summary We have provided mathematical support for our empirically derived
conclusions about when to use the linear model. Namely, when at least one system exhibits
good performance, when both systems return similar sets of relevant documents, and when
both systems return dissimilar sets of nonrelevant documents. These conclusions basically
state that the LC model primarily exploits only the Chorus Effect. Note that this conclusion
applies specifically to the LC model—other fusion models would presumably exploit other
effects. We have also derived a formula for the optimal weighting, as well as an expression
for the performance of the combined system assuming the optimal weighting.

4. Training the LC Model

We now turn to the practical side of things. In the previous section we derived an optimal
weighting for two systems according tod. However, using this weighting is not a practical
technique for several reasons. First, it is not general, in that it does not cover the case of
more than two systems. Second, it would be more satisfying if we could choose a weight
which optimizes a more traditional IR performance measure, such as average precision or
exact precision. Finally, the optimal weights used in the previous section were not tested
for generalization to new data. In this section, we describe a series of experiments in which
we compare two different techniques for choosing the weights of an LC model.
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4.1. Advantages of Using d as an Optimization Criterion

Recent work (Vogt and Cottrell 1998b) has argued in favor of usingd′ = p̄−n̄
σN

as an op-
timization measure for ranking problems such as those seen in IR. The list of reasons to
preferd′ also apply tod. Namely,

• it is differentiable with respect to model parameters (i.e., weights), thus it can be applied to
more complex models (via gradient based techniques) than optimizing precision directly,
which has no gradient,
• it may be suitable for online learning,
• it is roughly correlated with other well-known measures of performance like average

precision,
• it is generally cheaper to calculate than rank-order statistics, such asJ (Bartell et al. 1994),
• it has an intuitive meaning: as a measure of how well the scores on positive examples

are separated from those on negative examples.

Below we show that optimizingd to select a weighting scheme for combining two IR
systems works nearly as well (as measured by average precision) as optimizing average
precision itself. It is important that we distinguish between an optimization criterion and a
performance measure. Often, the same function plays both roles. However, in the following
experiments we may choose the weights by optimizing eitherd or average precision (P),
but we will always evaluate the resulting combined system usingP.

4.2. Training a Model for the Routing Problem

As previously noted, the routing problem should be easier for the LC model (or any para-
meterized model) because a separate model can be trained for each query, assuming enough
training data. For this reason, we begin by examining the routing problem.

4.2.1. Method We examined all 61 submissions to the TREC5 adhoc track. For each of
the 1830 possible pairs, on each of the 50 TREC5 adhoc queries, and 70% of all possible
documents, we chosew in one of two ways:

• using a golden section search (Press et al. 1995) to optimizeP directly, or
• using a golden section search to optimized directly.

An examination of the surfaces ofP andd has shown that they usually have only a single
maximum, which this technique should always find. Although we are able to calculate the
optimal weight ford using equation (6), we use the golden section technique because in
the future we would like to be able to apply the technique of optimizingd to models with
more than one parameter, for which an equation may not be derivable.

We did not use a hold out set to stop training since the LC model has only one parameter
and thus is unlikely to overfit the training data. We tested each of the trained combinations
on the remaining 30% of the documents, evaluating each combination usingP.
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Figure 4. Histogram ofPP − Pd on the Routing test set for 91500 TREC5 combinations.

4.2.2. Results and DiscussionFor each of the 91500= 1830× 50 pair/query triples, we
calculated the difference between the value of average precision on the test set as determined
by the weight being trained ond and the weight being trained onP. That is, we are looking
at the quantityPP−Pd on the test set. This measures how much better training onP is than
training ond. Figure 4 displays the histogram of this difference. The average difference is
−0.009. This means that on average, training usingd gives better generalization whenP is
the measure of performance. Although an ANOVA shows that thePP andPd distributions
are different (p < 0.0001), to interpret whether or not this is really a meaningful difference,
consider a query that has 75 relevant documents (the median for a TREC5 query). Then
a difference of 0.009 inP means that only one or fewer more relevant documents are
returned. It is also interesting to note that there are a significant number of combinations
where training ond is better than onP (differences less than zero).

Table 4 gives some idea as to the amount of improvement gained by using the LC model.
The motivation behind the data presented in this table is that a reasonable heuristic to
deciding whether a particular pair of systems should be combined is to examine performance
on the training set, and combineonly if there is improvement. As noted previously, the
LC model is not always capable of improving over the two component systems. Of the
91500 pair/query triples, 80324 (88%) saw improvement on thetraining set over both
of the component systems when trained usingP. Of those 80324, 32493 (40%) also
saw improvement on thetestset. The table also shows that over the 80324 combinations
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Table 4. Training results for routing.

# Combos showing # Combos showing % of improved training Average degradation or
Training some improvement on improvement on both combos which also improvement on test set
method the training set training and test sets improve on test set ((P/Pa)− 1)

P 80324 32493 40% −14%

d 37661 21028 56% +15%

Number of pair/query triples (out of 91500) which achieved better performance (as measured byP) than the
better component system (Pa) on the routing problem. Average improvement/degradation on the test set is over
all combinations counted in the second column.

which saw improvement on the training set, the average degradation (as measured by the
percentage of change in average precision of the combination as compared to the better of
the two systems) on the test set over the better of the two component systems was−14%,
a significant drop. The fact that the LC model tends to degrade performance for most
pairs of systems should not be surprising—recall the results of the previous section, which
indicate that the LC model should only be used in certain situations. Apparently, training
usingd allows better discrimination of when these situations arise. While training ond
results in fewer systems which see improvement on the training set (37661), it allows for
much better generalization when those weights are used on the test data (21028, or 56%,
see improvement). Furthermore, of those 37661 triples which see an improvement on the
training set, they also give rise to an average improvement on the test set, as opposed to
the degradation incurred by training onP. The improvement is on the order of 15% higher
average precision for the combination than the better of the two systems.

4.3. Training a Model for the Adhoc Problem

All of our analysis thus far has focused on the routing problem. One can certainly argue that
the adhoc problem, where new queries are constantly being submitted to the IR system, is
also an important problem, especially for the World Wide Web. The following experiments
explore this aspect of IR.

4.3.1. Method For the routing case we were able to examine the full set of all the TREC5
queries. However, for the adhoc problem, we reduce the space of combinations by only
examining three subsets of the total 61 systems. The first subset, labeled “chorus”, consists
of 10 systems (see Table 5). These systems were chosen because many of the 45 possible
pairings have a high overlap of relevant documents and low overlap of nonrelevant docu-
ments, and thus are theoretically able to exploit the linear combination model. The second
subset, labeled “diverse,” was chosen to maximize the differences between the systems in
the subset. These differences were simply the average of all the pairwise measures used in
our empirical analysis above after they had all been normalized toz-scores. Recall that these
pairwise measures included the correlation of scores, similarity of rank order as measured
by Guttman’s Point Alienation statistic, and the size of the intersection of the documents
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Table 5. Subsets used in adhoc experiments.

Subset Systems

Chorus KUSG2 KUSG3 anu5man4 anu5man6 gmu96ma1
gmu96ma2 mds002 mds003 uwgcx0 uwgcx1

Diverse CLTHES DCU961 anu5aut1 anu5man6 brkly17
colm1 fsclt4 gmu96ma1 mds002 uwgcx0

Random CLCLUS Cor5M2rf DCU961 ETHas1 ETHme1
LNaDesc2 erliA1 gmu96ma2 ibmgd1 ibmge2

Figure 5. Histogram ofP̄P̄ − P̄d on the Adhoc test set for the chorus (left) and random (right) subsets.

returned by both systems. The third subset of ten systems was chosen randomly from the
61 entries.

For each subset and each of the possible 45 pairs of systems from that subset,w was
chosen using golden section search to maximize eitherP̄ or d (P or d when averaged over
35 randomly chosen queries). We then tested each of the trained combinations on 13 of the
remaining queries, evaluating each combination usingP̄.

4.3.2. Results and DiscussionOnce again, we usēPP̄−P̄d on the test set as our comparison
metric. Figure 5 displays histograms of this difference for the chorus and random subsets
(the diverse histogram is similar to the one for chorus). The average difference for the
chorus subset is 0.012, diverse is 0.011, and random is 0.006. This means that on average,
training usingd gives worse generalization when̄P is the measure of performance, just
the opposite effect as observed for routing. Once again, although these differences are
statistically significant, it is doubtful that they are practically different.

Table 6 confirms that training the adhoc problem usingP̄ is better than usingd, since
more pairs of systems are able to successfully generalize and overall degradation is less,
although the difference is slight. The table also confirms the hypothesis that adhoc is harder
to train than routing, since on average, there is a degradation in performance. This is as
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Table 6. Training results for adhoc.

# Combos showing % of improved Average degradation
# Combos showing improvement on training combos or improvement on

Training some improvement both training and which also improve test set
Subset method on the training set test sets on test set ((P̄/P̄a)− 1) (%)

Chorus P̄ 29 5 17 −13

Diverse P̄ 30 10 33 −9

Random P̄ 33 16 48 −3

Total/average 92 31 34 −8

Chorus d 19 5 26 −15

Diverse d 18 3 17 −12

Random d 24 13 54 −2

Total/average 61 21 34 −10

Number of system pairs (out of 45) which achieved better performance (as measured byP̄) than the better component
system (̄Pa). Average degradation on the test set is over all combinations counted in the third column.

expected, since it seems unlikely that a single weighting would apply across multiple queries.
However, for a significant number of combinations (34%) there was an improvement. In
future work, we would like to apply techniques similar to those we used in our empirical
work for routing in order to predict when improvement is achievable for the adhoc task.

5. Conclusions

Our analysis of the linear combination of scores fusion model has revealed a number of
important points. As a technique for combining information retrieval systems, the LC
model has limitations in terms of its scope and power. Its effective use appears to be limited
to situations where the systems involved have high overlap of relevant documents and low
overlap of nonrelevant documents. However, we have also developed a technique which
can accurately predict when improvement is possible (for the routing problem), so this
limitation can be readily identified.

Our analysis has also revealed several advantages to usingd as a performance criterion.
Its simple algebraic form has allowed us to mathematically support conclusions about the
model which previously were only empirically based, and to derive theoretically optimal
weightings for pairs of IR systems. Furthermore, when used as an optimization criterion
for the routing problem,d selects weights which generalize better than those chosen by
optimizing average precision. On the adhoc problem, trainingd works about as well (or
rather, about as poorly) as training average precision. Becaused is differentiable and
cheap to calculate, it is also a likely candidate for use in gradient based optimization
procedures, which will be necessary for combinations of more than two systems or for
other parameterized models (e.g., neural nets).

Our future work will involve exploring both of these possibilities. We intend to apply the
LC model to combinations of more than two systems, usingd or Dc to choose the weightings.
We hope to be able to characterize the amount of improvement gained by adding more
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systems. We will also use more sophisticated, neural network models which will select
which of the component IR systems to listen to based on the document being scored. This
model will be a simple version of the mixture of experts model (Jordan and Jacobs, 1994).
In this way, we hope to be able to exploit not only the Chorus Effect, but the Dark Horse
and Skimming Effects as well.

Appendix

An Equation for d

Our first step is to derive an equation ford when combining two systems. We use the
following notation: the lettersa andb are used to indicate the two systems being combined.
The set of relevant documents returned only by systema are indicatedPa (P for positive
example), those byb arePb and those returned by both arePab, with their sizes shown as
P, so thatPa = |Pa|, etc. The corresponding sets of nonrelevent documents and their sizes
are indicated usingN andN.

We proceed by deriving an expression forp̄ in terms of p̄a and p̄b, and then likewise
for n̄. As in our empirical study, we are trying to predict the performance of the combined
system based on the performance (and other variables) of the component systems.

By definition,

p̄ =
∑

x∈Pab
sin(w)ρa(x)+ cos(w)ρb(x)

Pab+ Pa + Pb
+
∑

x∈Pa
sin(w)ρa(x)

Pab+ Pa + Pb

+
∑

x∈Pb
cos(w)ρb(x)

Pab+ Pa + Pb

or,

p̄ = sin(w)
[∑

x∈Pab
ρa(x)+

∑
x∈Pa

ρa(x)
]

Pab+ Pa + Pb

+ cos(w)
[∑

x∈Pab
ρb(x)+

∑
x∈Pb

ρb(x)
]

Pab+ Pa + Pb

Now, note that for systema

p̄a =
∑

x∈Pab
ρa(x)+

∑
x∈Pa

ρa(x)

Pab+ Pa

or,

p̄a(Pab+ Pa) =
∑

x∈Pab

ρa(x)+
∑
x∈Pa

ρa(x)
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And likewise for systemb. Substituting this into the equation forp̄ yields:

p̄ = sin(w) p̄a(Pab+ Pa)

Pab+ Pa + Pb
+ cos(w) p̄b(Pab+ Pb)

Pab+ Pa + Pb

By a similar series of steps, it can be shown that:

n̄ = sin(w)n̄a(Nab+ Na)

Nab+ Na + Nb
+ cos(w)n̄b(Nab+ Nb)

Nab+ Na + Nb

After introducing the following shorthand for the relative ratios of relevant and nonrelevant
documents returned by both systems:

αp = Pa + Pab

Pab+ Pa + Pb

βp = Pb + Pab

Pab+ Pa + Pb

αn = Na + Nab

Nab+ Na + Nb

βn = Nb + Nab

Nab+ Na + Nb

We have:

d = p̄− n̄

= sin(w)(αp p̄a − αnn̄a)+ cos(w)(βp p̄b − βnn̄b)

Note that technically, the scores need to be normalized to the [0, 1] range befored is
calculated. However, since we will not use thisd for comparisons, and only for optimization,
the scaling will not affect our conclusions and we leave it out to simplify the math.

Maximizing d

Because we have a formula ford (the performance of the combined system), we can find
its maximum via calculus. Differentiating with respect tow and setting it equal to 0 yields:

0= cos(wopt)(αp p̄a − αnn̄a)− sin(wopt)(βp p̄b − βnn̄b)

or,

tan(wopt) = αp p̄a − αnn̄a

βp p̄b − βnn̄b
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For simplicity, defineδa as the numerator of this expression andδb as the denominator so
that tan(wopt) = δa/δb. Then,

sin(wopt) ∝ δa

and,

cos(wopt) ∝ δb

Substituting this back into the equation ford yields:

dopt ∝ δ2
a + δ2

b (3)

It is important to note that this analysis applies only to the LC model when characterized
using trignometric functions, and only whend is used as a performance metric. The value
of the optimal weight will most likely change if either of these conditions is not met. For
example, a single parameter characterization which weights the two IR systems usingw

and 1− w would lead to a different optimal weight. This would not, however, change
the fundamental nature of the equation for the optimal weight, and the same qualitative
conclusions reached in Section 3.2.2 would hold.

Notes

1. Research was supported by UC Senate Bridge Grant #RW252G/B.
2. The work presented in this subsection is a summary and extension of (Vogt and Cottrell 1998a).
3. Throughout this paper, we will make reference tor 2 values. These values are a measure of the correlation

of two variables, as measured by a linear regression (least-squares, straight-line fit).r 2 has a direct, simple
interpretation: it is the percentage of the variance accounted for by the fitted line.
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