';=‘ Machine Learning, 36, 201-244 (1999)

(© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

General and Efficient Multisplitting
of Numerical Attributes

TAPIO ELOMAA elomaa@cs.helsinki.fi
Department of Computer Science, P.O. Box 26, FIN-00014 University of Helsinki, Finland

JUHO ROUSU Juho.Rousu@uvtt.fi
VTT Biotechnology and Food Research, Tietotie 2, P.O. Box 1501, FIN-02044 VTT, Finland

Editor: Robert C. Holte

Abstract. Often in supervised learning numerical attributes require special treatment and do not fit the learning
scheme as well as one could hope. Nevertheless, they are common in practical tasks and, therefore, need to be
taken into account. We characterize the well-behavedness of an evaluation function, a property that guarantees
the optimal multi-partition of an arbitrary numerical domain to be defined on boundary points. Well-behavedness
reduces the number of candidate cut points that need to be examined in multisplitting numerical attributes. Many
commonly used attribute evaluation functions possess this property; we demonstrate that the cumulative functions
Information Gain and Training Set Error as well as the non-cumulative functions Gain Ratio and Normalized
Distance Measure are all well-behaved. We also devise a method of finding optimal multisplits efficiently by
examining the minimum number of boundary point combinations that is required to produce partitions which are
optimal with respect to a cumulative and well-behaved evaluation function. Our empirical experiments validate the
utility of optimal multisplitting: it produces constantly better partitions than alternative approaches do and it only
requires comparable time. In top-down induction of decision trees the choice of evaluation function has a more
decisive effect on the result than the choice of partitioning strategy; optimizing the value of most common attribute
evaluation functions does not raise the accuracy of the produced decision trees. In our tests the construction time
using optimal multisplitting was, on the average, twice that required by greedy multisplitting, which in its part
required on the average twice the time of binary splitting.

Keywords: supervised learning, numerical attributes, optimal partitions, evaluation functions

1. Introduction

In classification learning methods based on conquering strategies the sample is partitioned
into smaller subsets in an attempt to discover a final partition in which the class distribution
of the subsets reflects the classification of (future) instances. In attribute-based induction
the correlation of an instance’s class and its attribute values is heuristically approximated
by anevaluation functionor agoodness criterionIn the most basic induction scheme—
univariate induction—a single attribute’s value is the basis of sample partitioning: the data
is divided into subsets according to the value of that attribute which induces the partition
that evaluates as the best.

In this paper we use top-down induction of decision trees (TDIDT) as the representative
learning scheme. In it a node querying the value of the chosen attribute is inserted into

202 T. ELOMAA AND J. ROUSU

the evolving tree. If the attribute in question has a small nominal domain it is simple to
continue tree construction by growing a subtree corresponding to each separate value in
the domain. Handling a large discrete domain can turn out to be more problematic, since
evaluation functions tend to have biases for, or against, multivalued attributes (Quinlan,
1988; White & Liu, 1994; Kononenko, 1995). Attempts to rectify such unwanted biases
can lead to irrelevant attributes or those with low information content gaining an unfair
advantage over the preferable attributes (Quinlan, 1986). Many evaluation functions have
been developed to address this deficiency (Quinlan, 1988et de Mintaras, 1991; Fayyad

& Irani, 1992a).

The real challenge for decision tree learning, however, is issuediimgrical attributes
with a very large, even infinite domain, which can be either discrete (integer) or continuous
(real). Numerical attributes are frequent in real-world induction tasks and their proper
treatment is important (Catlett, 1991; Fayyad & Irani, 1992b, 1993; Quinlan, 1993, 1996;
Van de Merckt, 1993; Maass, 1994; Dougherty, Kohavi, & Sahami, 1995; Fulton, Kasif, &
Salzberg, 1995). For example, Quinlan (1996) was compelled to reconsider this problem
in his well-known C4.5 decision tree learner (Quinlan, 1993).

The problem of choosing the interval borders and the right arity for the discretization
of a numerical value range remains an open problem in numerical attribute handling. In
practical decision tree learners the problem is often solved by bénagization(Breiman
et al., 1984; Cestnik, Kononenko, & Bratko, 1987; Quinlan, 1993), in which the value
range is split into only two intervals in any one node. Further partitioning of the domain is
generated by continuing the binarization of previously induced intervals further down the
tree. This way the halving approach decides the location of the interval borders and the
global properties of the tree decide the number of resulting intervals.

An alternative approach usgeeedy multisplittindCatlett, 1991; Fayyad & Irani, 1993)
where the value range is similarly partitioned by recursive binarization, but all at once; the
resulting multisplitis assigned to a single node of the evolving tree. In Catlett’s (1991) work
the discretization of numerical value ranges was carried out globally at the preprocessing
stage while Fayyad and Irani (1993) partitioned the value ranges dynamically, during the
growing of the tree. The depth-first search scheme of these methods does not directly assess
the global quality of the multi-partition and thus often requires some method—a stopping
criterion—to control the growth of the arity of the final partition. Using greedy breadth-
first search with an evaluation function that is balanced with respect to favoring high-arity
partitions relieves one from such a requirement (see Section 5). However, neither method
guarantees the optimality of the resulting multisplit. Still, their efficiency makes them
attractive choices in practical applications.

This paper addresses the problem of findapgimal multiway partitiondor numerical
attribute value ranges. The only known general algorithm for finding them is the exponential
brute-force method, which, of course, is not a feasible solution in practice. Fulton, Kasif,
and Salzberg (1995) devised an algorithm for finding efficiently optimal multisplits for a
class of evaluation functions. In this article we enhance and extend their method and give an
exact characterization of the kind of attribute evaluation functions for which the enhanced
approachis valid. Henceforth, optimal multisplit always refers to the partitioning of the data
that evaluates as the best when using a given goodness criterion. The main contributions of

MULTISPLITTING NUMERICAL ATTRIBUTES 203

this paper are:

e A characterization ofisefulandwell-behaveavaluation functions, for which it suffices
to inspect only few candidate cut points—theundary points—~when searching for a
good binary partition or multisplit, respectively. Boundary points were originally defined
by Fayyad and Irani (1992b) when studying binary splitting using evaluation functions
that areconvex downwardsCodrington and Brodley (1999) have rigorously studied
the convexity properties of many widely used attribute evaluation functions. Convex
evaluation functions are a proper subclass of well-behaved evaluation functions. Hence,
the results in this paper strictly generalize those of Fayyad and Irani in two ways: the
approach of focusing on boundary points becomes applicable to a larger repertoire of
attribute evaluation functions and, more importantly, it extends to multisplitting.

e A general and efficient method of finding optimal multiway partitions naturally arises;
we adapt the dynamic programming evaluation scheme proposed by Fulton, Kasif, and
Salzberg (1995) to take advantage of the boundary points and operate on example intervals
instead of individual examples. These enhancements enable an elegant and efficient
implementation of the search procedure. The generality of the method means that it
can accommodate many different evaluation functions, all those thatuanelative
Given an evaluation function with a well-balanced bias (Quinlan, 1986; White & Liu,
1994; Kononenko, 1995) there is no need to employ another function to control the
growth of partition arity.

e We demonstrate that well-behaved evaluation functions are common by proving that two
goodness criteria stemming from different traditions and backgrounds—the MDL/MML
cost function of Wallace and Patrick (1993) afrdining Set Error(Maass, 1994; Auer,
Holte, & Maass, 1995)—are well-behaved. Fayyad and Irani (1992b, 1993) have previ-
ously shown the convexity ddverage Class Entropgnd Quinlan’s (1983)nformation
Gainfunctions in binarization tasks. By the results in this paper (Theorem 2) they both are
well-behaved. In addition, we study the default evaluation functBain Ratiq of C4.5
decision tree learner (Quinlan, 1993), and one of its alternativesnalized Distance
Measure(Lopez de Mintaras, 1991). They turn out to be non-convex but still both be-
have well in multisplitting. However, since they are not cumulative, the above-mentioned
dynamic programming approach is not applicable for them.

e Finally, we report an empirical comparison of multisplitting strategies. We contrast the
greedy approach with the optimal algorithm. We also include in this comparison, as a
baseline, a method that selects the cut points randomly. Our experiments show that
better quality partitions are obtained by using optimal multisplitting than by the other
two multisplitting strategies. However, the advantage of optimal partitioning over greedy
multisplitting is only marginal. To explore the utility of multisplitting in decision tree
learning we also compare the greedy and optimal strategies with binarization within the
C4.5 framework. This comparison shows that the choice of the evaluation function has
a more decisive impact on the result than the choice of the splitting strategy.

We review, in Section 2, the basic problem setting in handling numerical attributes and
discuss the mostimportant preceding research on the topic. In particular, we reformulate the
definition of a boundary point. In Section 3 we define useful and well-behaved evaluation

204 T. ELOMAA AND J. ROUSU

functions. We show that the desirable properties of useful functions carry over to multisplit-
ting as long as the function is cumulative; such a function is also well-behaved. In addition,
we evolve an efficient method of finding optimal multisplits for numerical attributes using
cumulative and well-behaved evaluation functions. We explore the extent of this class of
functions in Section 4. First we analyze non-cumulative evaluation functions related to the
C4.5 decision tree learner. We show that both Gain Ratio function and Normalized Distance
Measure are able to take advantage of boundary points in multisplitting. Then we take two
cumulative goodness criteria of different nature and prove their well-behavedness. Section 5
reports extensive experiments comparing the methods developed in this paper with each
other and with the most common approach to numerical attribute handling. Section 6 re-
flects upon the outcome of the experiments and discusses related research. Finally, Section 7
presents the concluding remarks and directions for future research. Appendix A contains
a detailed description of the search algorithm for optimal multiway partitions and analyzes
its time and space complexity. In Appendix B we study, for a large collection of real-world
data, the relationship between the number of different values and the number of boundary
points in numerical attributes’ domains.

2. Problem setting

This section presents the preliminaries of the subsequent work and reviews some of the
earlier related research. We examine partitions, boundary points, and evaluation functions
that are used to rank partition candidates.

2.1. Partitioning numerical attribute domains

The basic setting that we consider is the following. We have preclassified data acquired
from the application domain at our disposal. &xamples a vector containing values for

the attributes at hand together with an associated classification. The aim is to find a good
predictor for classifying, on the basis of the given attributes, further instances from the same
application domain. Tothat end the greedy TDIDT construction algorithm needs to estimate
how well an attribute’s values correlate with the classification of examples. The respective
correlations of the attributes are compared and the attribute that appears best is added to
the evolving tree. For correlation comparison a fixed evaluation function is applied to each
attribute. Prior to comparing a numerical attribute with the nominal ones it is necessary to
find the best partition of the attribute’s values. The same evaluation function is used to rank
the partitions and the attributes.

Partitioning of a numerical attribut& begins by sorting into ascending order the values
for attribute A of the n examples. Let val(s) denote the value of the attribug in the
examples, and vat (s) denote the class &f The classes are assumed to be integess
{1, ..., m}. Themajority class in the example s&

majc(S) = arg max|is € S| vale(s) = j}I,

MULTISPLITTING NUMERICAL ATTRIBUTES 205

is the most frequently occurring class. If there are several maximally frequent classes,
maj: (S) is the smallest one. This tie-breaking is simply to guarantee that(®&s unique,
it plays no role in any of the algorithms.

A patrtition L+J!‘:1 S of the sample&Sinto k intervals has the following properties:

1. it consists of non-empty subsets: foria#t {1,...,k}, § # 0,
2. covers the whole domait: , § = S, and
3. the subsets are disjoint:dfe §, thens ¢ S;, forall j #1i.

Furthermore, if partitioﬂg—)ik:1 S has been induced on the basis of attrib&tehen for all
i <j,ifs € Sands; € §;,thenvah(s) < vala(sj). Whensplitting a sebof examples on
the basis of the value of an attribudethere is a set of thresholdl§,, . . ., Tx_1} € Dom(A)
that defines a |oartitiot:_rj!‘=l S for the sample in an obvious manner:

{se S|vala(s) < Ty} ifi =1,
S=1{{seS|Ti_1 <vala(s) < Ty} ifl<i <k, and
{se S| Tk_1 < vala(s)} if i =k.

In this article partitions usually have ariky When there is no danger of confusion, we
write [+ § in place oftrj:‘zl S to clarify the notation.

A patrtition of a numerical value range can set the interval thresholds only at points where
the value in the ordered sequence changes. These points are the potérpaintsof
the data. A sequence of consecutive examples with the same value for the attribute under
consideration is calledlain.

2.2. Boundary points

Fayyad and Irani’'s (1992b) analysis of the binarization technique proved that optimal splits
always fall onboundary pointavhen the Information Gain function (Quinlan, 1983) is
used. Hence, substantial reductions in time consumption can be obtained, since only the
boundary points need to be considered as potential cut points.

Definition1 Letasequenc8ofexamples be sorted by the value of anumerical attribute
The set oboundary pointss defined as follows:

1. The maximum value i$is a boundary point.

2. AvalueT € Dom(A) is a boundary point if and only if there exists a pair of examples
u, v € S, having different classes, such thatpal) = T < vala(v); and there does not
exist another example € Ssuch that vgl(u) < vala(w) < vala(v).

This definition differs from Fayyad and Irani’s (1992b) most notably by including the
maximum value as a boundary point. It is included to ensure that every example set has
at least one boundary point for each numerical attribute. There is also a difference in the
definition of the actual boundary points (case 2 above). In the original definition a boundary

206 T. ELOMAA AND J. ROUSU

point was taken to be a value that is strictly in between the valuggwahnd vah(v). We
follow the common convention that the thresholds defining a partition are values of the
attribute appearing in the data (e.g., Quinlan, 1993).

The example sequence in between two consecutive boundary points is dallbet @f
examples). A block can be either classiformor its class distribution can bmixed A
uniform block may consist of a single example, but a mixed one always has at least two
elements. Observe that the blocks are obtained from the bins by merging only adjacent
class uniform bins with the same class label into a block. Mixed bins are never merged into
a block with another bin; they always constitute a block of their own.

Example Consider the set of 27 examples shown in figure 1. For each example its class
value, in the setA, B, C}, and the value of a numerical attribute—integer-valued in this
case—are shown. The examples have been sorted into ascending order according to the
value of the numerical attribute. The cut points and the bins of this data are depicted in
figure 2.

Let us illustrate how the boundary points can be located with the help of the bins from the
categorized version of the data set in figure 2. Boundary points are borders of consecutive
bins D andD’ such that

1. all examples in biD belong to clas€ and all examples i’ to C’, andC # C’, or
2. there is anixedclass distribution in either of the bins.

Thus, we can reduce the original set of 27 examples down to the seven blocks depicted in
figure 3. Only the class distribution of each block needs to be known in order to be able to
compute the impurities of partitions defined on boundary points.

GOR0va0cEv0vaueaaeedeey

Figure 1 A set of examples sorted into ascending order according to the value of a numerical attribute. The
class labels of the examples are also shown.

Figure 2 The example set can only be partitioned on threshold values that are bin borders.

MULTISPLITTING NUMERICAL ATTRIBUTES 207

N &

0 1 2 3 4 6

Figure 3 The original set of 27 examples can be reduced to 7 blocks. The block borders coincide with boundary
points. Only the class frequencies within blocks need to be known.

Gathering examples into blocks can only be applied for a certain class of evaluation func-
tions. We study the extent and generality of this class in Section 4. Block construction does
not depend on duplicate values, hence the processing is effective even for truly continuous
ranges. If an attribute in isolation has predictive power, i.e., if it directly correlates with the
examples’ classification, then the number of the blocks in the raBgeatisfiesB « n
(Fayyad & Irani, 1992b). Subsequently we study in detail the relationship of valu&; the
V, andn for a large collection of real-world data sets (see Appendix B).

2.3. Evaluation functions: The average class entropy

The goodness criteria which are used to evaluate candidate partitions are many (see e.g.,
Mingers, 1989; Buntine & Niblett, 1992; Kononenko, 1995). The most commonly used
attribute evaluation functions build upampurity measuregBreiman et al., 1984), which

are functions that try to estimate the class coherence in a given set of examples. An example
of such measures is tlemtropyfunction H,

H(S =-Y P(Cj,9log,P(Ci,9),

m
j=1
in which m denotes the number of classes d(C, S) stands for the proportion of the
examples irSthat belong to the clags. Attribute evaluation functions based on impurity
measures include the Gini Index (Breiman et al., 1984) and Quinlan’s (1986) Information
Gain and Gain Ratio. Fayyad and Irani (1992b) focused on a particular evaluation function,

the Average Class EntropyLet |+ S be a partition ofS, then byACE(|+ S) we denote the
Average Class Entropy of the partition:

S| 1
ACE(LJids) =Z§H<s>= @mes»

Definition2 Letl4); S be a partition of an arbitrary example StAn evaluation function
F is cumulativeif there exists a functiorf such that

F (Lﬂs) =c~i2 f(S),

wherec is an arbitrary coefficient whose value may depend on, e.g., the whol&daith
not on its partitions.

208 T. ELOMAA AND J. ROUSU

For example ACE, defined above, is cumulative. Cumulativity facilitates incremental
evaluation of impurity values (Fulton, Kasif, & Salzberg, 1995), but it does not relieve us
from the need to examine all candidate cut points when searching for an optimal partition
of the data.

In this paper we assume that the aim is to find a partition that minimizes the given evalu-
ation function. All definitions and results in the next section have their natural counterparts
that apply for maximization.

Fayyad and Irani (1992b) proved that the Average Class Entropy has the property that it
will never favor an obviously bad cut, one that needlessly separates examples of one class.
They proved that when searching for the best binary split by choosing a single cut point,
we can restrict our attention to boundary points.

Theorem 1 (Fayyad & Irani, 1992b). If value T defines a binary partitiony® S of S
that minimizes ACEhen T is a boundary point.

There is one exception to this result, viz., in the degenerate case that the Srople
tains only members of one class, tOE(S W S;) = 0, independent of whether the value
defining the partition is a boundary point or not. Recall that in this case the only (additional)
boundary point is at the far end of the value range. We can surmount this complication by
considering the boundary points and by focusing on such minimum impurity partitions that
do not contain superfluous thresholds. Subsequently we give examples of evaluation func-
tions that inherently penalize needless splitting of the data, thus avoiding this complication
without further measures.

3. Multisplitting numerical attributes optimally

Fayyad and Irani (1992b) base the proof of Theorem 1 on the fact that Average Class Entropy
is convex downwardii between any two boundary points. Thus, its minimum values for
binary partitions can only occur at boundary points. Convexity is a sufficient but not a
necessary requirement for useful behavior. Subsequently, we give examples of non-convex
functions that minimize on boundary points.

In the following, by the shorthand notatidA(T) we denote the value of the evalu-
ation functionF for the binary partition that is defined by the threshdld Similarly,
F(T1, ..., Tk_1) denotes the value of the evaluation functierior the k-partition defined
by cut pointsTy, ..., Tg_3.

Definition 3 Let Sbe an example set and &t = {T4, ..., Tg} be the boundary points
in Sfor numerical attributeA. An evaluation function isiseful(in binary partitioning) if
there exists a valu€ in 7 such that-(T) < F(W) for all W € Dom(A).

For exampleACEis useful. A stronger property, which requires all optimal partitions to
be defined on boundary points, has been studied by Codrington and Brodley (1999). They
call this theminima-free property

MULTISPLITTING NUMERICAL ATTRIBUTES 209

Let us now definavell-behavedvaluation functions, those that always—not just in the
binary case—have an optimal multisplit on boundary points.

Definition 4 Let Sbe an example setand [Et= {Ty, ..., Tg} be the boundary points in
Sfor numerical attributeA. An evaluation function isvell-behavedf forany 1 <k < B
there exists a set of at mdstalues7’ C 7 suchthat (7") < F(OW)forallWw € Dom(A),
where|W| = k.

By using a well-behaved function we may concentrate on boundary points independent
of whether the partition arity is limited a priori or not. Thus, one can be sure that good
partitions can be chosen, no matter which splitting strategy is applied. Definition 3 constrains
the search of the optimal binary partition to boundary points. We can draw a connection
from useful to well-behaved functions as follows. If an useful evaluation function also is
cumulative, then it is also well-behaved with respect to multiway partitions. The following
theorem shows that in order to minimize the goodness score of a partition, with respectto any
useful and cumulative evaluation function, it suffices to examine only the boundary points.

Theorem 2. For any cumulative and useful evaluation function F there exists a partition
of an arbitrary example set such that it minimizes the value of F and the corresponding cut
points are boundary points.

Proof: Let F be a cumulative and useful evaluation function andSdte an arbitrary
example set. Moreover, |& = L+J:‘:l S be a partition ofSsuch that= (S) is the minimum
value of F. Let the threshold§Ty, ..., Tx_1} be the ones that defirte (see figure 4).

It suffices to show that an arbitrary threshold, which is not a boundary point, can be either
removed or replaced by a boundary point. Assume that vBlirethe set{T, ..., Tx_1}
is not a boundary point. Only the subs&sand S.; in the partitionS depend on the
choice of the threshold; (see figure 4). Therefore, only the termfisS) and f (S,1) in
the cumulative formuld (S) = c- Zik=1 f(S), giving the total impurity of the partition,
depend on the valu&. SinceS minimizes the total impurity of the partition and because
F is cumulative, the impurity 0§ W S, ; also has to be the least possible.

Becausd- is useful, in the boundary points for the exampleSet S, ; there must exist
a valueT such that~(T) < F(T;). Substituting the boundary poiftfor T; creates a new
(possibly trivial) partition for§ U S, that has at most the same impurity as the partition

defined byT;. SinceT; was chosen arbitrarily, the claim follows. O
T T T; Ty Th—1
‘ 3| 4 }~ s)
S1 j | St S _ . Sk
(EH | - i -
. 4 i
S¢ U St

Figure 4. lllustration of the situation in the proof of Theorem 2.

210 T. ELOMAA AND J. ROUSU

A stronger version of Theorem 2, which states that a minimum impurity multisplit is
always defined by boundary points, holds true for well-behaved evaluation functions that do
not suffer from the degenerate case (for an example of such see Section 4.2). Nevertheless,
even this weaker version allows us to focus on boundary points in searching for the best
possible multiway partition. The theorem holds with or without an upper bound for the
arity.

Theorem 2 offers only one way to show that a function is well-behaved; usefulness, of
course, is a necessary condition for well-behavedness, but cumulativity is not. Indeed, we
subsequently show that two non-cumulative functions behave well in multisplitting. The
technique given by Theorem 2 is a very convenient one, because it directly implies the
existence of an efficient optimization algorithm, as shown below. Moreover, it gives a way
to utilize, in multisplitting, the (convexity) results that are known from the more extensively
studied binarization scheme.

In any case, one of the optimal multiway partitions of the data has all its cut points at the
boundary points if using a well-behaved evaluation function. Therefore, we can focus on
the boundary points in searching for the optimal partition. In order to find the ogthaua/
partition of the given data, it suffices to find thke- 1 boundary points that determine the
partition with the lowest impurity. Since for a cumulative evaluation function the best
partition of a subsampl® c Sdoes not depend on the splitting of its complemen&se,
the search strategy can be implemented incrementally by using dynamic programming.
Fulton, Kasif, and Salzberg (1995) examined all potential cut points within the example
sequence in order to obtain the optimal multisplit by a cumulative evaluation function. They
gave the recurrence by which the impurities of the cut point candidates can be calculated
from the impurities of shorter intervals and smaller-arity partitions. The computation entails
obtaining impurities for lower arity partitions during the process. Hence, given a kalue
the method can choose in tin@&kn?) the partition with the lowest impurity from among
all those that have at moktintervals (Fulton, Kasif, & Salzberg, 1995).

The same general scheme can also be utilized with (bins or) blocks of examples in place
of individual examples. Instead of preparing to cut in between every pair of examples, we
only need to inspect those positions where the cut points defining a partition may eventually
be located. This can be accomplished by preprocessing the data in (bins or) blocks that are
represented only by their class frequency distribution as described in the previous section.
As the rationale for assigning examples into blocks shows, the linear order of examples is
retained on those parts that matter. Using blocks as the basic processing unit also facilitates
and speeds up the implementation and reduces the complexity of the required data structures
(see Appendix A).

The base case for the impurity calculation is that if we “split” any part of the data trivi-
ally into one subset, then the impurity of that “partition” is directly determined by the impu-
rity measure. When the data has been preprocessed into blocks, the recurrence for impurity
calculation is:

. _ min {impur(k —1,1,i) +impur(1,i +1, j)} ifk<],
impurk, 1, j) = {k—15'<1 .
o0 otherwise

whereimpur(k, i, j) denotes the minimum impurity that results when blockisrough j
in the sorted sequence of examples are partitionedkiimtervals. The bek-split is the

MULTISPLITTING NUMERICAL ATTRIBUTES 211

Figure 5 In searching for the best three-way split we only need to evaluate the suffixes of the data in order
to recover the optimal splits. Only the black suffixes need to be evaluated when processing the fifth block of
examples. The gray partitions have been evaluated previously and the best impurities have been stored. Only the
value of the binary partition that evaluated as best has been stored. Combining the new impurities appropriately
with the stored ones gives the impurity values for the best partitions of arities 1-3 for this part of the data.

one that minimizegmpur(k, 1, B). Using dynamic programming, the time requirement of
finding the optimal partitioning into at moktintervals isO(k B?), whereB is the number

of blocks in the range. The theoretical worst casB is- n, but most typically in practice

B « n (see Appendix B). The search method is presented in a more algorithmic form in
Appendix A. The detailed time- and space-efficiency analysis is also given there.

Example The efficient impurity calculation requires making use of incremental compu-
tation, which can be implemented by dynamic programming. Consider partitioning the
example set in figure 3 into (at most) three intervals. Let us illustrate how dynamic pro-
gramming makes the search efficient. Consider the situation when processing the fifth block
of the data. Assume that the best partitions of arities one and two have been evaluated and
stored for all prefixes of the data consisting of the first four blocks. The fact that only the
best partitions have been stored is depicted in figure 5 by drawing only one binary partition
of each prefix, even if there are more alternatives.

In order to obtain the impurities for the best partitions of arity at most three for the
extended data set, we only need to evaluate the suffixes of the data corresponding to the
rightmost interval of the extended partition and then combine these results appropriately
with the best ones obtained earlier for all prefixes of the data (see figure 5). At the end, the
optimal partition is the best partition of the whole data with arity 1, 2, or 3.

4. On the well-behavedness of important evaluation functions
From the usefulness of the Average Class Entropy it follows that also the Information Gain

function (Quinlan, 1983) is useful (Fayyad & Irani, 1992b). Using our earlier notation the
Information Gain can be expressed as

IG(L-!-JS) — H(S) —ACE(LJ_rJ s),

212 T. ELOMAA AND J. ROUSU

whereH (S) is the class entropy of sampf&prior to partitioning andACE(|H S) is the
Average Class Entropy d§, when partitioned by the value of an attribute. The attribute
that gains the most increase in information is seleck&¢S) is invariant with respect to the
attributes and the partitions induced by them. Thus, the objective is, in essence, to maximize
the negation of Average Class Entropy. Hence, the well-behavednéSsafows from
that of ACE

The well-behavedness of some other important attribute evaluation functions is also clear
from earlier results. For example, tkBani Index (of diversity) or theQuadratic Entropy
(Breiman et al., 1984; Breiman, 1996) is defined as

Gl (LJI_rJ S) => %gini(S),

in which gini is the impurity measurgini(S) = — Z‘j":l P(Cj, 9(1 - P(Cj, 9), where

P(C, S) denotes the proportion of instances of clase the dateS. The evaluation function

Gl is known to be convex and, thus, also useful. Furthermore, since this evaluation func-

tionis in addition cumulative, its well-behavedness follows by Theorem 2. There are several

other evaluation functions that are based on the entropy function (see e.g., Mingers, 1989;
Kononenko, 1995). Not all of them, however, are necessarily well-behaved.

The following subsections probe into the extent of the class of well-behaved evalua-
tion functions. First, we analyze two non-cumulative evaluation function$G#ie Ratio
(Quinlan, 1986) and thdormalized Distance Measufedpez de Mintaras, 1991). Then
we utilize Theorem 2 in proving the well-behavedness of two cumulative functions. In the
proofs we will treat the evaluation functions and their component functions as continuous
and twice differentiable, even though they are defined to be discrete. Observe that this
causes no harm, since we only consider provingatteencef certain local extremas.

Recall that the only possible cut points of the data are the points in between the bins; no
partition can occur within a bin. When the bins are further combined into blocks, mixed
bins remain as separate blocks, but consecutive uniform bins of the same class get combined
into a common block. Thus, the only possible cut points in addition to boundary points are
within uniform blocks. Therefore, when examining the usefulness or well-behavedness of
an evaluation function, it is enough to show that the function does not have an optimum
within uniform blocks (Fayyad & Irani, 1992b).

4.1. Evaluation functions of C4.5

The Information Gain function does not penalize a partition for having a large arity. There-
fore, it favors excessively multi-valued nominal attributes and multisplitting numerical
attribute value ranges. To correct this deficiency Quinlan (1986) suggested dividil® the
score of a partition by the term

K(Liﬂs)z_z%mgz%.

MULTISPLITTING NUMERICAL ATTRIBUTES 213

The resulting evaluation function is known as tBain Ratio

oR(Ws) =16 (lys) /(Ws).

As with IG, the intent is to maximize this function. Notice tHaRis not a cumulative
evaluation function, because the value of the coeffici¢gnt|d) S) depends on the chosen
partition by referring to the sizes of the partition subsets.

C4.5incorporates the Gain Ratio as the default choice for attribute evaluation. It has been
observed to have some difficulties in particular in connection with numerical attributes. In
order to overcome those problemsp€ez de Mintaras (1991) has proposed to use another,
but closely related evaluation function, and Quinlan (1996) has recently been compelled to
change the evaluation of numerical attributes in C4.5. Still, analysis of these functions has
been surprisingly scarce dpez de Mintaras, 1991, Dietterich, Kearns, & Mansour, 1996).

In the following we study the convexity and well-behavedness of these functions.

Theorem 3. The evaluation function Gain Ratio is not convex.

Proof: Consider the data in figure 6. For each example its class label (A or B) and the
value of a numerical (integer in this case) attribute is shown. There are three boundary points
in this data,BP, ..., BP3, and one further possible cut poi@P. Letg(p),0 < p < 1,
denote the Gain Ratio of a binary partition in which a fractjpof the examples belongs
to the left subset and the rest of the data to the right one.

In order to see that Gain Ratio is not convex, the behavior of its second derigatives
inspected on the leftmost block (two bins) consisting of instances of the class A. It was seen
that in the Gain Ratio curve there is an inflection poirit 0.12468 such that

<0 wheny < x,
g’(y)y=10 wheny =x, and
>0 whenx <.

Since 0< x < 3/11 ~ 0.27273, this example shows that the Gain Ratio function is not

convex over the first block. O
CP BP} BPQ BPg
!i ?g‘r\vn \‘F\l y\
AA‘AB'AAAAABB
0'1 1) 2 2 2 2] 3 3 4 4
IVVYVVVVYVYY

Figure 6. An example set ordered by the value of an integer-valued attribute. The examples are members of two
classesA andB. There are three boundary points and a further possible cut point in this data along the chosen
dimension.

214 T. ELOMAA AND J. ROUSU

Although convexity is a desirable property, the lack thereof does notimply that a function
would not be useful. Elomaa and Rousu (1997) gave an explicit usefulness proof in earlier
work; it utilizes the same proof techniques as the following proof. Independently from
our research, Codrington and Brodley (1999) have obtained essentially the same result.
They have also examined the usefulness of evaluation functions more generally and have
formalized the properties which make evaluation functions, with a similar rational formula
as the Gain Ratio, exhibit useful behavidt.turns out that the properties are just the ones
utilized in the following proof. Keep in mind that the intent is to maximize the Gain Ratio
rather than to minimize it.

Theorem 4. The Gain Ratio optimal partitions are defined on boundary points.

Proof: LetS = &Jih:l S, h < k, be a partition of an arbitrary example setlong the
dimension of a numerical attributé. Assume thatS is a gain-ratio-optimal partition of

S among those partitions that have arity of at miadt > 1. If h = 1 there is nothing to
prove, therefore, we assume thet- 1. Let7 = {Ty,..., Th_1} be the set of cut points

that definesS. Itis enough to show that if ifil there is a threshold, which is not a boundary
point, then we can slide the threshold onto a boundary point without decreasing the Gain
Ratio. Therefore, assume that thresh@ldl <t < h — 1, is not a boundary point (see
figure 7).

Let us define two further points from the sorted example sequ&ntae cut pointD is
the lower border (a boundary point) of the uniform block which cont&jng the border is
positioned in between the thresholls; andT;. Otherwise, if cut poinT;_; is within the
same block a3;, we defineD to beT;_;. Similarly, we defindJ to be either the boundary
point which is the upper border of the uniform block that contdinsr the threshold ;.

In any case, there are only instances of one class in between the cutpantiJ.

The cut pointsT;_;, D, U, andT;,; induce the partitiorX ¥ Pw QW RW Y of the
datasuchthaK = {se S|vala(s) < Ty_1}, P={s€ S| T;_1 < vala(s) < D}, Q =
{seS|D<vala(s) U}, R={se S| U < vala(s) < Tiy1}, andY = {s € S|
vala(s) > Tiy1}. All that follows applies also in the case where any of the 36t®, R,
andY is an empty set. Ldi, b € {1, ..., m}, be the unique class of the examplefinand

- [—>

Figure 7. Aniillustration of the situation in the proof of Theorem 4. The cut poipts, D, U, andT;1 induce
the partitionX W P W Q W RW Y of the data. There are only instances of one clasis, Q. The proof examines
what are the consequences of positioning, within the inte@yathetth threshold of a multiway partition of the
data.

MULTISPLITTING NUMERICAL ATTRIBUTES 215

let p=|P|,q =|Q], andr = |R|. Moreover, byp; we denote the number of instances of
classj, j € {1,..., m}, in the setP, r; is the respective number f& (see figure 7). In
particular,p, andry, are the numbers of instances of clags the setd andR, respectively.
We consider what happens to the value of the Gain Ratio if the thre3haddshifted
within the intervalQ. Therefore, we review the case where the threshpld positioned
in Q after thefth instance, where & ¢ < q. That leaveq — ¢ elements ofQ to the
right side ofT;. By GR(¢), IG(¢), ACE(¢), andx (£) we denote the related function values
corresponding to this situation. Furthermaké(j, S) is the number of instances of clags
in the setS.
Let us define that

1

EW) =
) B

(ISI log, [S| + 1S+1/100; |S+1]

— Y (M(j, S)log, M(j, S) + M(j, S41) log, M(], s+1>>)
j=1

]

1
= §<(p+£)logz(p+£)+(r +q—-0log,(r +q—4£) — (pp+£)

~logy(pp +£€) — (b + 0 — £)log,(rp + 9 — £)

— > (pjlog, pj +7; '092“'))’
j#b

which is the part of the numerator @Rformula whose value depends on the exact location
of the threshold; in Q. Moving T; within the uniform intervalQ only affects these values.
Similarly in the denominatok of the GR formula only two terms are affected by the
positioning ofT;; let us define

1
K) = @((|S| +1S+1D 109, [S| — [§]100, S| — [S+1] 109, [S+1])

_1
IE]
—(+g—20)log,(r +q—4¢)).

((p+qg+r)log, S| — (p+£)log,(p+¢)

We can now write out, using (¢), the Information Gain of the partitio§, whenT; is
placed after théth example ofQ:

t—1 h
IG(£) = H(S) — ACE() = H(S) — (Z%H(S) +EO+ Y %'H(S)>-
i—1 i=t+2

216 T. ELOMAA AND J. ROUSU

Similarly, the denominatar can be rewritten as

t—1 h
S|, IS S|, IS
==Y Zlog, > +K() — 2 log, —.
Kk (0) i§:1 5 100 g +K© i:§t+:2 5 0% 75

Taking the first derivative oG with respect tcZ, all the constant terms that do not depend
on the value of differentiate to zero. Hence,

IG'(£) = %IG(E) = —FE'(0).

Therefore, the second derivative@®'(¢) = —E”(¢). The same happens with the derivative
of k(¢), i.e.,k’(¢) = K'(¢) and«”(£) = K”(£). These derivatives are not affected by the
data in the subset® andY, except by summing their elements to the total number of the
examples.

The first derivative of5R(¢) is given by

d IG' (O (8) — k' (O)IG(
GR(0) = &GR(K) _ 16O« ,12(51;(IG()

Let us defineN () = IG'(£)k (£) — k' (£)IG(£), and note that

N'(¢) = IG"(0)k (£) + k" (OIG' (&) — k" (O)IGL) — k' (O)IG (L)
= —E"(O)k) — K"(D)IG().
Since for each O< ¢ < q it holds, by definition, thak (¢) > 0 andIG(¢) > 0, we only

have to check that E”(¢) > 0 andK”(£) < 0 in order to see thall’(¢) > 0: The second
derivative ofE(¢) is

E/,(E)_1<1 1 N 1 1)<0
IS\ p+£¢ pp+l r+g—-f rp+q-¢) "

becausegy, < p andr, <r. Hence,—E”(¢) > 0. Furthermore,

1/ -1 _1
K'(0) = — 0.
© |S|<p+£+r+q—z><

Using the shorthand notation the second derivativef¢) is expressed by

d

d N) N’ (0)ic(€) — 2k (L)’ ()N (L)
de ’

GR®) = dex2(e) — K4(0)

GR(¢) =

Let, now, ¥ €]0, [be a potential location for a local maximum, i.e., such a point that
GR(y) = 0. Then alsdN(y) = 0 and the expression f@R’(v) is further simplified to

GR'(¥) = N'(¥) /x*(¥),

MULTISPLITTING NUMERICAL ATTRIBUTES 217

which is larger than zero becaubE(y) > 0 andk?(y) > 0. In other wordsGR(v) is
not a local maximum. Sincg was chosen arbitrarily, we have shown t&d(¢) can only
obtain its maximum value when the threshdlds placed at either of the cut poinBsand
U, where?¢ = 0 and¢ = q, respectively. O

Thus, the Gain Ratio function is neither convex nor cumulative, but it still behaves well.
However, the non-cumulativity of the Gain Ratio means that no efficient evaluation scheme
is known for this function.

The above analysis also applies to tiermalized Distance Measur®&D, proposed
by Lopez de Mintaras (1991) as an alternative to the Information Gain and Gain Ratio
functions. The measure can be expressed with the help of the Information Gain as

wo(lgs) =1 16(s)/2(1s).

where

“ M. §) o M. S)
A<U> ZZ ENRSEERR

i=1 j=

in which k is the number of intervals and is the number of classes, as in the preceding
notation, andM (j, S) stands for the number of instances of class the setS. The intent

is to minimize the value of distan®¢D(lH S) € [0, 1] or, equally, maximize the value of

1 - ND(lH S). Since this has a similar form to the definition of the Gain Ratio function,
a similar proof shows that al98D behaves well and the same counterexample serves to
prove its non-convexity.

Theorem 5. The evaluation function Normalized Distance Measure is not convex.

Proof: The Normalized Distance Measure has an inflection poirnt 0.13192 over the
data in figure 6, such that its second derivative turns from negative to positive in thexpoint
Hence, the claim follows. O

Theorem 6. The optimal Normalized Distance Measure partitions are defined on bound-
ary points.

The proof of Theorem 6 is almost identical to that of Theorem 4. Thus, we omit it here.
The outline for the proof is the following. We prove instead that the claim holds for

101(155) =1-n0(1)) = (15)5),/+(19),

from which it directly follows thatND behaves well. In order to prove that optiniiD;
partitions are defined on boundary points, we consider the same situation as in the proof of
Theorem 4 (see figure 7) and examine what happens tdbh&alue of the optimal partition

218 T. ELOMAA AND J. ROUSU

when a threshold, which is not a boundary point, is shifted within an uniform interval. By
decomposing the numerator and the denominatdiBf formula in this situation and
differentiating them twice, we can show that the uniform interval does not contain a local
maximum, which renders the threshold, which is not a boundary point, superfluous.

Example With the functionsGR and ND we can demonstrate one property of well-
behavedness. It does not guarantee that an optimal partition exists on boundary points
regardless of the the arity. Neither of these well-behaving functions does have the optimal
three-way partition defined on boundary points for the example set shown in figure 6. Both
of them rank the partition defined by the cut paBf and boundary poinBP; as the best
among those with arity three.

However, since botlGR andND are well-behaved, they give a better score to a binary
partition of the data than to the best partition of arity three. The Gain Ratio of the best
three-way partition is 0.411 and that of the best binary partition 0.634 (defined by boundary
pointBP3). The respective figures fodD are 0.396 and 0.698.

4.2. A MDL/MML cost function

In machine learning research based onltisimum Description Length PrincipJéMDL
(Rissanen, 1989), or thdinimum Message Length PrincipleIML (Wallace & Freeman,
1987), the central theme is coding of examples. Rissanen (1989, 1995), Quinlan and Rivest
(1989) as well as Wallace and Patrick (1993) have explored MDL/MML-based decision
tree learning. The intent is to minimize the coding length of examples, hence, there is a
natural cost function for evaluating attributes: the attribute, which gives least rise to the total
coding length of examples, is chosen to the evolving tree.

In the incremental exception coding scheme of Wallace and Patrick (1993) an instance’s
class is encoded on the fly while going through the sample. If the instance under consider-
ation is a member of clags 1 < j < m, of which there have beem observations out of
the totaln examples seen so far, then we use

nj +o

—lo
S —

bits to encode it. The parameter> 0 ensures that all classes have a positive probabi-
lity, and biases, depending on its value, for or against impurity in the resulting intervals.
Subsequently we refer to this method by the naite

The coding schem®@/Pfalls into the category of adaptive arithmetic data compression
methods (Witten, Neal, & Cleary, 1987). Giventhe class frequency distribution for a sample
S of n examples, we can compute its exact code length (Howard & Vitter, 1992):

(Mar)"

WP(S, O{) = |ng W,

whereaP is a shorthand notation for the increasing poa@&+ 1) ---(a+b—1).

MULTISPLITTING NUMERICAL ATTRIBUTES 219

A natural way of defining the MDL/MML cost of &-split is

WPcost(&J s) = log,(V — 1) + log, (. 1) +) WRS,).
i=1 i=1

The two first terms define the cost of transmitting the positions okthel cut points. As
before,V is the number of unique values for the numerical attribute.

Theorem 7. The cost function WRBstis useful.

Proof. Since the two first terms in the formula fé/P..s;do not depend on the positions
of the cut points, in order to prove the usefulness of the function, it is enough to show
that the coding schem&P(S, «) in the third term behaves usefully. In order to do that, it
suffices to show the useful behavior of the coding Wl Sy, o) + WP(S,, «) of a binary
partition § W S, of a data ses.

It is sufficient to show thatVP.sis useful in between two consecutive boundary points
T1 andT,, such that in the sampl8, when ordered by the value of a numerical attribute
A, there are only instances of one class in between them. These two thresholds induce a
tripartition P W Q W R of the sample (see figure 8):

P = {se S|vala(s) < Ty},
Q={se S| Ty <vala(s) < T}, and
R={se S| T, < vala(s)}.

Observe thaR, or in the degenerate case even betandR, may be an empty set. All that
follows applies in those cases, too.

For all classeg, j € {1, ..., m}, let p; denote the number of instanceskrof classj
and letp = Z’J-“zl p;j. Respectively, defingy, ..., r, andr for the numbers of instances
in R. By assumption, all instances @ belong to the same class. Henges g, for some
be{l ...,m}.

m

p= Zj:l bj
P Q

S

Figure 8 lllustration of the situation in the proofs of Theorems 7 and 8. Boundary p®ingmd T, induce a
tripartition P W Q W R of the data such that there are only instances of the blas®. The proofs examine what
are the consequences of partitioning the data on a thre$tipld < W < T,, which hast members ofQ to its
left side.

220 T. ELOMAA AND J. ROUSU

If g < 1, the proof is trivial, so subsequently we assume that 1. Now, consider
the partitiong w S, of Sinduced by a poinW, such thafl; < W < T,. Let there be
instancess € Q such that val(s) < W, which leaveg) — ¢ examples ofQ in the range
W < vala(s) < T,. If we move the cut point one example to the right fréh the cost of
coding& increases by

(pp+4) +a

—log, —— 2T~
%2 010+ ma

and the cost of, decreases by

rb+@—-¢-1)+«a
204+@—-€—-1)+ma’

Hence, the net change in the total cost of encotifif S, o) + WPR(S,, «) is

p+ £+ ma r+q—¢—1+ma

Ay =log, ET- T g .
TR e P gt -1+a

No harm happens in taking, to be a differentiable function. The first derivative &f
with respect t is

;o o+ Pp—Ma—p n d+Ip—Ma —r
T ma4+p+O@+pp+l) (@+rp+g—E€—D(Ma+r+q—£—1)
A—ma+pp—p A—mya+rp—r

- (Me+p+O@+pp+€ (@+rp+gq—€—D(Ma+r+g—£€—1)°

Sincem > 2, pp, < p, andr, <r, the numerators of both termsxj, are negative and their
denominators are positive when<0¢ < g. Hence, the value oh, decreases asgrows.
Thus, in betweefM; andT, the cost functionWP. is useful and since the two boundary
points were arbitrarily selected, the claim follows. O

The cost functiodVP,.s; is cumulative because its value for a partition is obtained by
summation over the encodings of subsets. Therefore, its well-behavedness follows from
the previous result by Theorem 2.

Corollary 1. The cost function WRsis well-behaved.

This and other MDL/MML cost functions are interesting candidates as evaluation func-
tions for multisplitting, since they inherently penalize the growth of the arity of the partition
(Fayyad & Irani, 1993; Quinlan, 1996). FWP.s needless binarization of a subsample,
which contains only members of one class, always incurs an increase in cost. Our earlier
experience (Rousu, 1996), however, lets us conjecture that drastic improvements in predic-
tion accuracy are not to be expected by using these techniques. Similar empirical evidence
has been reported by Quinlan and Rivest (1989) as well as Wallace and Patrick (1993).

MULTISPLITTING NUMERICAL ATTRIBUTES 221

4.3. Minimum training set error

In learning decision trees of limited depth—e.g., one- and two-level decision trees
(Landeweerd et al., 1983; Iba & Langley, 1992; Holte, 1993; Elomaa, 1994; Maass, 1994;
Auer, Holte, & Maass, 1995)—repetitive binary splitting is not a viable way of partitioning
numerical value ranges. For instance, the T2 algorithm (Auer, Holte, & Maass, 1995) ex-
haustively searches for the optimal decision tree of depth at most two. The process entails
optimal multisplitting of the numerical domains. The evaluation function being optimized
is Training Set Error, TSEthe number of training instances falsely classified by the decision
tree.

Let Sbe a set of examples a@the class attribute. The numberdi$agreeingnstances,
those in the se$ not belonging to its majority class, is given by

8(S) = I{s € S| valc(s) # maj:(S)}.

Training set error of a partitiog) § of Scan now be defined as the cumulative sum

TSE(@ s) = Za(s).
i i
Theorem 8. The evaluation function TSE is useful.

Proof: Letthe basic setting be the same as in the previous usefulness proof (see figure 8).
Boundary pointd; andT,, which have only instances of one class in between them, define

a tripartition of the sampleS= P w Q W R. Again, letW, T; < W < T, be a threshold

with ¢ examples inQ to the left of it andg — ¢ to the right. LetS w S be the binary
partition of Sinduced byw.

Let C be the class attribute and lat= maj: (P), b = maj-(Q), andc = maj.(R),
a,b,ce{l,...,m}. We define thatvg = pa — pp. Intuitively, wo + 1 is the minimum
number of examples from the s that have to be to the left of the threshdM before
b becomes the unique most frequent class in theSsetRespectively, we define; =
g — (rc —rp) for the setS;: while there are more thap— w (resp. less thaw,) elements
of Q to the right (resp. to the left) of the threshdld, b will be the unique majority class
in the setS,.

Let us now consider the numbers of disagreeing examples in th§setdS,. While the
number of examples i@ to the left of the threshol@V, ¢, is below valuewg, the majority
class ofP, a, continues to be the majority class &f. All the £ members of the se®
belonging toS have to be counted as disagreeing instances, since they do not belong to the
majority class. Therefore, the number of disagreeing exampbg®is+ £. Once there are
(strictly) more tharnwg examples ofQ to the left of W, b becomes the (unique) majority
class ofS, and the number of the disagreements ceases to increase, because all members of
Q now belong to the majority class. To see what is the number of the disagreements then,
observe that wheh = wy, there are exactly as many instances of claassa®db in the set
S- Thus, the numbers of the disagreements with these classes also have to be equal. At

222 T. ELOMAA AND J. ROUSU

this point, the number of the disagreements with clgssbviously, is§(P) + wg. Since,
from that situation on, no new disagreements (with the new majority bleesse, it must
be the number of the disagreements also whenw,. Hence, the following holds

S(P)++¢ if £ <wpy, and

(=) = {a(P) +wo if £ > w.

If a = b, thenwg = 0 ands () reduces tad (P).
The corresponding equation f& is

S(RV+qg—wp if ¢ < w, and

M) = {8(R)+q—€ if ¢ > wy.

Notice that if P is empty, thers(P) = wo = 0 and§ () also reduces to value 0. Respec-
tively, if Ris empty, thenw; = g ands(S;) = 0. Thus, these equations also hold if there
are no natural boundary points in the value range.

Depending on the relation betweary and w1, the total number of errors is derived
differently, although the resulting equations, as we will see, are very much alike. In the
following let d be a constant such thdt= §(P) + §(R) + g. We have two cases:

a) If wg < wy, combination of the equations f6(S) ands(S;) leads to

S(P)+ €+ 8(R +q—w if € < wp,
TSHSWS) =386(P)+wo+8(R)+qg— w1 if wg <€ < wy, and
S(P)+wo+38(R+q—¢ ifw <t

d+£_w1 |f€§w07
=J1d+wo—w; ifwyg<¥{ < wy, and
d+weg—+£¢ ifw <t

Since? is the only variable in these equations, the training set error is monotonically
increasing fo < wy, stays constant fany < £ < wq, and is monotonically decreasing
for wy < £. Hence, TSHS W) receives its minimum value whefrhas either value 0
org. In this case the value G'SEminimizes at a boundary point.

b) If wyp > w1, we obtain

S(P)+¢+38(R+g—wp if L < ws,
TSHSWS)={8P)+¢+6(R+q—¢ ifwy <€ <wy and
S(P)+wo+d8(R+qg—2¢ ifwg<.

d+£—w1 ifE<w1,
=1d if wy < £ < wg, and
d+wo—4£ ifwg<¥.

MULTISPLITTING NUMERICAL ATTRIBUTES 223

The function is increasing fat < wq, stays constant faw; < ¢ < wg, and decreases
monotonically forwg < £. Again, the minimum value ofSHS W §)) is obtained in
one of the boundary poinfg andT».

In any casd SHS W §)) is useful in between boundary poinisandT,. Since the two
boundary points were arbitrarily selected, the claim follows. O

Again, from the cumulativity of SEand the previous result it follows, by Theorem 2,
that it is well-behaved as well.

Corollary 2. The evaluation function TSE is well-behaved.

The quadratic-time optimization algorithm is not the fastest one for this simple evaluation
function; several authors have devised linear-time optimization algorithnisSfiarin ad-
dition to proposing the general, quadratic-time evaluation scheme for cumulative functions,
Fulton, Kasif, and Salzberg (1995) put forward a special solution for computing optimal
TSEpartitions for two-class problems in tim@(kn) per attribute. Birkendorf (1997) has
presented an algorithm that attains the same efficiency. His algorithm, however, has the
additional advantage of being dynamic in the sense that it does not require the data to be
preprocessed into the ascending order prior to partitioning. In multiclass problems the
time requirement i© (kmn), but the space requirement can still be kept low (Auer, 1997).

A practical improvement to these linear-time algorithms can be obtained by focusing on
boundary points.

The reason for the easy evaluabilityD&Elies in the fact that, when processing a new
block of examples, it suffices only to count the number of the disagreements (with respect to
each class) therein and add that number with the disagreement figures obtained earlier. No
part of the previously processed data needs to be retouched, because the training set error
can only monotonically increase through the addition of the new block. Hence, a single
pass through the data manages to reveal the opfi®Bpartition.

Brodley (1995) and Lubinsky (1995) have both suggested using a mixed strategy, where
another (entropy-based) evaluation function is first used in attribute selection high up in the
decision tree, but the evaluation is dynamically switched ovéStBwhen the fringe of the
decision tree is approached. This strategy has been reported in some cases to produce better
results than using either of the evaluation functions throughout the tree growing process. If,
in the mixed strategy in addition T6SE another (well-behaved and) cumulative evaluation
function is used, then this strategy is easy to implement using the dynamic programming
approach. The learning algorithm can be parametrized by the evaluation function, no
changes to the actual algorithm are required due to using two separate evaluation functions.

5. Empirical evaluation

We report on two series of empirical tests and explore the properties of commonly used data
sets. The first tests contrast two versions of the optimal partitioning strategy with a variant
of the greedy multisplitting approach (Catlett, 1991; Fayyad & Irani, 1993) and a random

224 T. ELOMAA AND J. ROUSU

partitioning strategy. In this experiment we use stand-alone versions of the strategies. The
second series of tests examines the impact that numerical attribute handling has on decision
tree learning. We incorporate the optimal and the greedy multisplitting strategies into the
CA4.5 (release 5) decision tree learner and compare the results obtained by them with those
that are produced by using C4.5’s built-in binarization approach.

The contrasted splitting strategies and their implementations are:

Optimal: The dynamic programming implementation of the optimal multisplitting strategy,
whose rationale was given in Section 3. As the basic processing units we use bins and
blocks of examples. Both versions of Optimal produce optimal partitions; they differ in
processing efficiency. We want to test what is, in practice, the advantage gained in the
processing speed by inspecting only boundary points in lieu of examining all possible
thresholds.

Greedy: An implementation of the greedy top-down multisplitting strategy using breadth-
first search. The algorithm constructk-aplit of the data by selecting one interval of the
k — 1-split from the previous iteration to be partitioned into two subintervals. The global
quality of the resultindk-split is used as the selection criteria. This procedure is repeated
for arities 2 to 10 and the patrtition that evaluates as the best is chosen. Of this strategy,
too, we test two versions; one that utilizes boundary points and another that does not.

Random: This strategy randomly allots2l. .., 9 thresholds, which define partitions of
arities 2 3, ..., 10, evaluates these, and submits the best one for further comparison with
partitions induced by other attributes. Again two versions of this strategy are tested; one
where the thresholds are drawn from among boundary points and another that draws them
from among all possible values.

Binary: The binarization of a numerical domain as implemented by C4.5. This strategy is
inherently intertwined with the decision tree construction. Therefore, it cannot be taken
into account in our first test series.

We test these strategies using three evaluation functions:

IG: The Information Gain function as implemented by the C4.5 algorithm.

GR: The Gain Ratio function as implemented by the C4.5 algorithm. SBRés not
cumulative, it cannot be optimized as a whole using our dynamic programming approach.
Instead, we use the following scheme: for each arity, we search faGtloptimizing
multisplit and calculate its Gain Ratio. The split whose Gain Ratio evaluates the best is
then selected.

BGiog: A straightforward attempt to balance the biasi@f which favors multisplits ex-
cessively. “Balanced GainBGoy (Kononenko, Bratko, & ReKar, 1984), assigns a
cost to the increase of the arity of a partition: fok-ary multlsplltBG.og(UI 1 9) =
IG(UI 1 9)/10g, k. The well-behavedness of this function is clear. This method is only
used for numerical attribute evaluation, C4.5’s default evaluation fun@mis used for
nominal attributes in the tests involving decision tree generation. To se8@ggtis
closely related to the Gain Ratio, observe that the denomirdtothe formula ofGRis
the entropy functiorH applied to the sizes of the intervals, not to the class distribution.

MULTISPLITTING NUMERICAL ATTRIBUTES 225

Hence, O< « < log, k. In information theoretical sense lpk is the entropy of the
intervals when assigned equal probability regardless of their size. Bliyg,penalizes
all equal arity partitions uniformly and always maximally as reg&@& Note also that
BGyq coincides with G in binary splitting, since in that case the denominatos lobas

value 1.

In our experiments we use mostly well-known data sets from the UCI repository (Merz
& Murphy, 1996). Table 1 summarizes briefly the main characteristics of the data sets. It
records the numbers of different attribute types (nominal, integer, real), the average number
of different values in a numerical attribute’s domain (colul)) the average number of
boundary points per each numerical attribute (coluB)nthe total number of examples,
and the number of distinct classes. The experiments were run on a SPARCserver 670MP
computer.

The distinction between a nominal and an integer domain is not always clear. Often
an integer-valued domain actually enumerates the values of a nominal domain. We have
tried to screen out such enumerations from among the numerical attributes as to have a
clear picture of the numerical domains that exist in commonly used data sets. Table 1 only
gives the average numbers for different values in a numerical attribute’s Xamge the
average number of boundary poires For these 30 “real-world” data sets it holds with
only few exceptions thaB < V « n. Appendix B studies these decisive relationships
more comprehensively.

5.1. Comparison of splitting strategies

A multisplitting strategy endeavors to find a split that minimizes or maximizes the value of
the evaluation function. If the function is advantageous, optimizing its value will benefit
the prediction abilities of the classifier. In any case, the only objective criterion by which
the strategies can be judged is the goodness-of-split values that they produce. In order to
assess how different multisplitting strategies meet their goal we tested the methods on their
own, separate from any learning scheme.

We examined each numerical attribute of a data set in turn and produced a multisplit for
the attribute. The evaluation functid® was used with an upper bound 10 for the arity
of a multisplit. Unknown attribute values were handled in the manner of C4.5: they were
distributed into all partition subsets with weight proportional to the subset size. The results
are given as the average values of the measured quantities over every numerical attribute of
the data set.

The first test series monitors the quality of the splits that are produced by different
multisplitting strategies. Figure 9 depicts tli& scores obtained by the strategies Greedy
and Random relative to the optimal scores. Each mark represents the relative average
Information Gain score of a split of arity at most 10 over all numerical attributes. The
strategies Greedy and Optimal choose a split on boundary points independent of whether
bins or blocks are used as the basic processing unit because fulitiomvell-behaved.

Thus, only one relative score—denoted by a square—is depicted for Greedy. For the
strategy Random it makes a difference which is the processing unit: the relative average

226 T. ELOMAA AND J. ROUSU

Table 1 Characteristic figures of the thirty test domains.

Attributes
Data set Nominal Integer Real \Y B Examples Classes
Abalone 1 7 863.7 826.4 4177 29
Adult 8 6 3,673.7 1,668.2 32561 2
Annealing 10 4 6 27.5 17.7 798 5
Australian 9 6 188.2 129.7 690 2
Auto insuran. 10 7 61.7 51.1 205 6
Breast W 9 9.9 9.7 699 2
Colic 2 13 8 51.0 39.8 368 2
Diabetes 8 156.8 108.1 768 2
Euthyroid 23 1 5 165.0 91.5 2800 2
Fermentation 1 8 18.5 10.6 100 3
German 13 7 145.9 711 1000 2
Glass 9 115.3 70.8 214 6
Heart C 13 30.5 27.3 303 5
Heart H 1 12 61.2 47.6 294 2
Hepatitis 13 6 54.7 30.7 155 2
Hypothyroid 18 1 6 165.4 58.1 3163 2
Iris 4 30.8 15.0 150 3
Letter recogn. 16 16.0 15.7 20000 26
Liver 6 54.7 45.8 345 2
Mole 12 2 18 100.1 63.1 425 2
Page blocks 10 909.2 338.9 5473 5
Robot 22 6.1 6.1 2100 7
Satellite 36 76.3 62.6 4435
Segmentation 1 18 137.7 90.1 210 7
Shuttle 9 123.2 85.3 58000
Sonar 60 187.6 96.8 208
Vehicle 18 79.4 69.1 846 4
Vowel 10 623.5 546.7 990 11
Wine 2 11 98.2 56.3 178 3
Yeast 8 51.5 47.9 1484 10

when bins are used is denoted by a black circle and that when using blocks by a white
circle.

Choosing the partition thresholds at random cannot compete with the strategies that aim
at maximizing the value of the evaluation function. The strategy'’s relative performance over
all the attributes is the best on the domain Adult. This is a domain that contains attributes
for which informed partitioning is difficult; random splitting is almost as good a strategy.

MULTISPLITTING NUMERICAL ATTRIBUTES 227

. . —e— —y —
o..l ..- .l.l. .]
IG .
9 o
;S B
o]
o L4 o
°] 4 °]
L] o °
s o o d 8 o
5 o . . . o
o
8 [+ []
. o ° o . . .
[]
*] 9
25- .
[R O M 3 g W R R - R RPN R B
EEFELEEEEEE TR R EERE LB iR N
° 5 .= D o O — 3= S = o = @
SEEEEC25EE0EE8E TN eBIEERESE S
. = [T
= <<3% AETF0 EIge £ 4T ggn ~
<M A mm 3 n

Figure 9 The average relative Information Gain scores obtained by splitting strategies Greedy (denoted by
squares) and Random (white circles denote the version operating on blocks and black circles the one that handles
bins).

The Greedy strategy regularly fails to obtain optimal Information Gain scores. Only
in two domains, those with the least average number of boundary points—Breast W and
Robot—was the Greedy able to find the optimal split for every numerical attribute. Never-
theless, Greedy comes up with partitions that have only marginally smaller average gain
than optimal partitions.

The domains that cause the most trouble for Greedy in this experiment are those with a
high number of truly continuous attributes. A distinctive characteristic of these domains is
that they have a high number of bins and blocks with respect to the number of examples in
the data (see Appendix B). In these domains Greedy leaves unevaluated a large number of
partitions, which may explain the above described behavior.

The other interesting property of multisplitting algorithms is their running time. Table 2
lists the average running time per split required by the algorithms to produce a multisplit.
This figure also includes preprocessing time, bin and block construction, which only con-
stitutes a marginal part of the total time required to choose a partition. Time required for
sorting is given separately in its own column. In practice, optimal splitting is most often
very fast, provided that we use a cumulative, well-behaved evaluation function. For over
two thirds of the test sets the average time required to find a partition by the strategy Optimal
(the version that utilizes blocks) is below three tenths of a second.

Instead of the arithmetic mean (average) value, which is totally dominated by the heaviest
domains, here we uggeometric meafin this case the thirtieth root of the product of the
thirty domain average values) to summarize the results. Differences in geometric mean

228 T. ELOMAA AND J. ROUSU

Table 2 Average running times of the multisplitting strategies (in hundredths of a second per split).

Random Greedy Optimal
Data set Sorting Bins Blocks Bins Blocks Bins Blocks
Abalone 8.1 53.9 55.2 107.0 104.0 9,342.3 10,105.1
Adult 53.0 81.2 27.8 82.0 64.2 161,300.0 32,433.0
Annealing 0.5 0.9 0.8 1.2 1.0 3.7 1.6
Australian 0.8 1.0 11 2.8 21 77.5 37.9
Auto insurance 0.2 11 0.9 2.0 1.8 16.1 9.6
Breast W 0.4 0.4 0.4 0.4 0.5 0.4 0.4
Colic 0.6 15 1.2 2.6 1.9 40.6 10.3
Diabetes 1.0 1.8 1.3 2.8 2.3 83.8 34.5
Euthyroid 6.0 4.2 35 5.6 45 82.0 26.0
Fermentation 0.0 0.5 04 0.6 0.5 11 0.4
German 0.9 2.1 11 5.0 2.9 291.5 55.8
Glass 0.2 1.8 14 3.6 2.9 38.1 20.1
Heart C 0.2 0.7 0.8 1.3 1.1 7.3 5.6
Heart H 0.3 0.9 0.9 1.1 1.0 7.3 4.0
Hepatitis 0.5 0.6 0.4 1.1 0.7 5.3 1.6
Hypothyroid 6.2 45 3.6 6.1 4.1 94.9 14.1
Iris 0.0 0.5 0.4 0.6 0.4 1.9 0.6
Letter recogn. 20.0 12.6 12.9 13.5 13.3 13.9 14.6
Liver 0.5 0.7 0.7 1.2 1.0 6.3 45
Mole 0.6 1.8 15 2.9 2.1 35.2 12.8
Page blocks 12.8 16.1 8.6 35.3 15.7 2,570.4 324.2
Robot 0.9 1.0 11 0.9 1.0 0.9 0.9
Satellite 8.2 4.8 4.6 5.9 5.6 25.6 18.1
Segmentation 0.2 2.3 1.9 4.8 3.8 69.0 30.1
Shuttle 106.0 36.9 37.6 39.4 38.1 94.1 60.2
Sonar 0.3 1.4 0.9 3.4 2.1 60.1 15.9
Vehicle 0.9 14 1.6 2.4 2.3 33.8 22.8
Vowel 2.0 30.0 24.0 48.9 48.9 2,774.1 2,097.8
Wine 0.2 1.0 0.7 19 14 20.1 6.0
Yeast 13 2.3 1.8 3.0 2.9 13.6 11.8
Geometric mean 1.0 2.4 2.0 3.8 3.1 39.7 18.0

measure the relative value differences as opposed to the absolute differences that arithmetic
mean measures.

For most parts these results are clear: Sorting takes expéntetbg V) time, so it
has a linear dependency on the number of examples, which is clearly reflected in the time
consumption of sorting. In case of some of the largest domains—Letter recognition and
Shuttle—sorting actually dominates the search times. The relative order of the running

MULTISPLITTING NUMERICAL ATTRIBUTES 229

speed of the tested strategies is clear and could be expected: Random naturally is the
fastest, Greedy comes second, and searching for the optimal split requires the most time.
For all strategies restricting partitions to boundary points is faster than considering all
possible values as potential cut points. For strategies Random and Greedy the speed-up is
on the average little less than 20%; Optimal gains in excess of 50% in speed by examining
boundary points instead of all possible cut points.

The running times of the two versions of the Optimal strategy depend quadratically on
the number of bins and blocks, respectively. A large number of bins or blocks results in
slower running times. The average numbers of bins and blocks given in Table 1 usually
serve well to indicate this dependency. The four domains with the highest average number
of blocks make Optimal use over one second of time per split: domain Adult requires over
5 min per split, Abalone near to 2 min, Vowel over 20 sec, and “Page blocks” 3 sec. On all
the other domains optimal split is chosen within 6 tenths of a second. The Random strategy
never takes even a second to choose a split and for Greedy only domain Abalone requires
a second per split.

There is one peculiarity in the results; viz., the slow running time of both versions of
the Optimal strategy on data set German, which does not have a very high average number
of bins nor boundary points and which only contains one thousand examples. The reason
is that there is one attribute with 921 bins and 398 blocks, which accounts for the slow
processing in this case (see Appendix B). The average figures are kept low for this domain
because of the small numbers of bins and blocks along the other numerical dimensions. In
fact, the same applies to domains Auto insurance, Colic and Adult, although the effects are
not as striking.

The Optimal strategy’s vulnerability to a high number of boundary points in just one
numerical dimension cannot be helped. However, since the number of boundary points in
the domain of an attribute does not stay constant throughout the tree growing process, one
could delay the evaluation of partitions along the dimensions that have a very high number
of boundary points, in the hope that the number reduces as the decision tree evolves. The
rationale for such a heuristic is that in univariate learning such an attribute alone will not
be very useful in class prediction, but due to being part of a multivariate interdependency,
can subsequently turn out to be an important one.

In domains with a relatively low number of boundary points the Optimal strategy (using
blocks) is within the same order of magnitude in running speed as Greedy. When the
(average) number of boundary points grows large, optimal multisplitting is slower than
Greedy partitioning; in case of the four hardest domains it is very much slower. On the
average the Greedy strategy is almost six times faster than Optimal.

The relative speed of the two versions of the Optimal strategy is, of course, determined
by the relationship of the numbers of boundary points and different values in the numerical
domainsB/V. Most striking reductions in running time are obtained in the domains where
this fraction is the lowest, and vice versa (see Table 1 and Appendix B).

5.2. The impact on decision tree learning

Our second test set explores the practical impact that different splitting strategies have on
the result of induction. The strategies Greedy and Optimal were implemented within the

230 T. ELOMAA AND J. ROUSU

C4.5 algorithm. The test method was 10-fold cross-validation. In addition, each test was
repeated ten times. The reported figures are average values over these repetitions. Standard
deviations were calculated over the results of the ten repetitions. The default pruning method
of C4.5 was applied.

When combined with the multisplitting strategies, tefunction systematically fails
to match the results that are obtained with B@.4 function. Therefore, we refrain from
recording, inthe following tables, the results for the strategies Optimal and Greedy combined
with IG. Recall that in binary partitionings andBGeq coincide.

Table 3 records the average prediction accuracies (with standard deviations) that were
obtained when the trees were not required to be reduced; i.e., a numerical attribute whose
value range is split remains to be among the candidate attributes. In individual domains
the differences in average accuracy are relatively consistently either in favor or @gRinst
throughout the strategies. The only outstanding value difference in Table 3 is the difference
on the domain Sonar. In this example set there are only few duplicate values, which appears
to be an impairing factor for th&R function. Altogether, the results of this experiment
lead us to hypothesize that by usiBgg significantly more accurate decision trees are
built than by usingdGR independent of which splitting strategy is used.

We tested whether this hypothesis gets any statistical support from these results. We
contrasted the two evaluation functions with each other paired by the splitting strategy.
Statistically significant (confidence level 99%) aalinostsignificant (confidence level
95%) differences in the prediction accuracy were calculated using the two-tailed Student’s
t-test.

Table 4 summarizes the result of this comparison. The double plus row gives the number
of domains in whictBGyog (IG) was significantly better in the average prediction accuracy
thanGR The row entitled with a single plus sums the number of almost significant advan-
tages of the former function(s). The (single and double) minus rows count, respectively,
the numbers of domains that were significantly favorableZBr The number of domains
where no statistically significant difference in the prediction accuracy could be observed
is given in the row without a title. Independent of the splitting strategy &$8g}, (IG) is
clearly more often statistically significantly more accurate t&&h The difference is the
clearest in binary partitioning—the strategy with whiBRis typically combined.

These results indicate that the choice of the numerical attribute evaluation function has
an effect on the prediction accuracy of the resulting decision tree, no matter which splitting
strategy is used. The results in Table 3 also seem to indicate that the choice of partition-
ing strategy has only a marginal effect on the outcome of induction. In order to test this
hypothesis statistically, we also paired the results obtained by all the three strategies with
each other according to the evaluation function that was used. Then, the same statistical
test as in the previous comparison was applied to all average value pairs.

Table 5 summarizes the results of this comparison. Columns Opt/Grd denote the two
comparisons between Optimal and Greedy strategies, Opt/Bin those between Optimal and
Binary, and Grd/Bin those between Greedy and Binary. Again, in the double plus row the
number of statistically significant differences in favor of the first-mentioned strategy are
counted. The row with a single plus stands for almost statistically significant differences in
favor of the first strategy. Similarly, rows named by double minus and minus sum the same

MULTISPLITTING NUMERICAL ATTRIBUTES 231

Table3 Average prediction accuracies (with standard deviations) of the decision trees obtained using the different
splitting strategies and evaluation functions.

Binary Greedy Optimal

Data set GR IG GR BGog GR BGog

Abalone 215+ 05 21.2+ 0.8 19.9+ 1.0 204+ 1.0 19.6+ 0.6 20.5+ 0.7
Adult 85.4+ 0.2 84.2+ 0.3 85.7+ 0.1 85.6+ 0.3 85.7+ 0.1 85.2+ 0.3
Annealing 91.1+ 0.6 92.1+ 0.6 89.4+ 0.6 88.5+ 0.7 89.4+ 05 91.3+ 0.4
Australian 85.0t 0.8 84.8+ 0.4 84.0+ 1.2 86.0+ 1.1 83.7+ 04 85.3+ 0.6
Auto ins. 78.4+ 1.3 80.3+ 0.9 78.1+ 15 76.2+ 2.0 785+ 13 752+ 16
Breast W 94.H 0.4 94.9+ 0.4 94.1+ 0.4 94.6+ 0.6 94.0+ 0.4 94.7+ 0.5
Colic 84.3+ 0.8 83.9+ 0.9 845+ 1.1 83.6+ 0.8 85.8+ 0.7 84.2+ 0.7
Diabetes 72.8 1.3 75.0+ 1.0 73.2+ 0.8 743+ 0.8 73.2+ 1.0 743+ 1.0
Euthyroid 98.6+ 0.1 98.5+ 0.1 98.4+ 0.2 98.5+ 0.1 98.6+ 0.1 98.6+ 0.1
Fermentation 90.% 0.7 90.0+ 11 90.3+ 0.6 90.3+ 1.0 89.6+ 0.7 91.2+ 0.9
German 71.8:0.8 72.7+ 0.6 71.7+ 0.7 72.7+ 0.6 71.1+ 1.0 72.3+ 0.7
Glass 68.5+ 2.4 69.8+ 1.4 67.8+ 2.3 727+ 15 68.9+ 2.1 723+ 1.4
Heart C 53.5+ 1.5 53.3+ 1.0 52.1+ 1.1 53.4+ 2.0 53.2+ 1.3 53.7+ 1.7
Heart H 80.1+ 1.3 77.7+ 16 81.2+ 0.8 787+ 1.2 82.3+ 0.7 79.7+ 15
Hepatitis 79.8t 1.5 80.8+ 2.5 80.1+ 1.7 79.3+ 2.6 79.8+ 1.2 819+ 17
Hypothyroid 99.1+ 0.0 99.3+ 0.0 99.2+ 0.0 99.2+ 0.0 99.2+ 0.1 99.2+ 0.1
Iris 935+ 1.2 94.3+ 1.3 92.5+ 0.9 93.4+ 0.9 92.5+ 0.9 93.4+ 0.9
Letter recogn. 79.%¢ 05 80.5+ 0.5 80.6+ 0.4 80.4+ 0.6 80.8+ 0.7 80.6+ 0.5
Liver 65.7+ 2.4 66.8+ 1.4 64.0+ 1.2 64.2+ 1.8 63.6+ 1.8 61.9+ 2.1
Mole 817+ 1.2 81.0+ 1.0 79.9+ 16 79.1+ 15 81.8+ 1.2 82.5+ 0.9
Page blocks 96.3 0.5 96.0+ 0.5 96.0+ 0.5 96.1+ 0.4 96.0+ 0.4 95.9+ 0.4
Robot 99.3+ 0.1 99.6+ 0.1 99.6+ 0.1 99.5+ 0.1 99.6+ 0.1 99.5+ 0.1
Satellite 86.2+ 0.3 86.8+ 0.4 86.6+ 0.3 86.3+ 0.3 86.6+ 0.3 86.0+ 0.3
Segmentation 86.6 1.1 85. 7+ 1.2 86.5+ 1.3 85.5+ 1.0 86.5+ 1.3 854+ 1.1
Shuttle 99.9+ 0.0 99.9+ 0.0 99.9+ 0.0 99.9+ 0.0 99.9+ 0.1 99.9+ 0.0
Sonar T1.H 2.7 7544+ 2.7 64.2+ 2.7 747+ 21 65.0+ 3.1 749+ 22
Vehicle 70.4+ 0.8 73.0+ 1.2 717+ 11 719+ 1.2 714+ 12 72.0+ 0.6
Vowel 63.1+ 3.3 60.4+ 2.1 60.4+ 2.1 63.0+ 2.2 58.8+ 2.4 61.7+ 2.2
Wine 91.2+ 1.2 914+ 0.6 94.2+ 1.0 944+ 1.0 94.2+ 1.0 944+ 1.0
Yeast 57.6t 0.6 57.3+0.8 56.9+ 0.6 57.6+ 0.6 56.6+ 0.5 574+ 05

numbers for the comparison strategy. The untitled row contains the number of domains
where no statistically significant difference exists in this comparison.

The significant differences between every pair of strategies are very nearly balanced.
There are very few domains in which there is any significant difference between the two mul-
tisplitting strategies. There are more significant differences when a multisplitting strategy is

232 T. ELOMAA AND J. ROUSU

Table 4 Statistically significant differences in the prediction accuracies of Table 3 when comparing the evalu-
ation functions within splitting strategies.

Binary Greedy Optimal

Difference IGvs.GR BGog vs.GR BGog vs.GR

++ 8 5 11
+ 2 3 3

16 17 10
- 1
—— 5

Table5 Statistically significant differences in the prediction accuracies of Table 3 when comparing the splitting
strategies without changing the evaluation function.

GR BGog

Difference Opt/Grd Opt/Bin Grd/Bin Opt/Grd Opt/Bin Grd/Bin

++ 2 6 5 2 4 5

+ 1 3 0
25 13 14 23 18 19

- 1 2 6 2 1

- 1 7 4 1 4 6

compared to the Binary strategy, especially with@Revaluation function, but the number

of such differences in favor of Binary is almost equal to the number of differences in favor
of multisplitting. In sum, this result confirms our earlier observation that the choice of the
evaluation function has a greater impact on accuracy than the splitting strategy selection.

Prediction accuracy is undoubtedly the most important variable to monitor. However,
there are secondary parameters worth some attention too. The multisplitting strategies
produce decision trees that have on the average somewhat more nodes in total than binary
decision trees. The average tree sizes over the 30 test sets are: 102.1 for Binary using the
Gain Ratio, 103.7 using the Information Gain function, the respective figures for Greedy
are 111.7 and 121.0, and for Optimal 130.7 and 123.5. Two factors explain why binary
decision trees are slightly smaller on the average: the pruning method of C4.5 deletes a
binary partition from the decision tree more eagerly than a multisplit decision node and a
binary tree cannot have a large number of leaf nodes.

Geometric mean is used in Table 6 to summarize the average running times of the multi-
splitting strategies over the 30 test domains. Using the Binary strategy in C4.5 is on average
about twice as fast as using greedy multisplitting. Optimizing the multisplit doubles the
average time again. The results of our stand-alone test of multisplitting lead one to expect
the Greedy strategy to have a greater advantage in running speed over the Optimal strategy.
In C4.5 auxiliary tasks like reading in the data, preprocessing and pruning balance the

MULTISPLITTING NUMERICAL ATTRIBUTES 233

Table 6 Average running times of C4.5 combined with the different splitting strategies over the 30 test domains
(in sec).

Binary Greedy Optimal

GR IG GR BGy GR BGog

Geometric mean 2.8 2.3 5.3 55 12.2 10.5

differences between the strategies. In addition to producing more accurate decision trees,
usingBGg instead oiGRis also beneficial in the execution efficiency.

As ageneralrule, large domains take the most time to handle, even when using the Binary
strategy, since sorting alone takes alonger time for these domains. Hence, the Binary strategy
has only a small efficiency advantage in some of the large test sets. The same applies to small
domains with a minimal number of (bins and) blocks. Also, the number of the numerical
attributes plays a role in decision tree learning, because the more numerical attributes there
are the more often one needs to process the data. Moreover, the Binary strategy examines
all bin borders. Therefore, its running time is affected by a very high number of bins in a
domain. This is most evident in the Adult domain. Nevertheless, the time consumption of
Binary never exceeds 4 min. The running times of the multisplitting strategies are hit worse
by the Adult domain’s high number of boundary points: Greedy (with gain ratio) requires
in excess of 19 min to produce a tree and Optimal over 2 hours. However, there are only
four domains—Abalone, Adult, Mole, and Vowel—where the time consumption of C4.5
combined with the Optimal strategy is of a different order of magnitude than when C4.5
uses its built-in Binary strategy.

6. Discussion

According to the preceding empirical evidence multisplitting of numerical attribute value
ranges using functionBGeg (IG) and GR does not carry any advantage in prediction
accuracy over binary splitting. Similar empirical evidence has been put forward, e.g., by
Quinlan (1996). In addition, the greedy selection of the multisplit thresholds in numerical
dimensions results in decision trees with as good accuracy as when optimal multisplits are
selected. On the other hand, the price that has to be paid for optimizing multisplits remains
in most cases low.

It is relatively easy to understand why multisplitting does not benefit the prediction
accuracy as much as might be expected. The greedy TDIDT construction algorithm does
not give any chance of revoking a decision once it has been taken. Hence, the true utility
of a local multisplitting decision is actually determined by the subtrees that will be grown
subsequently, not at the evaluation time. On the other hand, when basing the multiway
partitioning on binarization, the numerical attribute at hand can affect the subtrees all the
way to the end. Thus, the final splitting decision is delayed until further knowledge is
gathered. The corresponding effect for multisplitting could be obtained by look-ahead,
which unfortunately is very time-consuming.

When embedded into the TDIDT framework of C4.5 the difference in the efficiency that
exists between strategies Greedy and Optimal reduces because in decision tree construction

234 T. ELOMAA AND J. ROUSU

other tasks, like reading in the data, preprocessing, and pruning, take their part of the total
running time. Multisplitting is slower than binarization; greedy multisplitting takes on the
average twice the time of binarization in decision tree learning and optimal multisplitting
further doubles the average time of greedy multisplitting.

The size of the data set is not a decisive factor between the splitting strategies. It mainly
affects sorting, which has to be performed for all methods alike. On the other hand, a large
number of boundary points affects the running time of the multisplitting algorithms, but it
usually indicates that the attribute at hand is not alone predictive in this situation or it is
extremely noisy. Either way, such an attribute is not very applicable in univariate decision
tree construction. A filtering mechanism could help to overcome the problem of apparently
irrelevant attributes in these situations.

For example, recall from Section 5.1 that there is a single attribute with a high number
of blocks in domains German and Adult causing the Optimal strategy to substantially slow
down. In an experiment we simply removed those attributes and grew the decision trees
anew. Deleting that malignant attributes did not change the prediction accuracies of the
produced trees significantly; i.e., the attribute was not used in any case. The running times
of all strategies, on the other hand, decreased. Particularly large time-savings were obtained
for the Optimal strategy; for the domain Adult over 2 hours of processing time was originally
required to come up with a decision tree; after removing the one useless attribute less than
6 min suffices. However, one must be careful in modifying the data; attributes cannot be
simply deleted because of their high number of boundary points, without risking to lose
complex (multivariate) attribute interrelations prevailing in the data.

For the Optimal strategy there exists many further practical (heuristic) speed-up oppor-
tunities. One of them, restricting the split to have at most a constant arity, was used above
to counteract the bias ¢&. We used a global upper bound for the arity of a partition, i.e., it
was common to all attributes. One could assign an individual upper bound for each attribute
separately. These heuristics intend to take into account the (poor) bias that an evaluation
function has. Obviously, with well-balanced evaluation functions (Quinlan, 1986; White
& Liu, 1994; Kononenko, 1995) no heuristics are needed.

In these experiments we have intentionally overlooked the problems caused by noisy
data; it remains a topic for further research. However, in an initial experiment we observed
that increasing the amount of classification noise caused an increase in the number of
blocks. For domains with a lo¥8/V ratio the increase may even be dramatic. This, of
course, increases execution time for all splitting strategies based on examining boundary
points. Attribute noise increases both the number of bins and blocks, and thus affects the
running times of all partitioning strategies. Whether the resulting partition (optimized or
approximated) is useful in the noisy induction task is determined by the robustness of the
evaluation function rather than by the splitting strategy. Even in a noisy setting, optimizing
a good evaluation function ought to be profitable.

7. Conclusion and future work

In this paper we have analyzed the prerequisites of multisplitting of numerical attributes.
The starting point for efficient multisplitting is the concept of a boundary point as defined by

MULTISPLITTING NUMERICAL ATTRIBUTES 235

Fayyad and Irani (1992b). We have given a characterization of the evaluation functions for
which it suffices to focus only on the boundary points in searching for an optimal multiway
partition. An efficient method of going through the required boundary point combinations
naturally suggests itself. It was previously known that some class entropy-based functions
are convex downwards. The class of well-behaved evaluation functions contains these as
well as other types of functions. Our empirical evaluation shows that alternative approaches
to multisplitting constantly fail to obtain optimal partitions. However, optimizing the value

of the most common evaluation functions in choosing a multisplit does not bring any
apparent advantage in decision tree learning.

The currentwork has shown that most of the commonly used attribute evaluation functions
are well-behaved in multisplitting. The number of blocks grows sublinearly in the size of
the domain; hence, well-behavedness reduces the dependency of the computation of an
evaluation function from the size of a data set, but leaves it vulnerable to noisy and irrelevant
attributes. Our experiments show that accuracy is considerably influenced by the choice of
evaluation function. Well-behavedness is a necessary, but not a sufficient condition for a
good evaluation function. In addition, it needs to have a well-balanced bias.

The most interesting candidate for further analysis on efficient attribute evaluation is to
explore whether there is any generality in the class of attribute evaluation functions that
can be optimized in linear time; is the Training Set Error the only practical instance of
such functions? Another interesting research direction is to see whether the definition of
a well-behaved function can be tightened in order to ascertain the quality of the decision
trees that will be produced and to further reduce the time complexity of the optimization of
these functions. As demonstrated in Section 4.1, well-behavedness does not guarantee the
existence of an optimal partition of fixed arity such that it would be defined by boundary
points. We conjecture that evaluation functio®.,s;, TSE andBGeg actually have this
property. The function&RandND would be excluded from that class of functions. How-
ever, it is unclear whether the tighter definition would rule out all evaluation function that
do not have a good bias.

Anotherinteresting research topic is the development of lazy attribute evaluation methods,
which postpone the evaluation of attributes with a high number of boundary points until a
later stage in the decision tree learning. Such methods could free the optimal partitioning
from being very expensive when there are a large number of boundary points even in a
single numerical dimension. Moreover, the effect of noise on multisplitting, which was
only briefly touched in this paper, ought to be analyzed and empirically explored.

Multisplitting makes it possible to prohibit the use of numerical attributes more than
once in a branch of a decision tree. In our empirical experiments we let numerical attributes
reappear. Itis atopic for further research whatis the practical effect of growing reduced trees
when using multisplitting of numerical attributes. How does reducedness affect prediction
accuracy? Are the reduced trees significantly smaller than those that are not reduced? What
about their understandability?

Developing new attribute evaluation functions is an art rather than a science. In particular,
the recent “advances” in this field have been ad hoc rectification attempts of well-known
evaluation functions. From all that has been reported above, clearly, three guidelines for
future evaluation function design emerge:

236 T. ELOMAA AND J. ROUSU

Use cumulative evaluation functionsAs long as the evaluation function is cumulative,
the multisplitting strategy given in this paper can be used to find the optimal multisplit for
the evaluation function.

Concentrate on developing evaluation functions with the appropriate bigscus on de-
veloping transparent evaluation functions, where the bias can be better analyzed and under-
stood. Towards that end, the evaluation function should be applied to the whole partition
at once, not to just some parts of it at a time, as in some greedy approaches.

Ensure that the function is well-behavedf a general-purpose evaluation function is well-
behaved, then it will work in a beneficial manner in connection with any splitting strategy.
Moreover, well-behaved functions clearly are the only reasonable ones to use (Fayyad &
Irani, 1992b; Breiman, 1996).

Handling numerical attributes in a preprocessing phase, prior to induction rather than
during classifier construction, is an approach that has been often suggested (Cattlet, 1991,
Dougherty, Kohavi, & Sahami, 1995). This approach is not quite as time-critical as the
on-line discretization of numerical value ranges. Furthermore, preprocessing strives for as
good partitions as possible. Obviously, optimal multisplitting is a strategy that suits this
approach perfectly. A noteworthy application area for growing optimized, reduced decision
trees might be data mining, in which decision tree learning algorithms are important tools.

Appendix A: The search algorithm for optimal multisplits

The optimal multisplit search algorithm described below uses a dynamic programming
scheme similar to that suggested by Fulton, Kasif, and Salzberg (1995). The main concep-
tual and practical difference is that it works on example intervals rather than on individual
examples. This leads to more compact data structures and better run-time efficiency. Pre-
processing the data into blocks or bins relieves us from checking if the data can be split in
between two examples and whether there is a boundary point in between them. Using bins
and blocks automatically takes care of those checks, and the search algorithm works much
faster in practice.

We use a simple two-phase preprocessing algorithm, which, in essence, was already
described in Section 2. In the first phase bins are extracted from the example sequence;
this requires a scan over the sorted example sequence and recording the frequencies of the
different classes in the bins as well as the associated numerical attribute’s value. In the
second phase neighboring class uniform bins that contain examples of the same class are
compressed into blocks and the highest numerical value in each block is stored. Recall
that bins with mixed class distributions are blocks in themselves. Implementation of these
algorithms is straightforward and will not be elaborated further. It is possible to implement
the preprocessing in a single pass, but even the straightforward two-pass strategy already is
very fast in comparison with the following search phase.

In the search algorithm each intervalis represented only by its class frequency distri-
bution, denoted by.;. The question whether the intervals are blocks or bins is immaterial
from the perspective of the search algorithm; preprocessing decides the semantics of the

MULTISPLITTING NUMERICAL ATTRIBUTES 237

procedure Searclii, f, aritymax
it = {u1,...,us} contains the class frequency distributions of blo¢ks. . ., Ig,

f is an impurity function, andaritymax is the maximum number of intervals
allowed in the split.

1. fori < 1toBdo
2 for j < 1toi —1do /* Augment final intervals with block; */
3. wj < pj + pi; cost < f(uj) od,
4. P.1 < cost;
5 if i = B thenlimit < aritymax
6 elselimit « aritymax— 1fi;
7 for k «<— 2to min{i, limit} do /* Compute besk-split of */
8. minimum<— oo; /¥ 11,...,1j foreachk <i */
9. for j < k—1toi —1do
10. current <— Pj k1 + cost11;
11. if current < minimumthen
12. minimum< current, indexofminimumx | fi od;
13. P .k < minimum L; x < indexofminimunod od

Figure 10 The search algorithm for multisplits. It fills up two array®d,andL. After running the algorithm,
for eachi andk, P, x is the cost of the optima-split of firsti blocks andL; k is the index to the block which is
situated immediately left from the rightmost cut point.

intervals. In the following discussion it is assumed that blocks are handled. Corresponding
bounds for the case where bins are used instead can be obtained by replédiog“B”.

The search algorithm (figure 10) uses a left-to-right scan over the intdrvals , Ig
and uses three arrayB, L, andcost for storing the intermediate results. Arr&ystores
the costs of the best multisplit® i is the minimum cost obtained when fiisintervals
are split optimally intdk subsets. Array is used for storing the corresponding cut points:
L; k is an index to the block that contains the rightmost cut point of the multisplit having
the costP, . The third arraycostis used to eliminate the repeated calculation of interval
impurities.

Since the class distribution of the intervalis not needed, as such, after the scan has
passed the intervgl, the algorithm reuses the space: at pojmachuj, j <i, represents
the class distribution of the union of the intervdys. . ., I;. This is performed by merging
the distributions and recalculating the costs (lines 2-3).

In iterationi, the arrayP is updated (lines 4-13) according to the formula:

Pk <=, min_{Pjca+ f(ujs)

which has the following intuitive interpretation. The optimal partitionindof. . ., I; into
k subsets is the minimum cost over all combinations of fixing the last int@,‘@hl I
and adding the cost of bedt — 1)-split of I, ..., I;. This update needs to be performed
for every arity 2< | <ii.
Note that no prefixdy, ..., ||, wherel < k, can be split intdk intervals. This fact lets
the algorithm restrict the computation to the upper triangular subarr®y dhe fact that
the impurities of thé-splits of the proper prefixes of the data are not needed for computing
thek-split of the data, is utilized as well (lines 5-7).

238 T. ELOMAA AND J. ROUSU

Finally, let us note that extracting the béssplit from the arrayl is easy:L gk gives
the index of the block that contains the rightmost cut point. The next cut point to the left is
contained in the block, x_1, wherel = L. Continuing this iteration we find all of the
block indices. Finally, the multisplit is constructed with the help of the boundary points
that are stored with each block.

A.1l. Time and space requirements of the algorithm

The time complexity of preprocessing is easily determined. The first pass comprises reading
the class labels of the examples and summing them up into the class distributions of the
bins. All this clearly takes tim®(n + mV), wheren is the number of the examplas,is

the number of the classes, axds the number of the bins. The cost of the second phase
(block construction) is determined by the number of required two bin merges. In the worst
case we can hawé — 1 of them, which leads to time complexi@(mV). Hence, the total
worst-case time complexity of preprocessin@ign + mV).

Let us now analyze the search algorithm. First, consider the loop in lines 2 and 3.
Merging two class frequency distributions takes ti@ém), wherem is the number of
classes. For most commonly used evaluation functions, evaluation of the impurity also
takes timeO(m), thus, the complexity of one iteration is clea®(m). The number of
iterations of the loop, wherg; is the last item updated, is Hence, the total number of
iterations isZilei = B(B + 1)/2, which gives total complexity o (m B?) for the loop.

The rest of this analysis is divided intmboundedndboundedctases, based on whether
a prior restriction to the arity is set or not. We begin with analyzing the unbounded case.

In the following keep in mind that the algorithm fills up and consults a triangular area
of the arrayP, that is, no items?, \, wherek > i, are ever visited by the algorithm. We
amortize the cost of running the innermost loop (lines 9-12) among items in that triangle,
excluding row 1, which will not be updated in the loop.

Note that the number of iterations of the loop per array item is equal along each dia-
gonal: it is 1 for the diagondP, », ..., Pg g, Which is of lengthB — 1, 2 for the diagonal
Ps2, ..., Pg g_10flengthB—2, and so on. The total number of iterations of the innermost
loop is thus given by the sum

B—

1 B-1 B-1 3 3
B 2B-1 B —B B

E'B_':BE'_E'ZZBB_l - — = —,
ey i:ll i:ll ()(2 6) 6 6

i=1

and so the time complexity of the innermost loopd¢B?) in the worst case. Finally,
observe that lines 4—6, 8 and 13 take constant time per item of theRuaag do not affect
the worst-case complexity. Hence, the total running time of the algoriti®risB? + BS),
if no prior upper bound on the arity is given.

Next, let us turn into the case where a prior upper bdfat the arity of the multisplit
is given. In that case, the diagonals are cut into the lekgt? (again excluding row 1),
with the exception of th& — 1 diagonals in the upper right-hand corner of the triangle that
are not affected by the bourkd Therefore, the number of iterations of the innermost loop

MULTISPLITTING NUMERICAL ATTRIBUTES 239

is given by
B—k B-1
dlik=2+ Y i(B-),
i=1 i=B—k+1

where the former sum represent the “cut” diagonals and the latter the rest. This formula
simplifies to

1 5 1
E((|<—2)52+(4k— k?—2)B + §|<—2|<2+ §k3>,

which is O(kB?), sincek < B by definition. Including the work needed to update the
class distributiongi, the total running time of the algorithm in the bounded case is then
O((k +m)B?).

The space complexity of the preprocessing algorith@(isV), which is the space taken
by the class frequency distributions of the bins. The space needed by the search algorithm
is determined by the three arrayk, P, andL. Array i has sizeO(mB). The arraysP
andL both have siz®©(B?) in the unbounded case am{k B) in the bounded case. Thus,
the total amount of space used by the search algoritt®@ (s + k) B) in the bounded case
andO(m B+ B?) in the unbounded case.

Appendix B: Relationships between the numbers of examples, different values, and
boundary points in the numerical dimensions of the test domains

This appendix analyzes for all our 30 test domains the relationship of the number of different
values,V, and the number of boundary point8, with respect to the total number of
examplesn. In addition, we contrast the valu®sandB with each other.

Figure 11 plots for all test domains the ratidgn and B/n. The ratios are depicted
separately for each numerical dimension. A small circle represents the value for one attribute
and the small horizontal lines indicate the median values. In terms of decision tree learning
these ratios conform to the situation where the numerical attribute is considered as the label
of the root of the evolving tree—when the data has not yet been split by any attribute.

Five domains—Glass, Segmentation, Sonar, Vowel, and Wine—have their mégian
ratio above the value 0.5. These domains with many truly continuous attributes also account
for most of those attributes that have on the average at most two examples with the same
value. Few attributes from other domains have a ratio higher than 0.5. Only two more
domains—Australian and Hepatitis—have their median ratio over 0.25. The number of
domains that have their mediaty n ratio below 0.1 is 14, almost half of our test domains.

What changes when we consider the ra@ipn? Only one domain, Vowel, keeps its
median ratio’s value over 0.5. The other four domains that have a m¥diamatio above
0.5 have a mediaB/n ratio between 0.25 and 0.5. The rest of the domains have a median
B/n ratio below 0.25. The number of domains that have this ratio's median below 0.1 is
now 19, almost two thirds of our test domains. In domains that only have few attributes

240 T. ELOMAA AND J. ROUSU

o] R |
V/’I'L ° 3 ° °
° ° ° ° 8
° ¥
754 [S ° o
T : .
° ° ° ° . ¢
° °
°
°] -
he [] ° ° °
5_ ° o ° o °
° [
°
° o © . . °: °
2o g ° o % ° o o © °
'25--8- O_E_ o © ° ° o o o o
°3 . - :o- i
g © . —_ re (]
g < _ ® o o 9 -5
o o 8 ° ° 8 8 o 2
o o .—8-9 o - g 2 ""
§ L& ° o o8 & .3 oo 44, F
B/n
°
75+ i
°
o 8
°
° ° °
51 § _!_ i
° o o ° §
° ° e ° g °
° 4 oo ° : ¥
.251 o ©
- 4+ ° 8 8 8
° ° ° ° < _g_
e o ° o ° o
5 _9_0 -1 o 9 s 8 ° : °
°: -8-0 o ;‘ - g-g- o
°
] --8-" - 01- - > § + ° 28 .44, -.- >4
... . . Lo . . o —_
SR LB S8R 58T E B UEE 8252850 ET
@] Q O Q 42 — — = = o
_ T L5 Q — = = oo = o o)
SEEEo3CSEEE0EEEE OS2 ERE2ES
o
= <232g AEF0 zZZEe £ & {FP ¢
<@ SgH 8 @

Figure 11 The ratio of the number of different values in a numerical value ravigand the number of examples,
n. Also the ratio between the numbers of boundary poiBisand examples is depicted. Each circle represents
one numerical attribute and the horizontal lines indicate the median values of each domain.

with a highV /n ratio—e.g., Adult, Colic, and German—those attributes how haB¢ra
ratio more like the other attributes.
Based on this comparison we find support for the claim that typidalkg n for real-
world data sets. However, there are domains that have truly continuous attributes for which
this does not hold. On the contrary, in such cases we could even claifd thah. As

MULTISPLITTING NUMERICAL ATTRIBUTES 241

. -4 ° ° o o 8 * ° &
4 °
° o o ° -+
T T : TR FRER L R
° 8§ o o° - ° ° 8 [3 °
° ° — o ° ° o ° °
75 ot de. T % PSR R P
. _ oS © ° o ° ° o E gi"'i 3
o o ° ° o e ° ° £ o 33°: *
_ S ° o © ©
% o _o_ [} o o ©
8 s) ° [0
54 o 8 — ° o
° o
8 ° :.oo ° s — °
°
o o ° 8 3
o
°
25{ © . 8
o ©
°
L E o= o4 O MY 5 o9 @ L e B o220 882X LYY
R R LR N - RN R R
3'0833'“*-’(3‘”’"“8—‘““0: H"‘EO)O:@;OEOB@
E<EEg3CF2EE08ERE gt ERtEAAESE
) - < o0
< <<Z: FEf0 HEZS 4 ag”
<@ @ T8 @

Figure 12 The ratio of the number of boundary poinB, and different valuesy, in numerical value ranges.
Each small circle represents tBg' V ratio of one numerical dimension. Horizontal lines depict the medians of
these ratios.

concerns the ratio of boundary points and the number of examples, it is certainly true that
typically B <« n, even in domains with truly continuous attributes.

Figure 12 directly compareg and B by plotting the ratioB/V for the 30 test domains.
Again, each small circle represents one numerical attribute. A horizontal line denotes the
median of these ratios for the numerical attributes of a domain.

In most domains the great majority of attributes h&y&/ > 0.5, meaning that over half
of the values are boundary values. This means that examining only boundary points lets
us often leave one fourth of the potential cut points without attention, but seldom can more
than half of the cut points be overlooked.

Acknowledgments

The insightful comments by the editor Rob Holte helped us to substantially improve the
content and presentation of the final version of this article.

The work of T. Elomaa has, in part, been supported by a Marie Curie Fellowship and done
at the Joint Research Centre of the European Commission in Ispra, Italy. That of J. Rousu
has been partly supported by the Academy of Finland and carried out at the Department of
Computer Science of the University of Helsinki.

242 T. ELOMAA AND J. ROUSU

Notes

1. Strictly speaking, neither the Gain Ratio nor the Normalized Distance Measure conform to our definition of
well-behavedness; both are undefined on trivial partitions.

2. Quinlan (1988) motivated the Gain Ratio with experimental results reported by Kononenko, Bratkoskad Ro™
(1984). Intheir experiment8Gjog Was used in evaluating multi-valued nominal attributes, but the results were
not satisfactory.

References

Auer, P. (1997)Optimal splits of single attributedJnpublished manuscript, Institute for Theoretical Computer
Science, Graz University of Technology.

Auer, P., Holte, R. C., & Maass, W. (1995). Theory and application of agnostic PAC-learning with small decision
trees. InA. Prieditis & S. Russell (EdsMachine Learning: Proceedings of the Twelfth International Conference
(pp. 21-29). San Francisco, CA: Morgan Kaufmann.

Birkendorf, A. (1997). On fast and simple algorithms for finding maximal subarrays and applications in learning
theory. In S. Ben-David (Ed.Rroceedings of the Third European Conference on Computational Learning
Theory(pp. 198-209). Lecture Notes in Artificial Intelligence (Vol. 1208). Heidelberg: Springer-Verlag.

Breiman, L. (1996). Some properties of splitting criteNMachine Learning, 2441-47.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984gssification and regression tregRacific
Grove, CA: Wadsworth.

Brodley, C. (1995). Automatic selection of split criterion during tree growing based on node location. In A. Prieditis
& S. Russell (Eds.)Machine Learning: Proceedings of the Twelfth International Confer¢ppe73—-80). San
Francisco, CA: Morgan Kaufmann.

Buntine, W., & Niblett, T. (1992). A further comparison of splitting rules for decision-tree induchitarchine
Learning, 8 75-85.

Catlett, J. (1991). On changing continuous attributes into ordered discrete attributes. In Y. KodratofP(&d.),
ceedings of the Fifth European Working Session on Learippgl64—178). Lecture Notes in Computer Science
(Vol. 482). Heidelberg: Springer-Verlag.

Cestnik, B., Kononenko, I., & Bratko, I. (1987). Assistant 86: A knowledge-elicitation tool for sophisticated users.
In I. Bratko & N. Lavra® (Eds.),Progress in Machine Learning, Proceedings of the Second European Working
Session on Learningpp. 31-45). Wilmslow: Sigma Press.

Codrington, C. W., & Brodley, C. E. (1999). On the qualitative behavior of impurity-based splitting rules I: The
minima-free propertyMachine Learningto appear.

Dietterich, T., Kearns, M., & Mansour, Y. (1996). Applying the weak learning framework to understand and
improve C4.5. In L. Saitta (Ed.Machine Learning: Proceedings of the Thirteenth International Conference
(pp. 96—104). San Francisco, CA: Morgan Kaufmann.

Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretization of continuous features.
In A. Prieditis & S. Russell (Eds.)Machine Learning: Proceedings of the Twelfth International Conference
(pp. 194-202). San Francisco, CA: Morgan Kaufmann.

Elomaa, T. (1994). In defense of C4.5: Notes on learning one-level decision trees. In W. W. Cohen & H. Hirsh
(Eds.),Machine Learning: Proceedings of the Eleventh International Confergume62—69). San Francisco,

CA: Morgan Kaufmann.

Elomaa, T., & Rousu, J. (1997). On the well-behavedness of important attribute evaluation functions. In G. Grahne
(Ed.), Proceedings of the Sixth Scandinavian Conference on Artificial Intelliggpre95-106). Frontiers in
Artificial Intelligence and Applications (Vol. 40). Amsterdam: 10S Press, Tokyo: Ohmsha Ltd.

Fayyad, U. M., & Irani, K. B. (1992a). The attribute selection problem in decision tree generatageed-
ings of the Tenth National Conference on Artificial Intelliger{pp. 104-110). Menlo Park, CA: AAAI
Press.

Fayyad, U. M., & Irani, K. B. (1992b). On the handling of continuous-valued attributes in decision tree generation.
Machine Learning, 887-102.

MULTISPLITTING NUMERICAL ATTRIBUTES 243

Fayyad, U. M., & Irani, K. B. (1993). Multi-interval discretization of continuous-valued attributes for classification
learning.Proceedings of the Thirteenth International Joint Conference on Atrtificial Intelligépee1022—
1027). San Francisco, CA: Morgan Kaufmann.

Fulton, T., Kasif, S., & Salzberg, S. (1995). Efficient algorithms for finding multi-way splits for decision trees.
In A. Prieditis & S. Russell (Eds.)Machine Learning: Proceedings of the Twelfth International Conference
(pp. 244-251). San Francisco, CA: Morgan Kaufmann.

Holte, R. C. (1993). Very simple classification rules perform well on most commonly used dat&aelsne
Learning, 11 63-90.

Howard, P. G., & Vitter, J. S. (1992). Analysis of arithmetic coding for data compredsimnmation Processing
and Management, 2849-763.

Iba, W. F., & Langley, P. (1992). Induction of one-level decision trees. In D. Sleeman & P. Edwards (Eds.),
Machine Learning: Proceedings of the Ninth International Workskmp. 233-240). San Francisco, CA:
Morgan Kaufmann.

Kononenko, I. (1995). On biases in estimating multi-valued attrib®eseedings of the Fourteenth International
Joint Conference on Artificial Intelligendpp. 1034-1040). San Francisco, CA: Morgan Kaufmann.

Kononenko, 1., Bratko, I., & ReKar, E. (1984)Experiments in automatic learning of medical diagnostic rules
(Technical Report). Ljubljana: Josef Stefan Institute, Faculty of Electrical Engineering and Computer Science.

Landeweerd, G. H., Timmers, T., Gelsema, E. S., Bins, M., & Halie, M. R. (1983). Binary tree versus single level
tree classification of white blood cellBattern Recognition, 1671-577.

Lopez de Mintaras, R. (1991). A distance-based attribute selection measure for decision tree inMaxtttine
Learning, 6 81-92.

Lubinsky, D. J. (1995). Increasing the performance and consistency of classification trees by using the accuracy
criterion at the leaves. In A. Prieditis & S. Russell (Ed8fachine Learning: Proceedings of the Twelfth
International Conferencép. 371-377). San Francisco, CA: Morgan Kaufmann.

Maass, W. (1994). Efficient agnostic PAC-learning with simple hypothé¥eseedings of the Seventh Annual
ACM Conference on Computational Learning The@oy. 67—75). New York: ACM Press.

Merz, C. J., & Murphy, P. M. (1996)UCI repository of machine learning databasébttp://www.
ics.uci.edu*mlearn/MLRepository.html). Irvine, CA: University of California, Department of Information
and Computer Science.

Mingers, J. (1989). An empirical comparison of selection measures for decision-tree indMetatrine Learning,

3, 319-342.

Quinlan, J. R. (1983). Learning efficient classification procedures and their application to chess end-games. In
R.S. Michalski, J.G. Carbonell, & T.M. Mitchell (EdsNlachine learning: An artificial intelligence approach
(pp. 391-411). Palo Alto, CA: Tioga.

Quinlan, J. R. (1986). Induction of decision trebtachine Learning, 181-106.

Quinlan, J. R. (1988). Decision trees and multi-valued attributes. In J. E. Hayes, D. Michie, & J. Richards
(Eds.),Machine intelligence (Vol. 11): Logic and the acquisition of knowleghge 305-318). Oxford: Oxford
University Press.

Quinlan, J. R. (1993)C4.5: Programs for machine learnin§an Francisco, CA: Morgan Kaufmann.

Quinlan, J. R. (1996). Improved use of continuous attributes in Qdiinal of Artificial Intelligence Research,

4, 77-90.

Quinlan, J. R., & Rivest, R. L. (1989). Inferring decision trees using the minimum description length principle.
Information and Computation, 8@27-248.

Rissanen, J. (1989%tochastic complexity in statistical inquifRiver Edge, NJ: World Scientific.

Rissanen, J. (1995). Stochastic complexity in learning. In Rnvit(Ed.),Proceedings of the Second European
Conference on Computational Learning The@@p. 196—210). Lecture Notes in Computer Science (Vol. 904).
Heidelberg: Springer-Verlag.

Rousu, J. (1996)Constructing decision trees and lists using the MDL princifeFinnish). Master’s thesis,
Department of Computer Science, University of Helsinki, Finland.

Van de Merckt, T. (1993). Decision trees in numerical attribute sp&reseedings of the Thirteenth International
Joint Conference on Artificial Intelligendpp. 1016-1021). San Francisco, CA: Morgan Kaufmann.

Wallace, C. S., & Freeman, P. R. (1987). Estimation and inference by compact cadirgal of the Royal
Statistical Society (B), 4240-265.

244 T. ELOMAA AND J. ROUSU

Wallace, C. S., & Patrick, J. D. (1993). Coding decision tréeschine Learning, 117-22.

White, A. P., & Liu, W. Z. (1994). Bias in information-based measures in decision tree indub@achine
Learning, 15 321-329.

Witten, I. H., Neal, R. M., & Cleary, J. G. (1987). Arithmetic coding for data compres§fommunications of
the ACM, 30520-540.

Received November 8, 1996
Accepted June 2, 1999
Final manuscript June 2, 1999

