
Machine Learning, 30, 23–29 (1998)
c© 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

A Note on Learning from Multiple-Instance
Examples

AVRIM BLUM avrim+@cs.cmu.edu

ADAM KALAI akalai+@cs.cmu.edu
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

Editor: Dana Ron

Abstract. We describe a simple reduction from the problem of PAC-learning from multiple-instance examples
to that of PAC-learning with one-sided random classification noise. Thus, all concept classes learnable with one-
sided noise, which includes all concepts learnable in the usual 2-sided random noise model plus others such as the
parity function, are learnable from multiple-instance examples. We also describe a more efficient (and somewhat
technically more involved) reduction to the Statistical-Query model that results in a polynomial-time algorithm
for learning axis-parallel rectangles with sample complexityÕ(d2r/ε2), saving roughly a factor ofr over the
results of Auer et al. (1997).
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1. Introduction and Definitions

In the standard PAC learning model, a learning algorithm is repeatedly given labeled exam-
ples of an unknown target concept, drawn independently from some probability distribution.
The goal of the algorithm is to approximate the target concept with respect to this distribu-
tion. In the multiple-instance example setting, introduced in (Dietterich et al., 1997), the
learning algorithm is given only the following weaker access to the target concept: instead
of seeing individually labeled points from the instance space, each “example” is anr-tuple
of points together with a single label that is positive ifat least oneof the points in the
r-tuple is positive (and is negative otherwise). The goal of the algorithm is to approximate
the induced concept over theser-tuples. In the application considered by Dietterich et al.,
an example is a molecule and the points that make up the example correspond to different
physical configurations of that molecule; the label indicates whether or not the molecule
has a desired binding behavior, which occurs if at least one of the configurations has the
behavior.

Formally, given a conceptc over instance spaceX, let us definecmulti overX∗ as:

cmulti(x1, x2, . . . , xr) = c(x1) ∨ c(x2) ∨ . . . ∨ c(xr).

Similarly, given a concept classC, let Cmulti = {cmulti : c ∈ C}. We will call ~x =
(x1, . . . , xr) an r-exampleor r-instance. Long and Tan (1996) give a natural PAC-style
formalization of the multiple-instance example learning problem, which we may phrase as
follows:

Definition 1. An algorithm A PAC-learns concept classC from multiple-instance
examples if for anyr > 0, and any distributionD over single instances,APAC-learnsCmulti
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over distributionDr. (That is, each instance in eachr-example is chosen independently
from the same distributionD.)

Previous work on learning from multiple-instance examples has focused on the problem
of learningd-dimensional axis-parallel rectangles. Dietterich et al. (1997) present several
algorithms and describe experimental results of their performance on a molecule-binding
domain. Long and Tan (1996) describe an algorithm that learns axis-parallel rectangles in the
above PAC setting, under the condition thatD is a product distribution (i.e., the coordinates
of each single-instance are chosen independently), with sample complexityÕ(d2r6/ε10).
Auer et al. (1997) give an algorithm that does not requireD to be a product distribution and
has a much improved sample complexityÕ(d2r2/ε2) and running timẽO(d3r2/ε2). (The
Õ notation hides logarithmic factors.) Auer (1997) reports on the empirical performance
of this algorithm. Auer et al. also show that if we generalize Definition 1 so that the
distribution overr-examples is arbitrary (rather than of the formDr) then learning axis-
parallel rectangles is as hard as learning DNF formulas in the PAC model.

In this paper we describe a simple general reduction from the problem of PAC-learning
from multiple-instance examples to that of PAC-learning with one-sided random classifi-
cation noise. Thus, all concept classes learnable from one-sided noise are PAC-learnable
from multiple-instance examples. This includes all classes learnable in the usual 2-sided
random noise model, such as axis-parallel rectangles, plus others such as parity functions.
We also describe a more efficient reduction to the Statistical-Query model (Kearns, 1993).
For the case of axis-parallel rectangles, this results in an algorithm with sample complexity
Õ(d2r/ε2), saving roughly a factor ofr over the results in (Auer et al., 1997).

2. A simple reduction to learning with noise

Let us define 1-sided random classification noise to be a setting in which positive examples
are correctly labeled but negative examples have their labels flipped with probabilityη < 1,
and the learning algorithm is allowed time polynomial in11−η .

Theorem 1 If C is PAC-learnable from 1-sided random classification noise, thenC is
PAC-learnable from multiple-instance examples.

Corollary 1 If C is PAC-learnable from (2-sided) random classification noise, then
C is learnable from multiple-instance examples. In particular, this includes all classes
learnable in the Statistical Query model.

Proof (of Theorem 1 and Corollary 1): Let D be the distribution over single instances,
so each multiple-instance example consists ofr independent draws fromD. Let pneg be
the probability a single instance drawn fromD is a negative example of target conceptc.
So, a multiple-instance example has probabilityqneg = (pneg)r of being labeled negative.
Let q̂neg denote the fraction of observed multiple-instance examples labeled negative; i.e.,
q̂neg is the observed estimate ofqneg. Our algorithm will begin by drawingO( 1

ε log 1
δ )

examples and halting with the hypothesis “all positive” ifq̂neg < 3ε/4. Chernoff bounds
guarantee that ifqneg < ε/2 then with high probability we will halt at this stage, whereas if
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qneg > ε then with high probability we will not. So, from now on we may assume without
loss of generality thatqneg ≥ ε/2.

Given a source of multiple-instance examples, we now convert it into a distribution over
single-instance examples by simply taking the first instance from each example and ignoring
the rest. Notice that the instances produced are distributed independently according toD
and for each such instancex,

• if x is a true positive, it is labeled positive with probability 1,

• if x is a true negative, it is labeled negative with probability(pneg)r−1, independent of
the other instances and labelings in the filtered distribution.

Thus, we have reduced the multiple-instance learning problem to the problem of learning
with 1-sided classification noise, with noise rateη = 1− (pneg)r−1. Furthermore,η is not
too close to 1, since

η = 1− (pneg)r−1 ≤ 1− qneg ≤ 1− ε/2.

We can now reduce this further to the more standard problem of learning from 2-sided noise
by independently flipping the label on each positive example with probabilityν = η/(1+η)
(that is, the noise rate on positive examples,ν, equals the noise rate on negative examples,
η(1− ν)). This results in 2-sided random classification noise with noise rate

ν ≤ (1− ε/2)/(2− ε/2) ≤ 1/2− ε/8.

This reduction to 2-sided noise nominally requires knowingη; however, there are two easy
ways around this. First, if there arem+ positive examples, then for eachi ∈ {0, 1, . . . , m+}
we can just flip the labels on a random subset ofi positive examples and apply our 2-sided
noise algorithm, verifying them+ hypotheses produced on an independent test set. The
desired experiment of flipping each positive label with probabilityν can be viewed as a
probability distribution over thesem+ experiments, and therefore if the class is learnable
with 2-sided noise then at least one of these will succeed. A second approach is that we in
fact do have a good guess forη: η = 1− (qneg)1−1/r, soη̂ = 1− (q̂neg)1−1/r provides a
good estimate for sufficiently large sample sizes. We discuss the details of this approach in
the next section.

Finally, notice that it suffices to approximatec to errorε/r over single instances to achieve
anε-approximation overr-instances.

While we can reduce 1-sided noise to 2-sided noise as above, 1-sided noise appears to be a
strictly easier setting. For instance, the class ofparity functions, not known to be learnable
with 2-sided noise, is easily learnable with 1-sided noise because parity is learnable from
negative examples only. In fact, we do not know ofanyconcept class learnable in the PAC
model that is not also learnable with 1-sided noise.

3. A more efficient reduction

We now describe a reduction to the Statistical Query model of Kearns (1993) that is more
efficient than the above method in that all of ther single instances in eachr-instance are



26 A. BLUM AND A. KALAI

used. Our reduction turns out to be simpler than the usual reduction from classification
noise for two reasons. First of all, we have a good estimate of the noise just based on the
observed fraction of negatively-classifiedr-instances,̂qneg. Secondly, we have a source of
examples with known (negative) classifications.

Informally, a Statistical Query is a request for a statistic about labeled instances drawn
independently fromD. For example, we might want to know the probability that a random
instancex ∈ < is labeled negative and satisfiesx < 2. Formally, a statistical query is a
pair (χ, τ), whereχ is a functionχ : X × {0, 1} → {0, 1} andτ ∈ (0, 1). The statistical
query returns an approximation̂Pχ to the probabilityPχ = Prx∈D[χ(x, c(x)) = 1], with
the guarantee thatPχ − τ ≤ P̂χ ≤ Pχ + τ . We know, from Corollary 1, that anything
learnable in the Statistical Query model can be learned from multiple instance examples.
In this section we give a reduction which shows:

Theorem 2 Given anyδ, τ ∈ (0, 1/r) and a lower bound̃qneg on qneg, we can use
a multiple-instance examples oracle to simulaten Statistical Queries of toleranceτ with
probability at least1−δ, usingO( ln(n/δ)

rτ2q̃neg
) r-instances, and in timeO( ln(n/δ)

τ2 ( 1
q̃neg

+nTχ)),
whereTχ is the time to evaluate a query.

Proof: We begin by drawing a setR of r-instances. LetS− be the set of single instances
from the negativer-instances inR, and letS+/− be the set of single instances fromall
r-instances inR. Thus the instances inS+/− are drawn independently fromD, and those
in S− are drawn independently fromD−, the distribution induced byD over the negative
instances.

We now estimatêqneg = |S−|/|S+/−| andp̂neg = (q̂neg)1/r. Chernoff bounds guarantee

that so long as|R| ≥ k ln(1/δ)
r2τ2q̃neg

for sufficiently large constantk, with probability at least
1− δ/2,

qneg(1− rτ/12) ≤ q̂neg ≤ qneg(1 + rτ/6).

This implies

pneg(1− rτ/12)1/r ≤ p̂neg ≤ pneg(1 + rτ/6)1/r,

pneg(1− τ/6) ≤ p̂neg ≤ pneg(1 + τ/6)

where the last line follows using the fact thatτ/6 < 1/r.
Armed withS+/−, S−, andp̂neg, we are ready to handle a query. Our method will be

similar in style to the usual simulation of Statistical Queries in the 2-sided noise model
(Kearns, 1993), but different in the details because we have 1-sided noise (and, in fact,
simpler because we have an estimatep̂neg of the noise rate). Observe that, for an arbitrary
subsetS ⊆ X, we can directly estimatePrx∈D[x ∈ S] from S+/−. Using examples from
S−, we can also estimate the quantity,

Prx∈D[x ∈ S ∧ c(x) = 0] = Prx∈D[c(x) = 0]Prx∈D[x ∈ S|c(x) = 0]
= pnegPrx∈D− [x ∈ S]. (1)

Suppose we have some query(χ, τ). Define two sets:X0 consists of all pointsx ∈ X
such thatχ(x, 0) = 1, andX1 consists of all pointsx ∈ X such thatχ(x, 1) = 1. Based
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on these definitions and (1), we can rewritePχ,

Pχ = Prx∈D[x ∈ X1 ∧ c(x) = 1] + Prx∈D[x ∈ X0 ∧ c(x) = 0]
= Prx∈D[x ∈ X1]− Prx∈D[x ∈ X1 ∧ c(x) = 0]

+Prx∈D[x ∈ X0 ∧ c(x) = 0]
= Prx∈D[x ∈ X1] + pneg(Prx∈D− [x ∈ X0]− Prx∈D− [x ∈ X1]). (2)

Each of the three probabilities in the last equation is easily estimated fromS+/− or S− as
follows:

Usingk ln(n/δ)
τ2 examples fromS+/−, estimatePrx∈D[x ∈ X1].

Usingk ln(n/δ)
τ2 examples fromS−, estimatePrx∈D− [x ∈ X0] and

Prx∈D− [x ∈ X1].
Combine these witĥpneg to get an estimatêPχ for

Pχ = Prx∈D[x ∈ X1] + pneg(Prx∈D− [x ∈ X0]− Prx∈D− [x ∈ X1]).

We can choosek large enough so that, with probability at least1−δ/2n, our estimates for
Prx∈D[x ∈ X1], Prx∈D− [x ∈ X0], andPrx∈D− [x ∈ X1] are all within an additiveτ/6
of their true values. From above, we already know thatp̂neg is within an additiveτ/6 of
pneg. Now, since we have an additive error of at mostτ/6 on all quantities in (2), and each
quantity is at most1, our error onPχ will be at mostτ/6 + (1 + τ/6)(1 + 2τ/6)− 1 < τ ,
with probability at least1− δ for all n queries. The runtime for creatingS+/− andS− is

O( ln(n/δ)
τ2q̃neg

) and for each query isO( ln(n/δ)
τ2 Tχ). The total number ofr-instances required

is O( ln(n/δ)
rτ2q̃neg

).

As noted in Section 2, if we can approximate the target concept over single instances
to errorε/r, then we have anε-approximation over multiple-instance examples. Again, if
we begin by drawingO(1

ε log 1
δ ) examples and halting with the hypothesis “all positive” if

q̂neg < 3ε/4, then we get (using the lower boundε/2 for qneg),

Corollary 2 SupposeC is PAC-learnable to within errorε/r with n statistical queries
of toleranceτ < 1/r, which can each be evaluated in timeTχ (son, τ , andTχ depend on
ε/r). ThenC is learnable from multiple-instance examples with probability at least1− δ,
usingO( ln(n/δ)

rετ2 ) r-instances, and in timeO( ln(n/δ)
τ2 ( 1

ε + nTχ)).

The following theorem (given in (Auer et al., 1997) for the specific case of axis-parallel
rectangles) gives a somewhat better bound on the error we need on single-instance examples.

Theorem 3 If qneg ≥ ε
4 anderrorD(c, h) < ε

r
pneg
4qneg

, thenerrorDr (cmulti, hmulti) < ε.

Proof: Letp1 = Prx∈D[c(x) = 0∨h(x) = 0]andp2 = Prx∈D[c(x) = 0∧h(x) = 0]. So,
errorD(c, h) = p1−p2. Notice thatPr~x∈Dr [cmulti(~x) = hmulti(~x) = 0] = pr

2. Also note
thatPr~x∈Dr [cmulti(~x) = hmulti(~x) = 1] ≥ 1−pr

1 because allr-instances thatfail to satisfy
this equality must have their components drawn from the region[c(x) = 0 ∨ h(x) = 0].
Therefore,

errorDr (cmulti, hmulti) ≤ pr
1 − pr

2
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= (p1 − p2)(pr−1
1 + pr−2

1 p2 + . . . + pr−1
2 )

≤ (p1 − p2)rpr−1
1

<

(
ε

r

pneg

4qneg

)
r

(
pneg +

ε

r

pneg

4qneg

)r−1

≤ ε
(pneg)r

4qneg

(
1 +

ε

4rqneg

)r−1

≤ ε

4

(
1 +

1
r

)r−1

≤ ε.

4. Axis-Parallel Rectangles

Thed-dimensional axis-parallel rectangle defined by two points,(a1, . . . , ad) and(b1, . . . ,
bd), is {~x|xi ∈ [ai, bi], i = 1, . . . , d}. The basic approach to learning axis-parallel rectan-
gles with statistical queries is outlined in (Kearns, 1993) and is similar to (Auer et al., 1997).
Suppose we have some target rectangle defined by two points,(a1, . . . , ad) and(b1, . . . , bd),
with ai < bi. Our strategy is to make estimates(â1, . . . , âd) and(b̂1, . . . , b̂d), with âi ≥ ai

and b̂i ≤ bi so that our rectangle is contained inside the true rectangle but so that it is
unlikely that any point hasith coordinate betweenai and âi or between̂bi andbi. We
assume in what follows thatε/2 ≤ qneg ≤ 1− ε/2, and that we have estimates ofpneg and
qneg good to within a factor of 2, which we may do by examining an initial sample of size
O( 1

ε log 1
δ ).

Let τ = ε
8dr

pneg
qneg

. From Theorem 3, we see that if we have error less thanτ per side of
the rectangle, then we will have less thanε error for ther-instance problem, and we are
done. For simplicity, the argument below will assume thatτ is known; if desired one can
instead use an estimate ofτ obtained from sampling, in a straightforward way.

We first ask the statistical queryPrx∈D[c(x) = 1] to toleranceτ/3. If the result is
less than2τ/3 then1 − pneg ≤ τ , and (using Theorem 3) we can safely hypothesize that
all points are negative. Otherwise we knowpneg ≤ 1 − τ/3. Define(a′1, . . . , a

′
d) and

(b′1, . . . , b
′
d) such thatPrx∈D(ai ≤ xi ≤ a′i) = τ/3 andPrx∈D(b′i ≤ x ≤ bi) = τ/3. (If

the distribution is not continuous, then leta′i be such thatPrx∈D(ai ≤ xi < a′i) ≤ τ/3 and
Prx∈D(ai ≤ xi ≤ a′i) ≥ τ/3, and similarly forb′i.) We now explain how to calculatêa1,
for example, without introducing error of more thanτ .

Takem = O(ln(d/δ)/τ) unlabeled sample points. With probability at least 1-δ/2d, one
of these points has its first coordinate betweena1 anda′1 (inclusive) and let us assume this is
the case. We will now do a binary search among the first coordinates of these points, viewing
each as a candidate forâ1 and asking the statistical queryPrx∈D[c(x) = 1∧x1 < â1] with
toleranceτ/3. If all of our log m queries are inside our tolerance, then we are guaranteed
thatsomêa1 ≥ a1 will return a value at most2τ/3. In particular, thelargestsuchâ1 is at
leasta1 and satisfiesPrx∈D[a1 ≤ x1 < â1] ≤ τ . We similarly find the other̂ai andb̂i. We
use the algorithm of Theorem 2 with confidence parameterδ′ = δ/(4d log m) so that with
probability at least1− δ/2 none of our2d log m queries fail.
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The total number of multiple-instance examples used is at most

O

(
m

r
+

ln((2d log m)/δ′)
rτ2qneg

)
= Õ

(
1

rτ2qneg

)
= Õ

(
d2rqneg

ε2p2
neg

)
= Õ

(
d2r

ε2

)
.

The time for the algorithm is the time to sort thesem points plus the time for thelog m
calls per side of the rectangle, which by Theorem 2, is:

O

(
dm log m +

ln((d log m)/δ′)
τ2qneg

+ d log m
ln((d log m)/δ′)

τ2

)
= O

(
d3r2

ε2
log

(
dr

ε
log

1
δ

)
log

(
d

δ
log

r

ε

))
= Õ

(
d3r2

ε2

)
.

This is almost exactly the same time bound as given in (Auer et al., 1997) except that they
have anlog(d

δ ) instead oflog(d
δ ln( r

ε )) for the last term. We usẽO(rd2/ε2) r-instances
compared toÕ(r2d2/ε2) r-instances.
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