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Abstract. We describe a simple reduction from the problem of PAC-learning from multiple-instance examples

to that of PAC-learning with one-sided random classification noise. Thus, all concept classes learnable with one-
sided noise, which includes all concepts learnable in the usual 2-sided random noise model plus others such as the
parity function, are learnable from multiple-instance examples. We also describe a more efficient (and somewhat
technically more involved) reduction to the Statistical-Query model that results in a polynomial-time algorithm

for learning axis-parallel rectangles with sample comple@MQT/eQ), saving roughly a factor of over the

results of Auer et al. (1997).
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1. Introduction and Definitions

In the standard PAC learning model, a learning algorithm is repeatedly given labeled exam-
ples of an unknown target concept, drawn independently from some probability distribution.
The goal of the algorithm is to approximate the target concept with respect to this distribu-
tion. In the multiple-instance example setting, introduced in (Dietterich et al., 1997), the
learning algorithm is given only the following weaker access to the target concept: instead
of seeing individually labeled points from the instance space, each “examplel-itipie
of points together with a single label that is positivaaifleast oneof the points in the
r-tuple is positive (and is negative otherwise). The goal of the algorithm is to approximate
the induced concept over thes¢uples. In the application considered by Dietterich et al.,
an example is a molecule and the points that make up the example correspond to different
physical configurations of that molecule; the label indicates whether or not the molecule
has a desired binding behavior, which occurs if at least one of the configurations has the
behavior.

Formally, given a conceptover instance spack, let us define:,,,.,;;; over X* as:

Conutti(T1, T, Ty) = c(x1) Ve(x2) V... Ve(z,).

Similarly, given a concept class, let Cpuiti = {Cmuiti - ¢ € C}. We will call # =
(z1,...,z,) anr-exampleor r-instance Long and Tan (1996) give a natural PAC-style
formalization of the multiple-instance example learning problem, which we may phrase as
follows:

Definition 1. An algorithm A PAC-learns concept clags from multiple-instance
examplesifforany > 0, and any distributio® over single instancesl PAC-learns’,,, i+
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over distributionD”. (That is, each instance in eackexample is chosen independently
from the same distributiof.)

Previous work on learning from multiple-instance examples has focused on the problem
of learningd-dimensional axis-parallel rectangles. Dietterich et al. (1997) present several
algorithms and describe experimental results of their performance on a molecule-binding
domain. Longand Tan (1996) describe an algorithm that learns axis-parallel rectangles in the
above PAC setting, under the condition thais a product distribution (i.e., the coordinates
of each single-instance are chosen independently), with sample complexity® /¢'0).

Auer et al. (1997) give an algorithm that does not reqii® be a product distribution and
has a much improved sample complexityd?r2 /€2) and running timeO(d*r2 /e2). (The

O notation hides logarithmic factors.) Auer (1997) reports on the empirical performance
of this algorithm. Auer et al. also show that if we generalize Definition 1 so that the
distribution overr-examples is arbitrary (rather than of the fofi) then learning axis-
parallel rectangles is as hard as learning DNF formulas in the PAC model.

In this paper we describe a simple general reduction from the problem of PAC-learning
from multiple-instance examples to that of PAC-learning with one-sided random classifi-
cation noise. Thus, all concept classes learnable from one-sided noise are PAC-learnable
from multiple-instance examples. This includes all classes learnable in the usual 2-sided
random noise model, such as axis-parallel rectangles, plus others such as parity functions.
We also describe a more efficient reduction to the Statistical-Query model (Kearns, 1993).
For the case of axis-parallel rectangles, this results in an algorithm with sample complexity
O(d?r/€?), saving roughly a factor of over the results in (Auer et al., 1997).

2. Asimple reduction to learning with noise

Let us define 1-sided random classification noise to be a setting in which positive examples
are correctly labeled but negative examples have their labels flipped with probability,
and the learning algorithm is allowed time polynomialiihﬁ.

TueOREM 1 If C is PAC-learnable from 1-sided random classification noise, thdn
PAC-learnable from multiple-instance examples.

CoOROLLARY 1 If C is PAC-learnable from (2-sided) random classification noise, then
C is learnable from multiple-instance examples. In particular, this includes all classes
learnable in the Statistical Query model.

Proof (of Theorem 1 and Corollary 1): Let D be the distribution over single instances,

so each multiple-instance example consists wfdependent draws from. Let p,., be

the probability a single instance drawn frabhis a negative example of target concept

So, a multiple-instance example has probabiity, = (prq)" 0f being labeled negative.

Let g»., denote the fraction of observed multiple-instance examples labeled negative; i.e.,
Gneg is the observed estimate gf.,. Our algorithm will begin by drawing (1 log )
examples and halting with the hypothesis “all positive,if, < 3¢/4. Chernoff bounds
guarantee that if,.., < €/2 then with high probability we will halt at this stage, whereas if
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dneg > € then with high probability we will not. So, from now on we may assume without
loss of generality thag,., > €/2.

Given a source of multiple-instance examples, we now convert it into a distribution over
single-instance examples by simply taking the first instance from each example and ignoring
the rest. Notice that the instances produced are distributed independently accorBing to
and for each such instanee

e if xis atrue positive, it is labeled positive with probability 1,

o if zis atrue negative, it is labeled negative with probabiljty.,)" ', independent of
the other instances and labelings in the filtered distribution.

Thus, we have reduced the multiple-instance learning problem to the problem of learning
with 1-sided classification noise, with noise rate- 1 — (pneg)“l. Furthermorey is not
too close to 1, since

n = 1—(pneg)r’1 < 1—(Gneg < 1—¢/2.

We can now reduce this further to the more standard problem of learning from 2-sided noise
by independently flipping the label on each positive example with probabikity; / (1+7)
(that is, the noise rate on positive examplesequals the noise rate on negative examples,
n(1 — v)). This results in 2-sided random classification noise with noise rate

v < (1—¢/2)/(2—¢/2) < 1/2—¢/8.

This reduction to 2-sided noise nominally requires knowjnigowever, there are two easy
ways around this. First, if there ane, positive examples, then foreack {0,1,...,my}
we can just flip the labels on a random subsetdsitive examples and apply our 2-sided
noise algorithm, verifying then; hypotheses produced on an independent test set. The
desired experiment of flipping each positive label with probabilityan be viewed as a
probability distribution over these:, experiments, and therefore if the class is learnable
with 2-sided noise then at least one of these will succeed. A second approach is that we in
fact do have a good guess fgrn = 1 — (gneg)' ™17, 0% = 1 — (Gney)' ~'/" provides a
good estimate for sufficiently large sample sizes. We discuss the details of this approach in
the next section.

Finally, notice that it suffices to approximateo errore/r over single instances to achieve
ane-approximation over-instances. ]

While we can reduce 1-sided noise to 2-sided noise as above, 1-sided noise appears to be a
strictly easier setting. For instance, the clasparity functions, not known to be learnable
with 2-sided noise, is easily learnable with 1-sided noise because parity is learnable from
negative examples only. In fact, we do not knowaaf/concept class learnable in the PAC
model that is not also learnable with 1-sided noise.

3. A more efficient reduction

We now describe a reduction to the Statistical Query model of Kearns (1993) that is more
efficient than the above method in that all of theingle instances in eachinstance are
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used. Our reduction turns out to be simpler than the usual reduction from classification
noise for two reasons. First of all, we have a good estimate of the noise just based on the
observed fraction of negatively-classifiednstancesg,.,. Secondly, we have a source of
examples with known (negative) classifications.

Informally, a Statistical Query is a request for a statistic about labeled instances drawn
independently fronD. For example, we might want to know the probability that a random
instancexr € R is labeled negative and satisfies< 2. Formally, a statistical query is a
pair (x, 7), wherey is a functiony : X x {0,1} — {0,1} andr € (0,1). The statistical
query returns an approximatid@ to the probabilityP,, = Pryep[x(z,c(x)) = 1], with
the guarantee tha®, — 7 < P < P, + 7. We know, from Corollary 1, that anything
learnable in the Statlstlcal Query model can be learned from multiple instance examples.
In this section we give a reduction which shows:

THEOREM 2 Given anyd, 7 € (0,1/r) and a lower boundj,., 0N gy, We can use

a multiple-instance examples oracle to simulat8tatistical Queries of tolerance with

probability atleast —, usingO (1222 ) r-instances, and in tim@ ("2 (L 41T, ),
neg

neg

whereT, is the time to evaluate a query

Proof: We begin by drawing a sét of r-instances. Leb_ be the set of single instances
from the negative-instances inkz, and letS, ,_ be the set of single instances fraati
r-instances ink. Thus the instances ifi, ,_ are drawn independently frof2, and those
in S_ are drawn independently frof1 —, the distribution induced by over the negative
instances.

We now estimat§,,., = [S_|/|S4/—| andp,ey = (éneq)l/r Chernoff bounds guarantee

that so long ask| > k71‘17(1q/5 for sufficiently large constarit, with probability at least
1-14/2,

Q'neg(l - TT/IQ) < Q'neg < Qneg(l + TT/G)-
This implies

pneg(l—T’T/]_Q)l/T < ﬁneg < pneg(1+TT/6)l/T7
p”EQ(l_T/6) < ﬁneg < pneg(1+7/6)

where the last line follows using the fact that6 < 1/r.

Armed with S, ,_, S_, andp,.,, we are ready to handle a query. Our method will be
similar in style to the usual simulation of Statistical Queries in the 2-sided noise model
(Kearns, 1993), but different in the details because we have 1-sided noise (and, in fact,
simpler because we have an estimajg, of the noise rate). Observe that, for an arbitrary
subsetS C X, we can directly estimater,cplx € S] from S, ,_. Using examples from
S_, we can also estimate the quantity,

Pryeplr € SAc(x) =0] = Pryeple(z) = 0]Pryeplz € S|e(x) = 0]
= pnegpracED*[x € S] (1)

Suppose we have some quépy, 7). Define two setsX, consists of all points: € X
such thaty(x,0) = 1, andX; consists of all points: € X such thaty(z,1) = 1. Based
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on these definitions and (1), we can rewritg,
P, = Pryeplr € X1 Ne(x) = 1]+ Pryeplz € Xo A c(z) = 0]
= Pryeplr € X1] — Pryeplr € X1 Ac(z) = 0]
+Pryeplr € Xo Ac(z) =0]
= P"'meD[fZ; e Xl} +pn€g(P'rxeD— [SC S XO] — PT:L’ED’ [I S XlD (2)

Each of the three probabilities in the last equation is easily estimatedSrgm or S_ as
follows:

Usingkzln(;# examples front., ,_, estimatePr,cp [z € X1].

Usingkln(f# examples front_, estimatePr,c p- [z € X, and
P’/‘IGD—[.IEXJ. )

Combine these with,,., to get an estimaté’,, for
Py = Pryeplr € Xi] + Pneg(Proep- [z € Xo] — Pryep-[z € X1]).

We can choosk large enough so that, with probability at least 5 /2n, our estimates for
Pryeplr € Xi], Pryep-[z € Xo], andPr,cp- [z € X;] are all within an additive- /6
of their true values. From above, we already know hat, is within an additiver /6 of
Preg- NOW, since we have an additive error of at most on all quantities in (2), and each
quantity is at most, our error onP, will be at mostr /6 + (14 7/6)(1+27/6) — 1 < 1,
with probability at least — ¢ for all n queries. The runtime for creatirtg), ,_ andS_ is

O(lf(;/‘”) and for each query i@(m(j‘#TX). The total number of-instances required

In(n/é)
is O(zer qm) [ |
As noted in Section 2, if we can approximate the target concept over single instances
to errore/r, then we have as-approximation over multiple-instance examples. Again, if
we begin by drawing)(% log %) examples and halting with the hypothesis “all positive” if
dneg < 3€/4, then we get (using the lower boung? for ¢,c,),

COROLLARY 2 Suppos€’ is PAC-learnable to within erroe/r with n statistical queries
of tolerancer < 1/r, which can each be evaluated in tifig (son, 7, and7, depend on
e/r). ThenC is learnable from multiple-instance examples with probability at léastd,

usingO(2"2%)) r-instances, and in tim@ (/%) (L 4 nT,)).
The following theorem (given in (Auer et al., 1997) for the specific case of axis-parallel
rectangles) gives a somewhat better bound on the error we need on single-instance examples.

THEOREM 3 If ¢,y > §anderrorp(c,h) < f%,theMTror~Dr,»(cmulti,hmulti) < e.

Proof: Letp; = Pryeple(x) = 0VAh(xz) = 0]andpy = Pryeple(z) = 0AR(x) = 0]. So,
errorp(c, h) = p1 —p2. Notice thaPrze pr[cmuiti (Z) = hmuiri(£) = 0] = ph. Also note
thatPrzc pr [Cimuiti (T) = hmwi(Z) = 1] > 1—p] because all-instances thdail to satisfy
this equality must have their components drawn from the refzign) = 0 Vv h(x) = 0].
Therefore,

T T
error pr(Cmutti, Pmuiti) < DI — Db
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p1—p2)(Py P e+ ph )

r—1

(
(p1 — p2)rp}

<
€p €p r—1
< - |r neg T _ﬂ>
(T 4q“,eg) (p g r 4(]neg
(Preg)” e\
S € neg <1 + - )
4qneg 4TQneg
r—1
€ 1
< - (14 -
< {(1+3)
< e [ |
4. Axis-Parallel Rectangles
Thed-dimensional axis-parallel rectangle defined by two poifts, . . . ,aq) and(by, . . .,
ba), is{Z|z; € [a;,b5],4 = 1,...,d}. The basic approach to learning axis-parallel rectan-
gles with statistical queries is outlined in (Kearns, 1993) and is similar to (Auer et al., 1997).
Suppose we have some target rectangle defined by two p@ints, . , a;) and(by, . . ., bg),
with a; < b;. Our strategy is to make estimaiés, . .., aq) and(by, ..., bs), witha; > a;

and Bi < b; so that our rectangle is contained inside the true rectangle but so that it is
unlikely that any point hasth coordinate between; anda; or betweerb; andb;. We
assume in what follows thaf2 < ¢,., < 1 —¢€/2, and that we have estimatesygf., and
dneg 900d to within a factor of 2, which we may do by examining an initial sample of size
O({log3).

Lett = &%’q’n—j From Theorem 3, we see that if we have error less thpar side of
the rectangle, then we will have less thaarror for ther-instance problem, and we are
done. For simplicity, the argument below will assume th& known; if desired one can
instead use an estimateobbtained from sampling, in a straightforward way.

We first ask the statistical quelr,cp[c(x) = 1] to tolerancer/3. If the result is
less tharr /3 thenl — p,., < 7, and (using Theorem 3) we can safely hypothesize that
all points are negative. Otherwise we kngw., < 1 — 7/3. Define(ai,...,a};) and
(01, ...,0)) such thatr,cp(a; < z; < a)) = 7/3 andPryep(b; < x < b;) = 7/3. (If
the distribution is not continuous, then étbe such thaPr,cp(a; < 2; < a}) < 7/3 and
Pryep(a; < x; < a}) > 7/3, and similarly forb].) We now explain how to calculate,
for example, without introducing error of more than

Takem = O(In(d/d)/7) unlabeled sample points. With probability at least/2d, one
of these points has its first coordinate betweeanda (inclusive) and let us assume this is
the case. We will now do a binary search among the first coordinates of these points, viewing
each as a candidate fér and asking the statistical quePy,.cp[c(z) = 1 Az1 < a;] with
tolerancer /3. If all of our log m queries are inside our tolerance, then we are guaranteed
thatsomed; > a; will return a value at mos27 /3. In particular, thdargestsucha; is at
leasta; and satisfie®r,cpla; < 21 < a;] < 7. We similarly find the othed; andb;. We
use the algorithm of Theorem 2 with confidence paramgter §/(4d log m) so that with
probability at leasi — /2 none of our2d log m queries fail.
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The total number of multiple-instance examples used is at most

In((2d1 ! ~ 1 ~ /[ d2? 2
o(ﬁ+—“((d§gm)/5)>=o(—2 ):O(LJZ”W):O(d—J).
r rT Qneg rT %Leg € pneg €
The time for the algorithm is the time to sort theaepoints plus the time for thivg m
calls per side of the rectangle, which by Theorem 2, is:

In((dlogm)/8') In((dlog m)/é/)>

2 2
T Aneg T

d3r? dr 1 d r
=0 <E—2 log <? log S) log (5 log E))
~ [ d3r?

This is almost exactly the same time bound as given in (Auer et al., 1997) except that they
have anlog(%l) instead oﬂog(g In(%)) for the last term. We usé(rd?/e?) r-instances

compared ta@)(r2d? /%) r-instances.

O<dm10gm+ + dlogm
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