Skip to main content
Log in

Diffusion Theory in Biology: A Relic of Mechanistic Materialism

  • Published:
Journal of the History of Biology Aims and scope Submit manuscript

Abstract

Diffusion theory explains in physical terms how materials move through a medium, e.g. water or a biological fluid. There are strong and widely acknowledged grounds for doubting the applicability of this theory in biology, although it continues to be accepted almost uncritically and taught as a basis of both biology and medicine. Our principal aim is to explore how this situation arose and has been allowed to continue seemingly unchallenged for more than 150 years. The main shortcomings of diffusion theory will be briefly reviewed to show that the entrenchment of this theory in the corpus of biological knowledge needs to be explained, especially as there are equally valid historical grounds for presuming that bulk fluid movement powered by the energy of cell metabolism plays a prominent note in the transport of molecules in the living body. First, the theory's evolution, notably from its origins in connection with the mechanistic materialist philosophy of mid nineteenth century physiology, is discussed. Following this, the entrenchment of the theory in twentieth century biology is analyzed in relation to three situations: the mechanism of oxygen transport between air and mammalian tissues; the structure and function of cell membranes; and the nature of the intermediary metabolism, with its implicit presumptions about the intracellular organization and the movement of molecules within it. In our final section, we consider several historically based alternatives to diffusion theory, all of which have their precursors in nineteenth and twentieth century philosophy of science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agutter, Paul S. 1991. Between Nucleus and Cytoplasm. London: Chapman and Hall.

    Google Scholar 

  • — 1994. “Models of Solid-State Transport: Messenger RNA Movement from Nucleus to Cytoplasm.” Cell Biology International 18: 849-858.

    Article  Google Scholar 

  • — 1994. “Intracellular Solute Movements: a Problem-Orientated Lecture for Final Year Undergraduates.” Biochemical Education 22: 32-35.

    Article  Google Scholar 

  • Agutter, Paul S. and Taylor, Philip L. 1996. The Meaning of Nucleocytoplasmic Transport. Austin, Texas: R. G. Landes Co. pp. 21-52.

    Google Scholar 

  • Agutter, Paul S. and Wheatley, Denys N. 1999. “Random Walks and Cell Size.” BioEssays (in press).

  • — 1999. “Foundations in Biology: On the Problem of 'Purpose' in Biology in Relation to our Acceptance of the Darwinian Theory of Natural Selection.” Foundations of Science 4: 3-23.

  • Agutter, Paul S., Malone P. Colm and Wheatley, Denys N. 1995. “Intracellular Transport Mechanisms: A Critique of Diffusion Theory.” Journal of Theoretical Biology 176: 261-272.

    Article  Google Scholar 

  • Alberts, Bruce, Bray, Dennis, Lewis, Julian, Raff, Martin, Roberts, Keith and Watson, James. 1998. Molecular Biology of the Cell. 2nd Edition. New York: Garland.

    Google Scholar 

  • Allen, Garland E. 1967. “J. S. Haldane: The Development of the Idea of Control Mechanisms in Respiration.” Journal of the History of Medicine 22: 392.

    Google Scholar 

  • — 1978. Life Science in the Twentieth Century. Cambridge: Cambridge University Press.

    Google Scholar 

  • Balcar, J. O., Sansum, W. D. and Woodyatt, T. T. 1919. “Fever and the Water Reserve of the Body.” Archives of Internal Medicine 24: 116-128.

    Google Scholar 

  • Barcroft, Joseph, Binger, C. A., Bock, A. V., Doggart, J. H., Forbes, H. S., Harrop, G., Meakins J. C. and Redfield, A. C. 1923. “Observations on the Effect of High Altitude on the Physiological Processes of he Human Body Carried out in Peruvian Andes, Chiefly Cerro de Pasco.” Philosophical Transactions of the Royal society, Series B 211: 351-480.

    Google Scholar 

  • Barcroft, Joseph, Cooke, A., Hartridge, H., Parsons, T. R. and Parsons, W. 1920. “The Flow of Oxygen through the Pulmonary Epithelium.” Journal of Physiology 53: 450-472.

    Google Scholar 

  • Berg, Howard C. 1993. Random Walks in Biology. Princeton, New Jersey: Princeton University Press.

    Google Scholar 

  • Best, Charles H. and Taylor, N. B. 1955. The Physiological Basis of Medical Practice, 6th Edition. London: Balliere Tindall and Cox. pp. 365ff.

    Google Scholar 

  • Bigwood, E. J. 1930. “The Distribution of Ions in Gels.” Transactions of the Faraday Society 26: 704-719.

    Article  Google Scholar 

  • Bohr, Christian. 1891. “Sur la respiration pulmonaire.” Skandinavisches Archiv fur Physiologie 2: 236-268.

    Google Scholar 

  • — 1893. “Gas-secretion into the Air-bladder of Fishes.” Journal of Physiology 5: 494-500.

    Google Scholar 

  • — 1904. “Karlheinz Hasselbach and August Krogh, Ñber einen in Biologischer Beziehung Wichtigen Einfluss, de die Kohlensaurespannug des Blutes auf dessen Sauerstoffbindung ubt.” Skandinavisches Archiv für Physiologie 16: 402-412.

    Google Scholar 

  • — 1909. “Ñber die Spezifische Tagigkeit der Lungen bei der Respiratorischen Gasaufnahme und ihr Verhalten zu der durch die Alveolarwand Stattfindenden Gas-diffusion.” Skandinavisches Archiv für Physiologie 22: 221-280.

    Google Scholar 

  • Brown, Robert. 1828. “A Brief Account of Microscopical Observation Made in the Months of June, July and August, 1827, on the Particles Contained in the Pollen of Plants; and on the General Existence of Active Molecules in Organic and Inorganic Bodies.” A privately printed pamphlet.

  • Brush, S. G. 1967. “Foundations of Statistical Mechanics, 1845-1915.” Archive for the History of the Exact Sciences 4: 145-183.

    Article  Google Scholar 

  • Burdon-Sanderson, John and Ludwig, Carl Friedrich Wilhelm. 1895-1896. Proceedings of the Royal Society of London 59: 1-8.

    Google Scholar 

  • Burton, E. F. 1930. Colloid Science Applied to Biology. London: Faraday Society, p. 677.

    Google Scholar 

  • Cannon, Walter B. 1932. The Wisdom of the Body. New York.

  • Cardwell, D. S. L. (ed.). 1968. John Dalton and the Progress of Science. Manchester: University Press.

    Google Scholar 

  • Cater, Douglas B. and Silver, Ian A. 1961. “Microelectrodes and Electrodes used in Biology.” In: Reference Electrodes, ed. J. G. Ives and G. J. Janz, p. 512. New York: Academic Press.

    Google Scholar 

  • Chambers, Robert. 1940. The Micromanipulation of Living Cells, In The Cell and Protoplasm, ed. F. R. Moulton, pp. 49-67. Washington, D. C.: AAAS Publication 14.

    Google Scholar 

  • Clegg James S. and Wheatley, Denys N. 1991. “Intracellular Organization: Evolutionary Origins and Possible Consequences to Metabolic Rate Control in Vertebrates.” American Zoologist 3: 504-513.

    Google Scholar 

  • Collander R. and Barlund, H. 1933. Acta Botanicae Fenniae 2: 1-48.

    Google Scholar 

  • Cornforth, M. 1968. Materialism and the Dialectical Method. New York: Doubleday.

    Google Scholar 

  • Cranefield, Paul F. 1957. “The Organic Physics of 1847 and the Biophysics of Today.” Journal of the History of Medicine and Allied Sciences 12: 407-423.

    Google Scholar 

  • Crank, John. 1975. The Mathematics of Diffusion. Oxford: Clarendon Press.

    Google Scholar 

  • Dalton, John. 1808. A New System of Chemical Philosophy, Part I, Manchester: Unlisted Publisher.

    Google Scholar 

  • Danielli, James F. and Davson, Hugh. 1935. “A Contribution to the Theory of Permeability of Thin Films.” Journal of Cellular and Comparative Physiology 5: 495-508.

    Article  Google Scholar 

  • Davson, Hugh and Danielli, James F. 1940. The Permeability of Natural Membranes. Cambridge: Cambridge University Press, p. 53.

    Google Scholar 

  • Driesch, Hans. 1914. History and Theory of Vitalisms. Tr. London: London University Press.

    Google Scholar 

  • Desmond, A. 1987. “Artisan Resistance and Evolution in Britain, 1819-1848.” Osiris 3: 77-110.

    Article  Google Scholar 

  • — 1989. “Lamarckism and Democracy; Corporations, Corruptions and Comparative Anatomy in the 1830s.” In: History, Humanity and Evolution, ed. J. R. Moore. New York: Cambridge University Press.

    Google Scholar 

  • Donnan, Francis G. 1911. “The Theory of Membrane Equilibrium in the Presence of a Non-Dialyzable Electrolyte.” Zeitschrift für Elektrochemische, Halle 17: 572-581.

    Google Scholar 

  • — 1927. “Concerning the Applicability of Thermodynamics to the Phenomena of Life.” Journal of General Physiology 8: 685-688.

    Article  Google Scholar 

  • Du Bois-Reymond, Emil. 1848. Untersuchungen über thierische Elektricität. Berlin: G. Reimer. The preface of this work contains a clear statement of the underlying philosophy of the new experimental physiology, which seems to have made a particularly profound impression on Fick.

    Google Scholar 

  • Douglas, Charles G., Haldane, John S., Henderson Y. and Schneider, E. C. 1913. “Physiological Observations made on Pike's Peak, Colorado, with Specific Reference to Adaptation to Low Barometric Pressure.” Philosophical Transactions of the Royal Society 203 B: 185-318.

    Google Scholar 

  • Durbin, Paul T. 1988. Dictionary of Concepts in the Philosophy of Science. New York: Greenwood Press.

    Google Scholar 

  • Dutrochet, René-J-H. 1827. “Recherches sur L-endosmose et sur les Phénomènes Particuliers aux Corps Vivants.” Annales de Chimie et de Physique 35: 411-437.

    Google Scholar 

  • — 1827. “Nouvelles Observations sur L'endosmose et L'exosmose, et sur la Cause de ce Double Phénomène.” Annales de Chimie et de Physique 35: 393-400.

    Google Scholar 

  • Einstein, Albert. 1905. “Von der molekulärkinetischen Theorie der Wärme gefordete Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen.” Annalen der Physike 17: 549-554.

    Google Scholar 

  • —1908. “Der Theorie der Brownschen Bewegung.” Zeitschrift fur Elektrochemie 14: 235-239.

    Google Scholar 

  • Encyclopedia Britannica. 15th Edition. 1973-4. Volume 2: p. 1130.

  • Fick, Adolf E. 1855. “Ñber Diffusion.” Annalen der Physike, Leipzig 94: 59-86.

    Google Scholar 

  • — 1904. Gesammelte Schriften (writings collected posthumously), Vol. 1. Würzburg: Stahel.

    Google Scholar 

  • — 1856. Medizinische Physik. Zürich: Kapelmann.

    Google Scholar 

  • — 1869. “Die Geschwindigkeitskurve in der Arterie des Lebender Menschen, Untersuch Physiol.” Zürischer Hochschule 1: 51-69.

    Google Scholar 

  • Fisher, Albert. 1899. Fixierung, Farbung und Bau des Protoplasmas. Jena: Fischer Verlag.

    Google Scholar 

  • Fourier, Jean-Baptiste. 1828. Theorie Analytique de la Chaleur. Oeuvres: Paris. Translated by Freeman A. 1878. The Analytical Theory of Heat. London: Cambridge University Press.

    Google Scholar 

  • Fulton, John F. 1931. Physiology. New York: Hoeber.

    Google Scholar 

  • Gasking, E. 1970. The Rise of Experimental Biology. New York: Random House.

    Google Scholar 

  • Gortner, R. A. 1929. “The Role of Water in Living Organisms.” In: Outlines of Biochemistry. New York: Wiley.

    Google Scholar 

  • Graham, Thomas. 1833. “On the Law of Diffusion of Gases.” Philosophical Magazine 2: 175-204.

    Google Scholar 

  • — 1850. “On the Diffusion of Liquids.” Philosophical Transactions of the Royal Society 140: 1-46.

    Google Scholar 

  • Gregory, Frederick. 1977. Scientific Materialism: Nineteenth Century Germany. Lancaster: Reidel.

    Google Scholar 

  • Haldane John S. and Priestley, J. G. 1905. “The Regulation of the Lung Ventilation.” Journal of Physiology 32: 225-266.

    Google Scholar 

  • — 1935. Respiration, 2nd Edition. Oxford: Oxford University Press, p. 251.

    Google Scholar 

  • Haldane John S. and Smith, J. L. 1896. “The Oxygen Tension of Arterial Blood.” Journal of Physiology 20: 497-517.

    Google Scholar 

  • — 1897. “The Absorption of Oxygen by the Lungs.” Journal of Physiology 22: 231-258.

    Google Scholar 

  • Haldane, John S., Kellas A. S. and Kennaway, E. L. 1919. “Experiments on Acclimatisation to Reduced Atmospheric Pressure.” Journal of Physiology 53: 181-206.

    Google Scholar 

  • Hall, Thomas S. 1969. Ideas of Life and Matter, Chicago: University of Illinois Press, pp. 245-251.

    Google Scholar 

  • Halling, Paul J. 1989. “Do the Laws of Chemistry Apply to Living Cells?” Trends in Biochemical Sciences 14: 317-318.

    Article  Google Scholar 

  • Hardy, William B. 1900. “On the Structure of Cell Protoplasm.” Journal of Physiology 24: 158-210.

    Google Scholar 

  • — 1912. “The General Theory of Colloidal Solutions.” Proceedings of the Royal Society. Series A 86: 601-610.

    Google Scholar 

  • Harrington, Anne. 1996. Re-enchanted Science: Holism in German Cultures from Wilhelm II to Hitler. Princeton New Jersey: Princeton University Press.

    Google Scholar 

  • Hasenohrl, F. (ed.). 1909. Ludwig Boltzmanns Wissenschaftliche Abhändlungen (3 Volumes), Leipzig: University Press.

    Google Scholar 

  • Hill, Archibald V. 1930. “A Thermal Method of Measuring the Vapour Pressure of an Aqueous Solution.” Proceedings of the Royal Society (Lond.) Series A 127: 9-22.

    Google Scholar 

  • — 1930. Colloid Science Applied to Biology. London: The Faraday Society, p. 672.

    Google Scholar 

  • —1956. “Why Biophysics?” Science 124: 1233-1237.

    Google Scholar 

  • Hoofd, L. 1992. “Updating the Krogh Model-Assumptions and Extension.” In: Oxygen Transport in Biological Systems, ed. S. Egginton and H. F. Ross, pp. 197-229. Society for Experimental Biology Seminar Series 51. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hudson, J. A. and Cater, Douglas B. 1964. “An Analysis of Factors Affecting Tissue Oxygen Tension.” Proceedings of the Royal Society (Lond.) Series B 161: 247-258.

    Article  Google Scholar 

  • Jacobson, K. and Dietrich, C. 1999. “Looking at Lipid Rafts?” Trends in Cell Biology 9: 87-91.

    Article  Google Scholar 

  • Jacyna, L. S. 1983. “Immanence or Transcendence; Theories of Life and Organization in Britain, 1790-1835.” Isis 74: 311-329.

    Article  Google Scholar 

  • Joseph D. D. and Preziosi, L. 1989. “Heat Waves.” Review of Modern Physics 61: 41-53.

    Article  Google Scholar 

  • Krogh, August. 1910. “On the Mechanism of Gas-Exchange in the Lungs.” Skandinavisches Archiv für Physiologie 23: 248-278.

    Google Scholar 

  • — 1919. “The Rate of Diffusion of Gases through Animal Tissues.” Journal of Physiology 52: 391-408.

    Google Scholar 

  • Krogh, Marie. 1914/5. “The Diffusion of Gases through the Lungs of Man.” Journal of Physiology 49: 271-296.

    Google Scholar 

  • Krutch, J. Wood. 1950. The Best of Two Worlds. New York: Sloane Press.

    Google Scholar 

  • Kruyt, H. R. and Overbeek, J. Th. G. 1962. An Introduction of Physical Chemistry for Biologists and Medical Students with Special Reference to Colloid Chemistry. New York: Holt, Rinehart and Winston.

    Google Scholar 

  • Kuhn, Thomas S. 1962. The Structure of Scientific Revolutions. New York: Columbia University Press.

    Google Scholar 

  • LeFanu, W. R. 1946. John Hunter: a List of his Books. London: Routledge.

    Google Scholar 

  • Lodish, Harvey, Baltimore, David, Berk, Arnold, Zipursky, S. Lawrence, Matsudaira, P. and Darnell, James. 1995. Molecular Cell Biology, 3rd Edition. New York: Scientific American Books.

    Google Scholar 

  • Loeb, Jacques. 1912. The Mechanistic Conception of Life. Cambridge MA: Harvard University Press (reprinted 1964).

    Google Scholar 

  • Lombard, W. P. 1916. “The Life and Work of Carl Ludwig.” Science 44: 363-375.

    Google Scholar 

  • Longmuir, Iain S. 1987. “Adaptation to Hypoxia.” In:, ed. I. A. Silver and A. Silver, pp. 252-276.

  • Ludwig, Carl F. W. 1852 and 1856. Lehrbuch der Physiologie des Menschen (2 Volumes), Heidelberg: University Press.

    Google Scholar 

  • Maddox, John. 1989. “Heat Conduction is a Can of Worms.” Nature 338: 373.

    Article  Google Scholar 

  • Malone, P. Colm. 1981. “Cell, Membrane and Diffusion: An Essay in Bio-Theory.” Medical Hypotheses1502.

  • Malone P. Colm and Wheatley, Denys N. 1991. “Diffusion: A Bigger Can of Worms.” Nature 349: 373.

    Article  Google Scholar 

  • Mandelbaum, M. 1971. History, Man and Reason: Study of Nineteenth Century Thought, Baltimore: Johns Hopkins Press.

    Google Scholar 

  • Mendelsohn, E. 1965. “Physical Models and Physiological Concepts: Explanation in Nineteenth Century Biology.” British Journal of the History of Biology 2: 201-209.

    Google Scholar 

  • Merz, J. T. 1964. A History of European Thought in the Nineteenth Century. New York: Macmillan.

    Google Scholar 

  • Munson R. (ed.) 1970. New York: Random House, pp. 19-32. (But see also Beckner, M. Organismic Biology, pp. 54-62).

  • Nagel, Ernst. 1970. “Mechanistic Explanation and Organismic Biology.” Man and Nature.

  • Nernst, H.W. 1888. “Zur Kinetic der in Losung Befindlichen Korper I: Theorie der Diffusion.” Zeitschrift für Physikalische Chemie 2: 613-637.

    Google Scholar 

  • Nernst H. W. and Barratt, J. O. W. 1904. “Elektrische Nervenreizung durch Wechelstrome.” Zeitschrift für Elektrochemie 10: 664-668.

    Article  Google Scholar 

  • Nernst H.W. and Ostwald, F. Wilhelm. 1889. “Ñber freie lonen.” Zeitschrift für Physikalische Chemie 3: 120-130.

    Google Scholar 

  • Niven, Sir W. D. (ed.). 1890. The Scientific Papers of James Clerk Maxwell (2 Volumes), Cambridge: Cambridge University Press.

    Google Scholar 

  • Nussbaum, M. 1873. “Fortgezetzte Untersuchungen en uber Athmung der Lungen.” Pflugers Archive 7: 296-300.

    Article  Google Scholar 

  • Olmsted, J. M. D. 1938. Claude Bernard: Physiologist. New York: Academic Press.

    Google Scholar 

  • Ostwald, F. Wilhelm. 1904. “The Faraday Lecture.” Journal of the Chemical Society 85: 506-522.

    Google Scholar 

  • — 1909. Grundriss der Allgemeinen Chemie. Leipzig; Engelman. Translated by W.W. Taylor. 1912. Under the title: Outlines of General Chemistry. London: MacMillan.

    Google Scholar 

  • Overton, Charles E. 1899. “Ñber die Allgemeinen Osmotischen Eigenschaften der Zelle, ihre vermutlichen Ursachen und ihre Bedeutung für die Physiologie.” Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 44: 88-135.

    Google Scholar 

  • Paine, Philip L. 1984. “Diffusive and Non-diffusive Proteins in vivo. Journal of Cell Biology 99: 188s-195s.

    Article  Google Scholar 

  • Perrin, Jean. 1909. “Mouvement Brownien et Realité Moleculaire.” Annales de Chimie et de Physique 118: 1-114.

    Google Scholar 

  • Peters, Reiner. 1986. “Fluorescence Microphotolysis to Measure Nucleocytoplasmic Transport and Intracellular Mobility.” Biochimica et Biophysica Acta 864: 305-359.

    Google Scholar 

  • Peters, Sir Rudolph A. 1930. “Surface Structure in Cell Activity.” Transactions of the Faraday Society 26: 797-807.

    Article  Google Scholar 

  • Polyani, Michael. 1968. “Life's Irreducible Structure.” Science. 160: 1308-1312.

    Google Scholar 

  • Porter, Keith R. 1984. “The Cytomatrix: A Short History of its Study.” Journal of Cell Biology 99: 3s-12s.

    Article  Google Scholar 

  • Riese, W. 1943. “Claude Bernard in the Light of Modern Science.” Bulletin of the History of Medicine 14: 281-294.

    Google Scholar 

  • Robinson Robert A. and Stokes, Robert H. 1956. Electrolyte Solutions. London: Butterworths.

    Google Scholar 

  • Rosenfeld, L. 198. In: Dictionary of Scientific Biography (Vol. I), ed. C.C. Gillespie. New York: Scribner.

  • Ruse, Michael. 1989. Philosophy of Biology. New York: Collier Macmillan.

    Google Scholar 

  • Schenck, Franz. 1902. “Adolf Fick.” Pflügers Archives 90: 313-361.

    Article  Google Scholar 

  • Sherrington, Charles S. 1906. Integrative Action of the Nervous System. New Haven, CO: Yale University Press.

    Google Scholar 

  • Singer, Sydney G. and Nicolson, Garth L. 1972. “The Fluid Mosaic Model of the Structure of Cell Membranes.” Science 175: 720-731.

    Google Scholar 

  • Strassburg, Gusta. 1872. “Die Topographjie der Gasspannungen in thiereschen Organismus.” Pflügers Archive 6: 65-96.

    Article  Google Scholar 

  • Temkin, Oswei. 1946. “Materialism in French and German Physiology of the Early Nineteenth Century.” Bulletin of the History of Medicine 20: 322-327.

    Google Scholar 

  • Thiele, J. 1968. ““Naturphilosophie” und “Monismus” um 1900.” Philosophia Naturalis 10: 295-315.

    Google Scholar 

  • Thompson, D'Arcy Wentworth. 1917. On Growth and Form. Cambridge: University Press, chapter 1.

    Google Scholar 

  • Tyrrell, H. J. V. 1961. Diffusion and Heat Flow in Liquids. London: Butterworth.

    Google Scholar 

  • Ussing, Hans H. 1949. “The Distinction by Means of Tracers between Active Transport and Diffusion.” Acta Physiological Scandinavica 19: 43-56.

    Article  Google Scholar 

  • — 1949. “Transport of Ions across Cellular Membranes.” Physiological Reviews 29: 127-155.

    Google Scholar 

  • Vogel, Steven. 1988. Life's Devices: The Physical World of Animals and Plants. Princeton, New Jersey: Princeton University Press.

    Google Scholar 

  • Von Smoluchowski, Maryan. 1906. “Zur kinetischen Theorie der Brownschen Molekulärbewegung und der Suspensionen.” Annalen der Physike 21: 756-780.

    Google Scholar 

  • Warburg, Otto. 1912. “Ñber Beziehung zwischen Zellstruktur und Biochimischen Reaktionen.” Pflügers Archives 145: 277-291.

    Article  Google Scholar 

  • Wax, N. (ed.). 1954. Selected Papers on Noise and Stochastic Processes. New York: Dover Press.

    Google Scholar 

  • Wheatley, Denys N. 1985. “On the Possible Importance of an Intracellular Circulation.” Life Sciences 36: 299-307.

    Article  Google Scholar 

  • — 1993. “Diffusion Theory in Biology: its Validity and Relevance.” Journal of Biological Education 27: 181-188.

    Google Scholar 

  • — 1999. “On the Vital Role of Fluid Movement in Organisms and Cells: A Brief Historical Account from Harvey to Coulson Extending the Hypothesis of Circulation.” Medical Hypotheses 52: 275-284.

    Article  Google Scholar 

  • Wheatley Denys N. and Clegg, James S. 1994. “What Determines the Basal Metabolic Rate of Vertebrate Cells In Vivo?BioSystems 32: 83-92.

    Article  Google Scholar 

  • Wheatley Denys N. and Malone, P. Colm. 1987. “Diffusion and Perfusion in the Living Cell: Implication for Metabolic Regulation and Organization.” In: The Organization of the Cell Metabolism, ed. G. R. Welch and J. S. Clegg, pp. 171-173. NATO ARI Series 127.

  • — 1993. “Heat Conductance, Diffusion Theory and Intracellular Metabolic Regulation.” Biology of the Cell 79: 1-5.

  • Whitehead, Alfred North. 1926. Science and the Modern World. Cambridge: Cambridge University Press.

    Google Scholar 

  • Wiener, Norbert. 1948. Cybernetics.New York: Wiley.

    Google Scholar 

  • — 1964. Selected Papers No 2. Cambridge, Mass.: Harvard University Press.

    Google Scholar 

  • Wilson, Leonard G. 1968. “Starling's Discovery of Osmotic Equilibrium in the Capillaries.” Episteme 2: 3.

    Google Scholar 

  • Wolffberg, Siegfreid. 1871. “Uber die Stannung der Blutgas in die Lungen capillaren.” Pflügers Archive 4: 465-492.

    Article  Google Scholar 

  • Young, J. Zachary. 1951. In Doubt and Certainty in Science. The BBC Reith Lectures, 1950. Oxford: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agutter, P.S., Malone, P.C. & Wheatley, D.N. Diffusion Theory in Biology: A Relic of Mechanistic Materialism. Journal of the History of Biology 33, 71–111 (2000). https://doi.org/10.1023/A:1004745516972

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004745516972

Navigation