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LOOKING FROM THE INSIDE AND FROM THE OUTSIDE

ABSTRACT. Many times in mathematics there is a natural dichotomy between describing
some object from the inside and from the outside. Imagine algebraic varieties for instance;
they can be described from the outside as solution sets of polynomial equations, but one
can also try to understand how it is for actual points to move around inside them, perhaps
to parameterize them in some way. The concept of formal proofs has the interesting feature
that it provides opportunities for both perspectives. The inner perspective has been largely
overlooked, but in fact lengths of proofs lead to new ways to measure information content
of mathematical objects. The disparity between minimal lengths of proofs with and without
“lemmas” provides an indication of internal symmetry of mathematical objects and their
descriptions. A principal observation of this paper is that mathematical structures can be
embedded into spaces of logical formulae and inherit additional structure from proofs. We
shall look at finitely-generated groups, rational numbers andSL(2,Z), and examples from
topology and analysis.

Why can a logical formula be “hard to prove”?Truth andprovability are
both connected to questions of algorithmic complexity. The existence of a
polynomial time algorithm for deciding whether a propositional formula
is a tautology or not is equivalent to the famousP = NP problem. The
existence of polynomial-size proofs for all propositional tautologies is re-
lated to the complexity problemNP = co-NP. In predicate logic the set of
tautologies is not algorithmically decidable among all formulae, and this
implies that minimal proofs can have non-recursive size as compared to
the size of the tautology.

It is not only theabsolutesize of proofs which matters. The minimal
size of a proof of a given formula may be much shorter when one is per-
mitted to use “lemmas” than when one is required to give a “direct” proof.
These notions are made precise in formal logic through the rules ofmodus
ponensandcut. Concrete examples with explicit lower bounds are given
in (Orevkov 1982; Orevkov 1993; Statman 1974; Statman 1978; Statman
1979; Tseitin 1968). The exposition (Carbone and Semmes 1997) provides
an introduction to these matters.

The existence of indirect proofs of a given formula which are much
shorter than the direct proofs seems to reflect the presence of some kind of
symmetryin the underlying mathematical constructions and descriptions.
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This principle is not at all understood. It is not even clear how to formulate
it precisely. In this paper we explore these issues and try to bring some of
the ideas of formal logic closer to ordinary mathematics. Thelengthsof
proofs provides a way to measure the “information” content in mathemat-
ical objects. If one used onlydirect proofs this would, roughly speaking,
be just a measurement of the size of an explicit construction. By allowing
lemmasthe lengths of proofs yields a more subtle measurement of inform-
ation which has not been studied as such. In fact, one can make a variety
of different measurements by imposing restrictions on the logical nature of
the lemmas.

In an indirect proof one can code many substitutions implicitly which
would have to be carried out explicitly in an actual construction. Restric-
tions on the logical nature of the lemmas – such as the number of nested
quantifiers – lead to restrictions on the complexity of the substitutions.
The efficiency of the coding of the substitutions is a reflection ofinternal
symmetry.

These issues come out clearly in the context offeasible numbersas
studied in (Carbone 2000a). There one seescycling in proofs and the way
that this cycling is related to the logical nature of the lemmas. In this
context of natural numbers one can have a lot of cycling in short proofs
of feasibility, and a great deal of compression in these proofs. The length
of the shortest proof of the feasibility of a given number provides a meas-
urement of information, as above. More generally, one can use theidea
of feasibility to code mathematical constructions into formal proofs and
therefore as a tool for measuring information content in new ways. Note
that implicit descriptions of constructions provided by proofs with lemmas
can be converted into explicit constructions through the procedure of “cut
elimination” (Girard 1987b; Takeuti 1975; Carbone and Semmes 1997),
but this can lead to large expansion. Related matters concerning feasibility,
formal proofs, and cut elimination are discussed in (Carbone and Semmes
1999; Carbone and Semmes 2000).

The general idea of feasibility can be applied tofinitely-generated
groups(as in Section 6 below). Again we think of the length of the shortest
proof of the feasibility of an element of the group as a measurement
of its “information” content. This case is very different from that of the
natural numbers because of the way that group relations can affect the
“information” in the elements of the group. The usual word metric is also
sensitive to the group relations, but using the lengths of proofs one can
take into account additional symmetry. For instance, in cyclic subgroups
the measurements coming from lengths of proofs are already nontrivial,
independently of the relations. One does not get as much compression as
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for the natural numbers (which have more “symmetry”), but some of the
arguments for natural numbers carry over to groups. Thus even for free
groups the word metric is different from “lengths of proofs”. They are
different in the treatment of asymptotic directions, and in the distinction
between those that follow cyclic subgroups and those that do not.

This approach to groups was motivated in part by (Carbone 2000c).
There one starts with a proof, considers itslogical flow graph, which traces
the flow of occurrences of formulae in a proof (see (Buss 1987; Carbone
1997)), and then associates to the graph a finitely-presented group by read-
ing the cycles in the graph. Short proofs of the feasibility of large numbers,
for instance, lead to strongly distorted groups. In this paper we go in the
reverse direction, from groups to proofs.

We shall consider the idea of feasibility in the context ofrational num-
bers. One can imagine that these measurements of information can be
related to number-theoretic properties, but we do not know any concrete
results at this time. Short proofs of feasibility of complicated numbers
can be facilitated through natural dynamical systems, such as the action
of SL(2,Z) on Q by projective transformations. That is, the methods ap-
plicable to abstract groups can also be used for groups of transformations
on Q.

We shall consider well-known constructions intopology. In spirit these
constructions are compatible with the idea of feasibility. We shall describe
an example of atorus bundlein which there is exponential distortion in-
duced by a simple cycling which is similar to the cycling and substitutions
that can occur within proofs. We shall also look at ordinary differential
equations and exponentiation with continuous parameters.

Topological notions do not lend themselves to such clear formalization
as for groups and numbers, but they also serve other purposes. We men-
tioned before that basic questions of complexity theory have equivalent
formulations in the context of logic, and also that there can be a large gap
between the minimal size of proofs without lemmas of a given statement
and proofs with lemmas. There is no simple model to explain when the
minimal size of a proof or the relative sizes of proofs with and without
lemmas should be polynomial or exponential. In the topological setting
there are examples with intricate structure but simple geometric explana-
tion which might be indicative of more general models. In particular the
exponential growth which can occur has a nicely geometric realization.

Ordinary mathematics should be seen as a potentially rich resource of
interesting examples for the study of formal proofs, and one of the pur-
poses of this paper is to bring out some of these examples, and the general
way in which the concept of feasibility can be used to this end.
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One should compare the present discussion of information content
with Kolmogorov complexity and algorithmic information theory. (See
(Kolmogorov 1968; Chaitin 1987; Chaitin 1992; Li and Vitányi 1990), for
instance.) Part of the point here is to loosen the degree of implicitness, and
consider intermediate measures suggested by logical derivations.

Before we proceed to more precise discussions of information and com-
plexity, let us begin with some basic questions concerning the nature of
descriptions.

1. INNER AND OUTER DESCRIPTIONS

What is a set? How can a set be described? These are basic questions which
reverberate in mathematics down to the foundations. Let us consider them
here in the practical way of what mathematicians actually do.

There is a basic distinction between what one might callinnerandouter
descriptions of sets. For an outer description one might have a given set
A embedded into some larger spaceX of simple structure, and one may
describeA by specifying rules which determine which elements ofX are
in A. An inner description might provide a listing of the elements ofA,
with more concern for the internal structure ofA than an embedding of it
into a larger space.

Let us consider an example. How can we describe a curve0 in
the plane? One answer might be to provide a parameterization of it,
(x(t), y(t)), t ∈ R. Another possibility is to define0 as the set of solutions
to some equation,

0 = {(x, y) ∈ R2 : F(x, y) = 0},
whereF(x, y) is some function.

These are very different ways to describe a curve. In the first case it
might be easy to generate many points on the curve without having a gen-
eral understanding or test for when a point lies on it. For inner descriptions
it may not be clear how many points are needed to have a reasonably
accurate picture of the set in question, and one may have to be careful
about exploring well one part while missing another. In the second case
one might have a simple characterization of the elements of the set without
a clear idea of how to find actual solutions.

Consider the case where we define0 as the zero set ofF(x, y) with F
a polynomial. A basic point about the algebraic notion of a plane curve is
that it may not be compatible with the notion of a parameterization. Over
the real numbers the zero set might be empty, or have several compon-
ents, including compact components, etc. Some of these problems can be
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alleviated by working with complex numbers and making assumptions of
irreducibility. A more interesting incompatibility with the idea of a para-
meterization is that the curve might not be rational, so that it may not be
reasonable to try to parameterize the curve with the ground field. It might
be an elliptic curve or a curve of higher genus. (See (Kirwan 1992) for a
discussion of algebraic curves.)

If we work over a field like the rational numbers, there might be more
basic problems about the existence of points on the curve. (Someone once
pointed out to us that a great idea in algebraic geometry is that one can
study sets of equations independently of whether one knows that there are
solutions. Part of the point is that the underlying choice of field can change,
and the sets of solutions with it. The set of solutions might be empty for
one field, and then be quite large for another field.)

Instead of thinking algebraically, we can think more in terms of calcu-
lus. We should be careful about what kind of functions we allow, though.
For instance, any closed subset of the plane can be realized as the zero set
of aC∞ functionF . (TakeF(x, y) = exp(−1(x, y)−1), with 1(x, y) a
function on the plane which gives a regularized version of the distance to
the closed set, as on page 171 of (Stein 1970).) Thus theC∞ property is
too flexible by itself to provide a practical way to describe sets. We can
avoid this problem by restricting ourselves to smooth functionsF whose
gradient∇F does not vanish on the zero set ofF . This is the hypothesis
of the implicit function theorem, which then implies that the zero set ofF

is locally given by a smooth curve. One can have singularities at critical
points, as in the case of polynomials, and there are theories for analyzing
these.

This is a very basic example which hopefully illustrates well what we
have in mind by “inner” and “outer” descriptions. We also see how the
context matters. It is very different to think algebraically in terms of poly-
nomials than in terms of more general functions. Calculus permits a more
flexible idea of function, while algebra is more rigid in some ways, but
enjoys more flexibility of context, in that one might switch to the rationals
or other ground fields.

If we want to make an inner description by listing points, one can ask
that this listing respect the structure of the situation, like smoothness or
algebraic properties. In topology one would normally impose continuity
conditions on mappings, and so on.

These ideas show up in many different contexts in mathematics. For in-
stance, one can take some finite setA as an alphabet, and look at the setA∗
of all wordsgenerated by elements ofA, i.e., all finite strings of elements
of A. One might have alanguageL based onA, which is to say a subset
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of A∗. A priori L could be anything. How might it be described?L might
be effectively enumerable, so that there is an algorithm for generating all
of its elements. This is a kind of inner description. Instead there might be
an outer description, like an algorithm that says when a word lies inL.

Roughly speaking, inner descriptions correspond to ways to produce
effective witnesses, while outer descriptions correspond to ways to check
membership and to decide yes/no questions.

If one knows thatL is pretty “thick” – i.e., one has reasonably large
lower bounds on the number of elements ofL among the words of length
n – then one might be able to get a practical way to list the elements of
L from the algorithm for deciding whether a word lies inL or not. One
simply goes through all the words and keeps the elements ofL. This need
not work very well ifL is too sparse. In the case of integer solutions of
a polynomial equationF(x, y) = 0, it may be very difficult to tell if
there are any solutions (Hilbert’s tenth problem) or to know how many.
In general the existence of integer solutions of polynomial equations is
algorithmically undecidable, but this is not known for the rationals or other
fields.

Conversely, there are sets which are effectively enumerable but for
which there is no algorithm to decide membership.

There are nice variations on this theme of thickness and sparseness of
languages in the context of the P = NP problem. See (Johnson 1990, 87).

As another example, suppose that we have ann× n matrix of complex
numbers, which we think of as defining a linear mappingT on Cn. A
complex numberλ is an eigenvalueof T if λI − T is not invertible as
a linear mapping onCn. The set of eigenvalues is called thespectrumof
T . One can define it more concretely as the set of zeros of the polynomial
equation

det(λI − T ) = 0.

This is a perfectly good definition of the spectrum, but how does one actu-
ally find eigenvalues? This is a tricky question whose numerical solution
is of great importance and much studied.

Dynamical systems provide another interesting case to consider. One
might be able to generate a good approximation to an attractor quickly
from the inside, looking at iterates of a critical point for instance, while the
“rules” which govern the geometry of the attractor might be hard to see.
The number of points needed to have an accurate picture of the attractor
might be unclear as well.

Inner and outer descriptions need not be very compatible with each
other. In mathematics one is often much more accessible than the other.
Which one is more accessible can depend on the context.
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In the next section we shall discuss the particular case of the set of
all tautologies inside the space of formulae. In Section 3 we discuss how
individual formulae can in turn be used to describe subsets of other sets
(equipped with some structure), and in Section 4 we consider the general
relationship between algebraic structures and points inside a set.

In Section 5 we take up the notion offeasibility. This provides a way
to embed a mathematical structure inside the space of formulae (with re-
spect to some language). The combinatorics of formal proofs then induces
newstructure on the original mathematical object. For this thecut rule is
particularly relevant. This idea is developed through examples in Sections
5–10.

This paper is intended to be accessible to a broad audience. Readers not
very familiar with formal proofs may find (Carbone and Semmes 1997)
a useful source of background material. See also (Carbone and Semmes
1999; Carbone and Semmes 2000) for some connected topics.

2. THE SET OF TAUTOLOGIES

The set of tautologies provides an interesting case to consider for inner
and outer descriptions. One can consider either propositional or predicate
logic.

Imagine fixing a collection of variables and the rest of a logical lan-
guage, so that one has specified a notion of formulae. Let us think of the
set of all formulae as being relatively simple (e.g., a recursive set), and
imagine that we are interested in understanding the set of all tautologies as
a subset of it through both inner and outer descriptions.

For an inner description of the space of all tautologies we can use
proofs. The rules for building proofs provide a way to move around in the
space. It may not be easy to reach a particular tautology, but in principle
we can go anywhere in the space through proofs.

Given two tautologies we can make a new one through binary logical
rules. There are numerous ways in which to wander around in the space
as a whole. The structure of the possible ways to move within the space
reflects its geometry.

The idea of the relationship between the geometry of a space and the
ability to move around in it is much studied in other parts of mathematics.

What about outer descriptions? We can usesemanticsto provide a kind
of outer description of tautologies. The completeness theorem says that the
set of provable formulae is the same as the set of formulae which are “true”
in all interpretations. We can think of each interpretation as a test. Although
there are many such tests (and indeed the set of predicate tautologies is
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algorithmically undecidable, under modest conditions on the language),
it is remarkable nonetheless that tautologies enjoy these outer and inner
descriptions simultaneously. One can argue that it is reasonable that neither
description is very simple given that we are lucky enough to have both.

In the case of propositional logic some of these issues emerge more
clearly. The “outer” characterization of tautologies as being the formulae
which are true in every interpretation implies that the set of tautologies is
co-NP. If P = NP (and hence P = co-NP) then there is a polynomial-time
algorithm which tells whether a propositional formula is a tautology. This
would be a very effective outer description.

It is not known exactly how the size of a tautology is related to the size
of its shortest proof. The existence of short proofs is a way to say that the
inner description of propositional tautologies through proofs is efficient.

See (Urquhart 1987) concerning some interesting structure connected
to “hard” examples of propositional tautologies and interpretations.

Propositional and predicate logic provide very basic examples of sets
in mathematics whose descriptions one would like to understand better.
Another interesting example is provided by Brouwer’s intuitionistic logic.
In this system disjunctions and existential quantifiers are treated differently
from classical logic. One cannot assertA ∨ B without actually having a
proof of one ofA or B; in particular, one does not takeA ∨ ¬A as being
automatic. Similarly, one cannot assert∃xR(x) without having a proof
of R(t) for some concrete termt . The structure of proofs is somewhat
simpler in this case than in classical logic, but the notion of interpretations
for characterizing tautologies (in intuitionistic logic) is more complicated.
(Tautologies in intuitionistic logic are always tautologies in classical logic,
but the reverse is not true.)

We should mention that this is the same Brouwer who proved the
famous fixed-point theorem.

Logical formulae can describe or involve mathematical objects. The
existence of short proofs leads to efficient inner description for the set
of tautologies. A proof of a formula can reflect the structure of the un-
derlying objects. Intuitionistic and classical logic differ both in the way
that they describe mathematical objects, and in the way that their sets of
tautologies are described. For Brouwer a proof is a kind of function, where
a rule like modus ponens corresponds to composition of functions. This is
connected to the theory of Lambda Calculus, which associates functions
to intuitionistic proofs in a way that reflects their internal structure.
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3. DESCRIBING SETS THROUGH LOGICAL FORMULAE

Mathematical logic provides interesting ways to make descriptions of sets.
The most basic method comes from model theory for first-order logic. The
reader who is not familiar with these concepts need not lose heart, we
simply want to have an impression in mind.

With this method, one can talk about structures and defining special
subsets of a given set abstractly, independently of any specific set. Before
we say what this means in general, let us think about groups. There is an
abstract idea of groups that exists independently of any particular group.
There is also a way to talk about certain subsets of a group, like the sub-
set of elements of a certain order, or the center of the group, that exists
independently of any particular group.

The idea of abstract mathematical structures can be formalized through
a logical language and a set of axioms for the objects involved. In a
first-order language one has the usual logical connectives which repres-
ent “and”, “or”, “not”, “implies”, and the quantifiers “for all” and “there
exists”, and there are additional symbols which reflect the particular struc-
ture. These are symbols for variables, constants, functions, and predicates
(relations). Each function symbol and predicate has a fixed number of argu-
ments, called the arity. The number and the arities of the function symbols
and relations depend on the given mathematical structure.

For example, for the theory of groups one uses one relation, the bin-
ary relation of equality =. One can use two function symbols, one binary
and one unary, which correspond to group multiplication and inversion.
A separate function symbol for inversion is not really needed, though,
because existence and uniqueness for inverses can be given through the
group axioms. There is one constant symbol, corresponding to the identity
element of the group.

These are all just symbols, however, with no underlying set. This is
because a first-order language concerns theidea of a group rather than a
particular one.

One also needs the notion of aterm, which is an expression constructed
from variables and constants using function symbols. Think of a formal
expression for groups, some product of variables, possibly with inverses.
The functions and relations take terms for their arguments, as in the com-
positions−1t and the relations = t in the context of groups, wheres and
t are terms.

A relation with a choice of arguments – likes = t – is a logical formula
in a first-order language, an atomic formula. Informally, it is a statement
which might be true or false, depending on the context (such as a par-
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ticular group). These atomic formulae can be combined with the logical
connectives to build more complicated formulae.

Thetheoryof groups is given by the usual axioms governing the group
operations, such as the associativity axiom. One can have other theories,
based on different languages or axioms.

All of this exists purely at the level of formal symbols. Roughly speak-
ing, amodelis a specific choice of a set and interpretations in or on it for
the constants, functions, and relations. The variables would be interpreted
as taking values in the set. The choices for the constants, functions, and
relations should satisfy the axioms of the theory. Thus actual groups are
models for the first-order theory of groups, with a set of group elements,
the usual notion of equality, a choice of group operation, etc. There are
many different kinds of groups, many different models, but one first-order
theory of groups.

Another example is provided by arithmetic. One can formalize it with
the binary relations= and<, operations like addition and multiplication,
and the well-known Peano axioms. The usual notion of natural numbers
provides a model for this theory, but there are nonstandard models too.

A first-order language provides the possibility to make universal recipes
for describing certain sets, a set for each choice of model. Each formula
in the language defines such a recipe. Ifφ(x, y, z) is a formula, with free
variablesx, y, andz and no others (for instance), and if we have a specific
model based on a setS, then we get a subset ofS × S × S, namely the
set of triples(x, y, z) for whichφ(x, y, z) is a valid formula. For example,
one can define the center of the group in this way, or the set of elements of
order 2.

One can also define sets that depend on the particular model, by using
specific elements of the underlying setS in the definition. This can be
viewed in terms of the situation in the preceding paragraph, by taking a
sectionof the type of set defined above. That is, one can assign particular
values to some of the free variables, to get a subset of a Cartesian product
of S’s, with the number of factors in the Cartesian product reduced from
what it was before by the number of free variables to which values are
assigned.

One can think of these as ways to make “outer” descriptions of cer-
tain classes of sets in terms of logic. It is rather sophisticated, because of
the possibility of quantifiers. Without quantifiers it is already tricky, but
quantifiers make it even more complicated. Many problems of algorithmic
decidability of sets involve finding a uniform way to eliminate quanti-
fiers. In the description of some sets, quantifiers cannot be eliminated,



LOOKING FROM THE INSIDE AND FROM THE OUTSIDE 395

and even when quantifiers are eliminable, the length of the quantifier-free
description often becomes extremely large, and difficult to handle.

4. SOME COMMENTS ABOUT ALGEBRA AND POINTS

A common phenomenon in algebra is to have algebraic structures which
make sense abstractly, but which arise classically in more geometric ways,
involving points in sets. A fundamental example is given by groups, with
the abstract notion of groups on the one hand, and groups of transforma-
tions on sets on the other. Another basic example is the following. LetX be
a compact Hausdorff topological space, and letC(X) denote the space of
all complex-valued continuous functions onX. This is an algebra, which
is commutative, and even aC∗-algebra. One can also talk about algebras
abstractly, independent of some kind of realization on a space like this.

If X andC(X) are as above, then one can recover points inX from the
algebraic structure inC(X). If p is a point inX, then{f ∈ C(X) : f (p) =
0} is a maximal ideal inC(X), and conversely, every maximal ideal arises
in this manner. Given another compact Hausdorff spaceY , one can use
this fact to show thatX is homeomorphic toY if and only if C(X) is
isomorphic toC(Y ) as an algebra. One can characterize the algebras that
arise this way, as commutativeC∗-algebras. See (Rudin 1991; Simmons
1963). There are analogous stories in the context of algebraic varieties, but
let us stick to topological spaces for simplicity.

In principle, compact Hausdorff spaces are described completely by
the algebra of commutative functions on them, but how does this work
practically? How can one see inside the space through the algebra? In
some kind of practical way, and not just in principle? This turns out to
be subtle and mysterious. There is a different way to try to represent the
structure of a space in purely algebraic terms, through which one can re-
cover topological invariants of the underlying space from direct algebraic
constructions. See (Connes 1994). This approach also gives meaning to
these topological invariants in non-commutative settings where there need
not be “points” in the classical sense, and this is a matter of great current
interest (in a number of directions, including mathematical physics).

This is similar in spirit to the relationship between operational and
denotational semantics in programming languages. See (van Leeuwen,
1990), for instance.

It can happen naturally that one has an algebra in hand, but not the
underlying points that one might want (at least not directly). For example,
letT be a linear transformation acting on someCn. Consider the algebra of
linear transformations generated byT , which amounts to saying all (com-
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plex) polynomials inT . For this we include the identity transformation on
Cn, which one can think of asT to the 0th power, and which is associated
to the constant polynomial equal to 1. This is a nice commutative algebra,
but what are the underlying “points”?

Suppose thatT is defined by a diagonal matrix, with diagonal entries
λ1, . . . , λn ∈ C. These diagonal entries are then the “points” in a natural
way. If we letX denote the set of them, then there is a simple correspond-
ence between the algebra of linear transformations generated byT and
the algebra of restrictions of complex polynomials onC to X. The latter
is isomorphic to the algebra of complex functions onX. Note that some
elements ofX may occur more than once as a diagonal entry ofT .

If T is not diagonal, but is diagonalizable, then there is a similar cor-
respondence for the algebra that it generates, even if this might not be
obvious at first glance. The diagonal entries in the diagonalized form are
the same as the eigenvalues ofT . If T is not diagonalizable, but has a
Jordan canonical form with nonzero parts off of the diagonal, then the
notion of “points” underlying the algebra is more complicated, because of
nilpotency. In particular, the restrictions of polynomials onC to the set
of eigenvalues does not tell the whole story, and one does not reduce to
functions on this set in the end. The nilpotency leads to extra structure
around some (and maybe all) points in the spectrum.

There are versions of this for linear operators acting on infinite-
dimensional spaces, in which the natural notion of spectrum is a set which
may be infinite, and whose topological structure becomes important. See
(Rudin 1991). This is connected to the earlier discussion, concerning the
algebra of continuous complex-valued functions on a topological space.
There are also issues of diagonalizable versus non-diagonalizable linear
operators, so that there can be more structure involved than just the spec-
trum as a set of points, or as a topological space, as in the case of finite
matrices.

Another basic situation concerning algebraic structures and underlying
“points” is provided by Boolean algebras. In this case, the connection with
points is somewhat simpler, as in Stone’s theorem. (See (Halmos 1974).)

In proofs, there is a kind of algebraic structure involved, and it is also
natural to think of proofs in terms of sets with points (such as atomic
formulae) and combinatorial structure. This is a remarkable coexistence.

This idea is illustrated by (Carbone 2000b), in which theCraig interpol-
ation theorem(Craig 1957) is discussed in a combinatorial context without
the algebraic structure of connectives. This combinatorial view of points
in a proof is also present in the notion oflogical flow graphs(Buss 1991;
Carbone 1997), which trace the logical connections within a proof, and in
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the study ofcyclesin these graphs, as in (Carbone 1997; Carbone 2000a;
Carbone 2000c). Logical flow graphs are related to the earlier notion of
proof nets(Girard 1987a). The concept ofinner proofs from (Carbone
1997) gives another reflection of the idea of points moving around inside
proofs.

5. FEASIBLE NUMBERS

There has been much concern in mathematics about abstraction which
may not reflect anything concrete or “real”. Extremely large numbers were
troubling to some, and there was the idea that they should be treated
differently from a small number like 37 which is closer to ordinary
existence.

The first mathematical treatment offeasible numberswas given in
(Parikh 1971). (The philosophical discussions go back to Mannoury, Poin-
caré, and Wittgenstein.) For this we start with the first-order theory of
arithmetic, and we add a unary predicateF . Roughly speaking,F(x) is
interpreted as meaning thatx can be constructed in some feasible manner.
We shall use the arithmetic operations+ (addition), ∗ (multiplication),
ands (successor). In addition to the usual axioms of arithmetic, we add the
following axioms forF :

F(0)
F : equality x = y → (F (x)→ F(y))

F : successor F (x)→ F(s(x))

F : plus F (x) ∧ F(y)→ F(x + y)
F : times F (x) ∧ F(y)→ F(x ∗ y)

In other words, 0 is considered to be feasible, and the property of feasibility
is closed under equality, successor, addition, and multiplication.

For this discussion we do not permit ourselves to use induction over
F -formulae. Otherwise we could prove∀xF(x) in a few steps. Note that
if we add the axiom∃x ¬F(x), asserting the existence of a nonfeasible
number, then we still get a consistent system, for which the models are
nonstandard models of arithmetic.

The idea instead is that if we can write down a proof ofF(t) for some
term t , then that should mean thatt was “feasible” in a reasonable sense.
Of course we can always proveF(n) for any natural numbern in about
n steps, using the successor rule repeatedly. (Strictly speaking, we are
abusing the first-order language of arithmetic here, andn really means
the result of applyingn times the successor function to 0. Syntactic tech-
nicalities can detract from the main points, and we shall generally not pay
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attention to them here.) However, we can use the size of a proof ofF(n)

as a measurement of the feasibility ofn.
This is an appealing point. We can use proofs to make descriptions

of mathematical objects, and to make measurements of their complexity.
We shall leave aside the foundational issues and simply use the idea of
feasibility as a tool for studying mathematical structures.

To make precise the measurements one should be careful about the
formalization of proofs. We shall not discuss this in detail, but there are
a couple of important points. The first is that we consider only proofs in
which the result of any intermediate step is used only once. Thus proofs
have tree-like structures. The second concerns the role of the “cut” and
contraction rules in sequent calculus and their counterparts in other sys-
tems. Roughly speaking, the cut rule allows indirect reasoning through
lemmas. It is a generalization of the deduction rule modus ponens, which
says that if you knowA and if you know thatA impliesB, then you can
concludeB. Without the cut rule, a proof ofF(t) for some termt would
have to exhibit an explicit construction of the termt . The contraction rule
allows multiple occurrences of a formula to be combined into a single
one. In combination with cuts, contractions permit a piece of information
to be used several times. With cuts and contractions, one can make short
proofs of feasibility which provide only implicit descriptions, as we shall
soon see. There are effective methods for converting proofs with cuts into
proofs without them, at the cost of (possible) great expansion in the proofs.
See (Girard 1987b; Takeuti 1975; Carbone and Semmes 1997).

Let us mention one more point. In (Parikh 1971), anF : inequality
axiom is included, to the effect that ify is feasible andx < y thenx is also
feasible. For the historical concern about large numbers this is a reasonable
requirement to consider, but we have omitted it intentionally. It does not
fit as well with the idea of a proof of feasibility ofF(t) as providing a
description oft , and it is less convenient for other mathematical contexts.

Let us now consider the concrete matter of how one might give short
proofs of feasibility of numbers. We follow the examples in (Carbone
2000a).

As above, one can get a proof ofF(n) in aboutn lines through repeated
use of theF : successor axiom. Using theF : timesaxiom repeatedly
instead, one can get a proof ofF(2n) in aboutn lines.

Here is another method. We know that

F(x)→ F(x2)(1)

by theF : timesaxiom. In particular,

F(22j )→ F(22j+1
)(2)
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for all j = 0,1,2, . . . We can combinen − 1 copies of (2) together with
the feasibility of 2 (i.e.,F(s(s(0)))) to get a proof ofF(22n) inO(n) lines.

In this argument we won an exponential over the previous one. The
price for this is that we implicitly used cuts and contractions to make the
building blocks and to combine them. The proof of feasibility did not fur-
nish a direct construction (of 22n). Concerning the contractions, to prove
F(x) → F(x2), one initially needs two copies ofF(x), and these are
contracted into one.

We can win another exponential using quantifiers. That is, one can
prove the feasibility of 22

2n

in O(n) lines. The proof is constructed from
the following building blocks. First we have that 2 is feasible, as above.
Next we have that

∀x(F (x)→ F(x2))(3)

from theF : timesaxiom. This is the same as before, except for the addition
of the quantifier. The last building block is

∀x(F (x)→ F(xk))→ ∀x(F (x)→ F(xk
2
))(4)

That is, we can use∀x(F (x)→ F(xk)) twice, the second time replacingx
with xk , to get∀x(F (x)→ F(xk

2
)). This is much better than in (2), since

we are squaring the exponent instead of multiplying it by 2. By combining
a series of these last building blocks, withk = 22j , j = 0,1, . . . , n − 1,
we can conclude that

∀x(F (x)→ F(x2))→ ∀x(F (x)→ F(x22n

)).(5)

This can be combined with (3) to get a proof ofF(222n

) in O(n) lines.
This approach has some interesting features. As observed in (Carbone

2000a), theF : timesaxiom is used only once, in the proof of (3). The
proof of (4) is simply based on a substitution, and does not make use of any
axiom forF . A contraction is also used in the proof of (4), in an interesting
way; one employs∀x(F (x) → F(xk)) twice to getF(x) → F(xk) and
F(xk) → F((xk)k), and the two copies of∀x(F (x) → F(xk)) can be
contracted into each other. This is a standard point about quantifiers and
contractions. They permit two occurrences of a formula to be contracted
into one, even though the formulae have very different histories within the
proof. More precisely, the quantifiers help to obtain formulae which are the
same, and hence can be contracted, even if they come from formulae which
are different, because of different terms inside. This kind of substitution
did not occur in the previous propositional argument.
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Notice that in this proof we did not have nesting of quantifiers. There
are more elaborate proofs, due to Solovay, which use many nested quan-
tifiers to get short proofs of very large numbers defined through towers of
exponentials of arbitrary height. One gains an extra exponential with each
nested quantifier. See (Carbone 2000a) for more information, and aspects
of the dynamical structure of these proofs.

With these examples in mind, let us think about the type of description
of a number provided by a proof of feasibility. In a proof ofF(2n) in
aboutn lines using multiplications, we really make an explicit construc-
tion. We cannot expect to do better than win an exponential, because our
most powerful operation is multiplication.

The other arguments are increasingly less explicit, with different types
of combinations or substitutions. There is a kind of balance in this; as
the proofs become shorter, their internal structure becomes more com-
plicated, and there is increasing difficulty in the unwinding of implicit
descriptions into explicit constructions. The internal structure of the proofs
is more complicated both in terms of nested quantifiers, and in terms of
nested cycles in the logical flow graphs of the proofs. See (Carbone 2000a;
Carbone 2000c).

In giving short proofs of feasibility of large numbers like 22n or 222n

,
we are using the special structure of these numbers, a kind of internal
symmetry to them. This internal symmetry is reflected in the existence of
short proofs, but there are no theorems about this. In general we should not
be able to win so much compression using cuts, because arbitrary numbers
will not have so much internal symmetry.

The mathematical idea of feasibility provides a way to embed arith-
metic inside a space of formulae. Formal proofs then lead to new structure
for natural numbers. This structure is quite different from the ones that are
usually considered, and the cut rule plays an important role in this.

6. GROUPS

In recent years, much attention has been devoted to the study of the struc-
ture in finitely-generated groups which can be seen through the word
metric. (See (Gromov 1993), for instance.) One fixes a generating set, and
defines the distance from an elementg of the groupG to the identitye to
be the minimal length of the word that representsg. This can be extended
to a left-invariant metric on all ofG.

We can try to make other kinds of uniform measurements in the theory
of groups using proofs and the idea of feasibility. Again let us introduce a
unary predicateF , applied now to elements of our given groupG. Let us



LOOKING FROM THE INSIDE AND FROM THE OUTSIDE 401

also fix a finite subsetS of G – we can think of it as a generating set, but
actually the concept makes sense in any case – and require thatF have the
following properties:

F(e)

F (γ ) for eachγ ∈ S
F : equality x = y → (F (x)→ F(y))

F : composition F(x) ∧ F(y)→ F(xy)

F : inverse F (x)→ F(x−1)

Here we writexy for the group composition andx−1 for the group inverse.
The length of the shortest proof of the feasibility of an element ofG

can be taken to be some kind of measurement of its complexity. It is a
well-defined function onG because of theF : equality rule. The length
is always bounded by a constant multiple of the distance toe in the word
metric. We can make examples of proofs of feasibility which parallel the
ones in the previous section. Ifx ∈ G is feasible, then we can make a proof
of F(xn) in O(n) lines, by repeated use of theF : composition rule. We
can be more careful and get a proof ofF(x2n) in O(n) lines by making
proofs of

F(x2j )→ F(x2j+1
)(6)

for j = 0,1,2, . . . , n − 1 as in (2) and combining them. This argument
requires only propositional logical rules. If we use also quantifiers, then
we can get a proof ofF(x22n

) in O(n) lines as before. That is, the proof
that we outlined before for (4) works just as well here.

The last method that we mentioned in Section 5, based on nesting of
quantifiers, does not work directly in the theory of groups. To apply it
to get a universal nonelementary distortion in groups (i.e, short proofs of

F(b)→ F(bN) with N a tower of exponentials like 22222

), we would need
to permit ourselves to quantify over integers as well as group elements.
Indeed, for this argument we need to make substitutions into exponents,
and this means substitutions with integers. The other arguments require
only substitutions of group elements.

At any rate, we can make short proofs of feasibility using the first
two methods. Given a finitely-generated group, these methods can be
combined with the cancellation induced by the relations to yield even
shorter proofs of feasibility. For example, letG be the (Baumslag-Solitar)
group with generatorsx andy and the single relationy2 = xyx−1. Thus
y2m = xmyx−m. The feasibility ofxm implies that ofxmyx−m, and com-
bining this with the earlier arguments one can get a proof of the feasibility
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of the group elementy222n

in O(n) lines. (See (Gromov 1993) for other
examples of finitely-presented groups with distortion.)

Although in a sense we are simply transferring the earlier arguments
for integers (from Section 5) to the theory of groups, there is an important
difference between the two situations. In groups there are many ways to
go to infinity. In a free group, for instance, every infinite (reduced) word
describes a path to infinity in the associated tree. (A reduced word is one
in which a generatorx never precedes or follows its inversex−1.) Our
arguments about the integers lead to a lot of compression for proofs of
feasibility along the direction of a cyclic subgroup{an}, at least for some
n’s. In the word metric, all directions towards infinity in the free group are
practically the same, but in the geometry of feasibility the cyclic subgroups
are very special compared to generic directions. One can think of feasib-
ility as providing a way to measure the amount of algebraic structure in a
given direction.

This point can be seen in broader terms. The amount of compres-
sion that one can get for a notion of feasibility in some context can be
seen as a measurement of the internal structure of the object in question.
The examples in Section 5 reflect the internal symmetry in the case of
arithmetic.

In the spirit of the recent theory of automatic groups (Epstein et al.
1992), one can be interested in representing a group through its set of
words. We can enhance the notion of feasibility to be sensitive to the
different ways that a group element is represented by words. Suppose
now that our groupG is finitely presented, with a finite setR of relations
wi = e which express the triviality of the wordswi. We can introduce a
new unary predicateT on words so thatT (w) is intended as meaning that
w represents a trivial word. We impose the following axioms:

T (e)

T (wi) for eachwi ∈ R
T : equality w = u→ (T (w)→ T (u))

T : composition T (w) ∧ T (u)→ T (wu)

T : inverse T (w)→ T (w−1)

T : conjugation T (w)→ T (vwv−1)

The idea of the last rule is that a trivial word conjugated by any word
should again be trivial. It seems reasonable to make this rule without re-
quiring thatv be feasible, but one might want to make different choices,
depending on the situation.
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For the purposes of making measurements in groups, one can combine
the axioms forF andT and also add

F(w) ∧ T (u)→ F(wu) and F(w) ∧ T (u)→ F(uw).

Now F is defined over words instead of group elements.
The notions presented in this section are not necessarily canonical or

fixed. For instance, one might want to study chains of subgroups, each nor-
mal in the larger one, with different predicates for the different subgroups,
each predicate axiomatized as above.

The bottom line is that proofs provide a nice way to try to look inside
groups, to move around inside them and test their structure. This is an idea
that has not been explored.

One feature of the idea of feasibility is its universality. It applies to all
groups at once, like the word metric. This universality continues to exist
under restrictions on the kind of proofs that we allow. This is an important
point: one is free to choose a fragment of logic to suit one’s purposes.
Different fragments can lead to different metrics on groups.

7. RATIONAL NUMBERS

We can extend the idea of feasibility to rational numbers in a natural way.
For our purposes, it will be convenient to consider∞ as a rational number,
with the conventions that∞ ·∞ = ∞, a · ∞ = ∞ · a = ∞ whena 6= 0,
0 · ∞ = ∞ · 0 = 0, and a

∞ = 0 whena is a finite rational number. We
leave all other cases undefined. The need for∞ is slightly a nuisance, but
the point of it will be clear in a moment, and these technicalities are not
serious.

We can introduce a feasibility predicateF in much the same way as
before. Now we want to measure “rational” complexity, and take the field
structure into account. We use the same kind of axioms forF as before,
namely, that 0 and 1 are feasible, that equality, sums, and products preserve
feasibility, and that additive and multiplicative inverses preserve feasibility.
There are some small caveats needed to account for the cases when the
operations are not defined.

We have seen how the feasibility of large integers can be established
through short proofs, and we can do the same for rational numbers. This
suggests natural open questions: how can one relate number-theoretic
properties of a rational number to sizes of proofs of feasibility of it? As for
groups, the restriction to different fragments of logic can lead to different
properties, and one is free to choose logical systems to suit one’s purposes.
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Let us describe an amusing construction for feasibility of rational num-
bers. The basic point is that 2× 2 matrices with (finite) rational entries
act on rational numbers in a natural way. Let

(
a b

c d

)
be such a matrix, and

consider the transformation

x 7→ ax + b
cx + d(7)

We assume that the determinant of our matrix is different from zero to
avoid problems with the definition. This condition ensures that the numer-
ator and the denominator above cannot both vanish at the same time, so
that the quotient is always defined. It is for this reason that we allow∞ as
a rational number. Ifx = ∞, then we interpret the above quotient as being
a
c
. Not both ofa andc can vanish, because of the assumption of nonzero

determinant.
Let A denote such a matrix

(
a b

c d

)
, and letA also denote the projective

linear transformation defined in (7). The correspondence from matrices to
projective transformations is a homomorphism, i.e., products of matrices
correspond to compositions of projective transformations. This is well
known, and can be seen as follows. In working with the rational numbers
Q together with∞, we are really working with the projective line over
the rational numbers, which means the space of ordinary (rational) lines
in Q × Q that pass through the origin. Ifα ∈ Q, then we associate to it
the line that passes through(α,1). This parameterizes all lines inQ × Q
through the origin except for the one which passes through(1,0), which
we associate to∞. A matrix A with rational entries and nonzero determ-
inant acts linearly onQ×Q and induces a transformation on the space of
lines in Q × Q that pass through the origin. If we parameterize lines by
rational numbersα together with∞, then this induced transformation is
the same as (7).

Let x be a rational number, and considerAnx. We would like to have
short proofs of feasibility ofAnx for large values ofn. This fits with the
earlier discussion for groups, i.e., since the collection of 2×2 matrices with
rational entries and nonzero determinant forms a group. We can encode
feasibility for the group of matrices in terms of feasibility for rational
numbers. Given a 2× 2 matrixA = (

a b

c d

)
with finite rational entries, let

us writeφ(A) for the formulaF(a)∧F(b)∧F(c)∧F(d). This extension
of feasibility is preserved by matrix multiplication, by an easy argument.
(Similarly, one could look at feasibility of rational numbers in terms of
feasibility for integers, via feasibility of the numerator and denominator in
a quotient of integers.)

This permits us to make short proofs ofφ(An) for large values ofn
as in Section 6. For the argument mentioned in Section 5 based on nested
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quantifiers there are some subtleties. To make the argument using nested
quantifiers, one needs to quantify over integers (which would arise in the
exponents of the matrix). One can do this if one candefinethe integers
inside the field. For the rationals there is a way to do this, due to Ju-
lia Robinson (Robinson 1949). This would not work in a field of finite
characteristic.

Once we have short proofs ofφ(An) for largen, we can get short proofs
of the feasibility ofAnx for largen, given the feasibility ofx. One could
also look at other combinations of matrices, instead of powers of a single
matrix. This is similar to the situation in Section 6.

We chose this example in part because of the well-known role of pro-
jective transformations in analysis and number theory. Let us briefly review
some aspects of complex analysis and its connection with rational num-
bers. In complex analysis one works with complex numbers, both as matrix
entries and for the domain on which the projective transformations act.
Instead of having them act on the whole complex plane, one often restricts
oneself to actions on the upper half-plane

{z ∈ C : z = x + iy, x, y ∈ R, y > 0}.

A well known corollary of the uniformization theorem (Ahlors 1973; Al-
hfors and Sario 1960) in complex analysis implies that most Riemann
surfaces can be realized as the quotient of the upper half-plane by a discrete
group of projective linear transformations. “Most” means all Riemann
surfaces except the sphere, the plane, the plane with one puncture, and
tori.

These group actions on the upper half-plane induce group actions on
the boundary, the real line, which should be completed by the addition of
a point at infinity. The action on the boundary can be much more chaotic
than in the interior, with the orbit of a point being dense instead of discrete.

Sometimes Riemann surfaces and the corresponding groups of pro-
jective transformations have additional arithmetical structures. It can be
natural to look at the action of the groups on rational numbers.

Here is a special case which provides an important example. Let
SL(2,Z) denote the group of 2× 2 matrices with integer entries and
determinant 1. This is indeed a group. The main point is that the inverses of
such matrices still have integer entries, because the determinant is equal to
1. In fact, this group is well known to be finitely generated with generators(

0
1
−1
0

)
and

(
1
0

1
1

)
. (See (Lang 1987, 30).) This group acts on the upper

half-plane by projective transformations, and the quotient that results is
isomorphic as a Riemann surface to the twice-punctured planeC\{0,1}.
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For the purpose of making rational numbers which admit short proofs
of their feasibility, we can extend the preceding construction. The cor-
respondence between matrices and projective transformations is a homo-
morphism, so that compositions of projective transformations correspond
to products of matrices, and we can work directly with square matrices
of any rank. Suppose thatA is anm × m matrix with rational entries. As
before we can define a formulaφ(A) which expresses the feasibility of
the entries ofA, and is it easy to show thatA · B has feasible entries if
A andB do. We can make short proofs of the feasibility of matricesAn

for largen, in the same manner as discussed previously. The entries ofAn

are rational numbers which have short proofs of feasibility. One can also
consider other combinations of matrices, as in the discussion in Section 6.

One can look at some of these matters more broadly in terms of dy-
namical processes. In proofs there is often a kind of dynamics going on,
with various substitutions taking place or being described implicitly. Con-
versely, one might start with some type of dynamical system, as in the
example of projective transformations acting on the rationals, and go from
this to proofs with substantial structure.

8. A STORY FROM TOPOLOGY

The examples so far illustrate how one might use the idea of feasibility
to make measurements and descriptions of mathematical constructions
through proofs. The examples all had a kind of discreteness to them, and
we would like to consider now a more “continuous” setting. For this we
shall continue to not worry too much about formalization (and more than
usual). Let us note, however, that although continuous notions can be con-
venient or desirable in some ways, one can often work just as well, or
nearly so, with finite versions (e.g., using polyhedra and piecewise-linear
mappings).

The concept of feasibility has a certain affinity with continuity. One
could say that it seeks or entails a kind of connectedness.

Our example from topology will take some time to explain, and so we
describe some general points first. We shall begin by reviewing the concept
of Serre fibrationsfrom topology (Serre 1951; Bott and Tu 1982). This
notion involves the construction of continuous families of mappings for
which the idea of feasibility can be relevant. To bring out this point, we
shall discuss in some detail a particular example of atorus bundle. In this
special case, the required construction amounts to taking large powers of
a matrix inSL(2,Z). More generally, in situations with smoothness, one
can make constructions by solving ordinary differential equations, which
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can be seen as a continuous relative of taking large powers of a matrix.
(We shall return to this in Section 9.)

This example of a torus bundle captures geometrically a basic phe-
nomenon in proofs. Sometimes complicated constructions can be coded
in short proofs through repeated cycling and substitutions. A proof may
describe a simple operation which is used repeatedly in the actual con-
struction. In our topological example, we shall see that the simple motion
of cycling around a circle many times induces a motion up in our torus
bundle with exponential distortion.

Let us now proceed with the details. LetE andB be two topological
spaces, and letπ : E → B be a continuous mapping between them. We
say thatπ : E→ B is aSerre fibrationif it enjoys the following property.
Let P be a finite polyhedron, and suppose that we have continuous map-
pingsf : P → E andg : P ×[0,1] → B such thatπ ◦f = g(·,0). Then
there should be a “lifting”̂g : P × [0,1] → E of g, meaning a continuous
mapping withπ ◦ ĝ = g, such that̂g(·,0) = f . In other words,g controls
what happens in the base spaceB over the whole interval[0,1], f gives a
compatible set of initial values inE (for the point 0 in[0,1]), andĝ is a
lifting of g to E which agrees with the initial values specified byf . This
is similar to the lifting of paths in covering surfaces (Ahlfors and Sario
1960; Massey 1991), but now we are working with continuous families
of paths parameterized by the polyhedronP . (Lifting a single path would
correspond to takingP to be a single point.)

To understand what this means, consider the simple case whereE =
B × F for some topological spaceF (which gives the “fibers”). In this
event, the fibration property is automatic, and one can write down a choice
of ĝ directly. Namely, one can takêg(p, x) = (g(p, x), π1(f (p))), where
π1 : E → F is the obvious projection ontoF . Fibrations of this form
are calledtrivial . A fundamental class of nontrivial fibrations consists of
ones in whichE looks like a product above small open sets in the baseB

(i.e., the fibration is locally trivial onB), but for which there is nontrivial
twisting globally onB. In these cases, one can often verify the existence
of the necessary liftings by exhaustingP × [0,1] through local liftings.
Compactness assumptions are frequently used in this regard, to ensure that
the exhaustion works.

Let us think of the liftingĝ : P × [0,1] → E of g above as being
like an explicit proof of feasibility. We start with an initial configuration
which is given byf : P → E, andĝ provides a way to get fromf to a
final configuration given bŷg(·,1) in a continuous manner. In a discrete
setting, one would think of a sequence of small or simple steps. Normally,
there can be a definite amount of distortion at each step, and then expo-
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Figure 1.

nential distortion over the whole time interval[0,1]. See Figure 1 for an
illustration related to this.

To make the notions more clear, let us consider a concrete example of
a fibration with nontrivial twisting. LetS1 denote the unit circle. It will be
more convenient to think of it as the quotient spaceR/Z. LetT denote the
torusS1× S1, which we can think of asR2/Z2.

We want to look attorus bundlesover a circle. We shall use the follow-
ing recipe. Suppose thatA : T → T is a homeomorphism. Take[0,1]×T
and glue the two ends{0}×T and{1}×T together usingA. This means that
we take[0,1]×T and we identify(0, u) with (1, A(u)) for all u ∈ T . This
defines a space which we callE. There is a natural mappingπ : E → S1

which corresponds to the projection of[0,1] × T onto [0,1], where we
identify S1 with the space obtained by taking[0,1] and identifying the
endpoints 0 and 1.

We can describe this space in another way as follows. We start with
Ẽ = R×T . We define a mappingφ : Ẽ→ Ẽ byφ(x, u) = (x+1, A(u)).
This mapping generates an infinite cyclic group of homeomorphisms onẼ,
andE is just the quotient of̃E by this group, in the same way thatS1 is the
quotient ofR by the infinite cyclic group of homeomorphisms generated
by x 7→ x + 1.

If instead ofφ we used the mapping(x, u) 7→ (x + 1, u) we would
simply getS1 × T for the quotient. By choosing a suitable mappingA :
T → T we can get a bundle in which there is some nontrivial twisting as
we go around the base.

Let us consider now a specific example of such a mappingA. Start with
the matrix

(2 1
1 1

)
, which lies inSL(2,Z) since it has determinant 1. This

defines a linear mapping onR2. Because the matrix has integer entries,
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the corresponding linear mapping sends the standard integer latticeZ2

insideR2 to itself. Thus we can get a well-defined mapping on the quotient
R2/Z2 = T , and we take this to beA. This defines a homeomorphism on
T , because the inverse of

(2 1
1 1

)
is also a matrix with integer entries (since

the determinant is 1), and hence it descends to a mapping onT as well.
Thus we get a homeomorphismA : T → T . It may seem harmless, but

in fact it is quite nontrivial. It is not homotopic to the identity, for instance.
For if it were, its lifting to the universal covering ofT would differ from the
identity mapping by only a bounded amount, and this is not true. Indeed,
R2 is the universal covering ofT , and the lifting ofA to it is the linear
transformation with which we started.

The first homology and homotopy groups ofT are isomorphic to each
other and toZ2. By general facts, the homeomorphismA induces an auto-
morphism on this group, which in this case is given by the action of the
matrix

(2 1
1 1

)
with which we began. This provides a topological way to

measure the difference betweenA and the identity mapping, even up to
homotopy. That is, the identity mapping onT induces, in the same manner,
the identity mapping onZ2, and these induced mappings are preserved by
homotopies of the original mappings onT .

To understand better the nontrivial effect ofA, it is helpful to compute
the eigenvalues of the matrix

(2 1
1 1

)
. These are the roots of the polynomial

det

((
2 1

1 1

)
− λI

)
= (2− λ)(1− λ)− 1=

(
λ− 3

2

)2

− 5

4
,

namelyλ = 3±√5
2 . Note that the product of these numbers is 1, as it should

be, and that one is larger than 1 and the other is smaller than 1. In fact the
larger eigenvalue is between 2 and 3.

Because the matrix is symmetric, we can find an orthogonal basis with
respect to which it is diagonal with these two eigenvalues. When we take
large powers of the matrix we get exponential compression in one direction
and exponential expansion in the other. In topological terms, this exponen-
tial expansion for the matrix implies that there are loops in the torusT

whose image inT underAn wraps around an exponentially larger number
of times. This wrapping is depicted by the diagonal lines in Figure 2, where
the torus is obtained from the square by identifying the opposite sides. The
diagonal lines represent a single curve in the torus, which goes across the
square several times.

ThusA is quite nontrivial and this leads to nontrivial twisting of the
fibrationE. We want to see how this twisting is reflected in liftings (as for
Serre fibrations). Suppose thatf : P → E is some continuous mapping,
whereP is a finite polyhedron. For simplicity, assume that the image of
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Figure 2.

f lies in a single fiber ofE, so that there is a pointb ∈ S1 such that the
image off lies inπ−1(b). Let us assume also that our mappingg is of a
particularly simple form, that it is constant onP . Thusg is in essence a
mapping from[0,1] into S1, which we denote byγ , since it is technically
a separate object (a mapping on[0,1] instead ofP × [0,1]). Note that
γ (0) = b, because of the compatibility betweeng andf . In this situation,
our lifting problem becomes that of finding a mappingf1 : P×[0,1] → E

which is an extension off , in the sense thatf1(p,0) = f (p) for all
p ∈ P , and whose projection to the base is essentiallyγ , in the sense that
π(f1(p, x)) = γ (x) for all x ∈ [0,1] and allp ∈ P .

In other words,f mapsP into a single fiber ofE, andf1(·, x) should
mapP into the fiber inE overγ (x) for eachx. Asx ranges through[0,1],
these fibers can move, and one returns to the same fiber whenγ contains
loops.

Let us explain how we can obtain such a liftingf1(p, x). If E were
just the productS1× T , then we could pullf along the parameter interval
rigidly, as we discussed earlier in the section. Because of the twisting of our
bundle, we have to do something more complicated, and it is convenient
to go back toẼ = R × T . Let γ̃ : [0,1] → R be a continuous mapping
which projects toγ under the canonical mapping fromR to R/Z = S1.
This lifting γ̃ of γ is determined uniquely by its initial point̃b = γ̃ (0),
which is a lifting of b (and otherwise arbitrary). Our quotient mapping
from Ẽ ontoE is a homeomorphism on each of the fibers, and hence there
is a mappingf̃ : P → Ẽ which takes values in{̃b}×T and which projects
down tof when we project̃E ontoE using our quotient mapping.

In short, we can liftγ andf upstairs toẼ, and in a compatible way.
SinceẼ = R × T , we can define a mapping̃f1 : P × [0,1] → Ẽ in the
obvious way, by setting

f̃1(p, x) = (γ̃ (x), π̃1(f̃ (p))),

whereπ̃1 : Ẽ→ T is the standard projection. Thus, up iñE, we are doing
something quite trivial, we are simply sliding̃f alongR rigidly.
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Definef1 : P ×[0,1] → E to be the composition of̃f1 : P ×[0,1] →
Ẽ with the quotient mapping from̃E ontoE. It is easy to see that this
choice off1 has the desired properties, namely, that it is a continuous
mapping which agrees withf at the beginning, and followsγ in the base
for the whole time interval[0,1].

Now let us look at howf1(p, x) is distorted asx goes from 0 to 1.
Imagine thatγ moves at constant speed inS1 and reasonably quickly, so
that it wraps aroundS1 numerous times. To be specific, assume thatγ

wraps aroundS1 exactlyn times, moving in the positive orientation and
ending back at its initial pointb. The lifting γ̃ of γ to R moves along at
constant speed as well, starting atb̃ and ending at̃b + n.

What doesf1(·,1) look like when we go around the circlen times? It
looks likef1(·,0) = f acted on byAn! That is,f1(·,1) andf both mapP
into the fiberπ−1(b) in E, which is a copy ofT . If we move the mappings
back intoT so that we can look at them, then the transition from time 0 to
time 1 is given byAn. This is because each tour aroundS1 corresponds to
an application ofA onT . This follows from the definitions.

From our earlier analysis ofA, we conclude that our mappingf1 may
undergo exponential stretching as we traverse the parameter interval[0,1].
This is unavoidable, and not simply an artifact of the particular construc-
tion of f1. For instance, suppose that our initial mappingf represents
a loop in T (i.e., P is a polygonal loop). The ending mappingf1(·,1)
represents another loop inT . No matter how we choosef1, the homotopy
class of our final loop inT has to be the same as the one obtained from the
construction above. This is a basic property of Serre fibrations. Therefore,
the amount of winding inT that the final loop makes in terms of topology
is simply determined byAn, and can be exponentially large, as we have
seen.

This finishes our concrete construction. Let us think about what it
means. Consider notions of feasibility for mappings into the spaceE. We
might call such a mapping feasible if it is quite simple (e.g., if it does not
wrap around too much), or if it can be obtained from a feasible mapping by
a small perturbation. Thus feasibility is like being homotopic to something
simple. One can try to find complicated objects which are feasible with a
short proof, and the preceding discussion suggests examples of this.

9. FEASIBILITY AND CONTINUOUS PARAMETERS

In ordinary mathematics one often works with continuous constructions,
such as takingBt wheret is a real number, rather than an integer. One can
do this with matrices, for instance, and something similar takes place in
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solving an ordinary differential equation. What about ideas of feasibility
in situations like these?

As a basic example, consider the differential equationy′ = y, which
is solved by the exponential functionex . One can view this differential
equation as corresponding to a continuous version of recursion, and the
existence of its solution as a consequence of a “continuous” version of
induction. (One can think of this as being analogous to proving by in-
duction in arithmetic that exponential functions are defined everywhere.)
For the notion of feasibility in arithmetic, it was important not to allow
induction overF -formulae, to avoid collapsing into triviality. A theory
which provides the existence of exponential functions with continuous
parameters, or solutions of differential equations, might arguably be too
strong in a similar manner.

In ordinary mathematics, one might define the exponential function by
summing an infinite series, or as the inverse of the natural logarithm which
is defined using an integral, and one can find solutions of ordinary differen-
tial equations through conversions to integral equations and analysis there.
As a more step-by-step approach, one can use the formula

ex = lim
n→∞

(
1+ x

n

)n
for the exponential, and obtain solutions of ordinary differential equa-
tions as limits of solutions of discrete difference equations. These different
approaches can have advantages and disadvantages, depending on the con-
text. It might be useful to work more “globally”, with series or integrals,
while step-by-step methods have other features.

What about the topological situation in the previous section? In many
settings one can use solutions of ordinary differential equations to ob-
tain liftings with properties as in Section 8. On the other hand, one does
not need to know that the family of mappings being sought satisfies any
particular differential equation (even if that might be a useful method).
There is some extra flexibility, where certain kinds of perturbations do not
cause trouble. Once one has an approximation which is sufficiently fine,
and which can be discrete, it is easy to fill in or adjust the rest to have a
continuous solution with the requisite properties.

Roughly speaking, one might say that for the topological situation in
Section 8,(1+ α

n
)n can be practically as good aseα whenn is large enough.

Of course, one can consider notions of feasibility for approximating
classical constructions in analysis (such as summing a series for the ex-
ponential function, or approximation schemes for finding solutions of
ordinary differential equations). For these types of constructions, one typ-
ically deals with efficiency of approximation rather than exact values, as in
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the earlier and more algebraic examples. In topology a good approximation
is often good enough already.

10. SOME REMARKS ABOUT COMPRESSION AND CUTS

We have tried to explore some examples of natural notions of “feasibility”,
where there can be short proofs.

What does “short” really mean? In the examples there was some clear
sense that the proofs were short compared to what one might expect, given
the complexity of the particular object in question. But can we define
“short” more abstractly, more invariantly, more objectively?

An answer to this is given in terms of the cut rule in sequent calculus.
The reader who is unfamiliar with this may wish to consult (Carbone and
Semmes 1997) for an introduction to the cut rule and the combinatorics
and complexity of cut elimination. (See (Girard 1987b; Takeuti 1975) for
more extensive treatments.) The short proofs mentioned above all use cuts,
and a natural way to measure the “shortness” is to ask how large a proof
would have to be without the cut rule. We would then consider therelative
sizes between proofs with and without cuts rather than absolute sizes of
proofs.

More precisely, and as mentioned in Section 5, it is the interaction
between cuts and contractions which gives rise to the shortness of the
proofs. The elimination of cuts leads to simplification of the manner in
which contractions can be used.

In many contexts in logic one can show that it is possible to elim-
inate cuts from a proof, but at potentially great cost of expansion. See
(Gentzen 1934; Gentzen 1969; Girard 1987b; Takeuti 1975). There are
examples known where the smallest proof without cuts is much larger than
the smallest proof with cuts (Tseitin 1968; Orevkov 1982; Orevkov 1993;
Statman 1974; Statman 1978; Statman 1979; Haken 1985; Buss 1987). The
present discussion suggests that we view this phenomenon as a reflection
of some kind of internal symmetry or structure. With notions of feasibility,
formal proofs deal with mathematical objects and the building of them in
a precise way, and one can consider the relationship between proofs and
the internal symmetry or structure of the mathematical objects which are
involved. (This is part of the reason for looking at feasibility, as we do
here.) In particular, contractions play an important role, as before. See also
(Carbone and Semmes 1999; Carbone and Semmes 2000) in connection
with these topics. These issues are related as well to the “P = NP?” and
“NP = co-NP?” problems (Cook and Reckhow 1979; Garey and Johnson
1979; Johnson 1990).
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One might compare these matters with common mathematical exper-
ience, and the proofs that are made. The situations with which mathem-
aticians deal typically involve a lot of special structure or symmetry (in
some form), and this is not really accidental.
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