Skip to main content
Log in

Novel male-specific molecular markers (MADC5, MADC6) in hemp

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Decamer RAPD primers were tested on dioecious and monoecious hemp cultivars to identify sex-specific molecular markers. Two primers (OPD05 and UBC354) generated specific bands in male plants. These two DNA fragments were isolated, cloned and sequenced. Both markers proved to be unique, since no sequence with significant homology to OPD05961 and UBC354151 markers were found in databases. These markers were named MADC3 (OPD05961) and MADC4 (UBC354151) (Male-Associated DNA from Cannabis sativa). The markers were converted into sequence-characterized amplified region (SCAR) markers. The SCAR markers correlated with the sex of the segregating F2 population and proved the tight linkage to the male phenotype. Results of F2 plant population analysis suggest these markers are to be linked to the Y chromosome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alstrom-Rapaport, C., M. Lascoux, Y.C. Wang, G. Roberts & G.A. Tuskan, 1998. Identification of a RAPD marker linked to sex determination in the basket willow (Salix viminalis L). J Heredity 89: 44–49.

    Article  CAS  Google Scholar 

  • Benito, C., A.M. Figueras, C. Zaragoza, F.J. Gallego & A. de la Pena, 1993. Rapid identification of Triticeae genotypes from single seeds using the polymerase chain reaction. Plant Mol Biol 21: 181–183.

    Article  PubMed  CAS  Google Scholar 

  • Bócsa, I., 1998. Genetic improvement: conventional approaches. In: P. Ranalli (Ed.), Advances in Hemp Research, pp. 153–184. Food Products press, An Imprint of The Haworth Press, Inc. New York.

    Google Scholar 

  • Bucherna, N., F.T. Okkels & G. Palmgren, 1999. Developmental timing of transgene expression is dosage dependent. Physiol Plant 107: 90–97.

    Article  CAS  Google Scholar 

  • Clarke, R.K., 1997. Hanf: Botanik, Anbau Vermehrung und Züchtung. AT Verlag, Aarau, Schweiz.

    Google Scholar 

  • Di Stilio, V.E., R.V. Kesseli & D.L. Mulcahy, 1998. A pseudoautosomal random amplified polymorphic DNA marker for the sex chromosomes of Silene dioica. Genetics 149: 2057–2062.

    PubMed  CAS  Google Scholar 

  • Duran, R. & B. Duran, 1990. Sexual determination and differentiation. Crit Rev Plant Sci 9: 295–316.

    Article  Google Scholar 

  • Faeti, V., G. Mandolino & P. Ranalli, 1996. Genetic diversity of Cannabis sativa germplasm based on RAPD markers. Plant Breed 115: 367–370.

    Article  Google Scholar 

  • Flachowsky, H., E. Schumann, W.E. Weber & A. Peil, 2001. Application of AFLP for the detection of sex-specific markers in hemp. Plant Breed 120: 305–309.

    Article  CAS  Google Scholar 

  • Harvey, C.F., G.P. Gill, L.G. Fraser & M.A. McNeilage, 1997. Sex determination in Actinidia. 1. Sex-linked markers and progeny sex ratio in diploid A. chinensis. Sex Plant Reprod 10: 149–154.

    Article  Google Scholar 

  • Hirata, K., 1924. Cytological basis of the sex determination in Cannabis sativa L. Jap J Genet 4: 198–201.

    Google Scholar 

  • Hormaza, J.L., L. Dollo & V.S. Polito, 1994. Identification of a RAPD marker linked to sex determination in Pistacia vera using bulked segregant analysis. Theor Appl Genet 89: 9–13.

    Article  CAS  Google Scholar 

  • Jagadish, V., J. Robertson & A. Gibbs, 1996. RAPD analysis distinguishes Cannabis sativa samples from different sources. For Sci Int 79: 113–121.

    CAS  Google Scholar 

  • Lewis, K.R. & B. John, 1968. The chromosomal basis of sex determination. Int Rev Cytol 23: 277–379.

    PubMed  CAS  Google Scholar 

  • Mandolino, G., A. Carboni, S. Forapani, V. Faeti & P. Ranalli, 1999. Identification of DNA markers linked to the male sex in dioecious hemp (Cannabis sativa L). Theor Appl Gen 98: 86–92.

    Article  CAS  Google Scholar 

  • Mandolino, G., A. Carboni, S. Forapani & P. Ranalli, 1998. DNA markers associated with sex phenotype in hemp (Cannabis sativa L). Proc of ‘Blast Fibrous Plants Today and Tomorrow’ St. Petersburg, September 28-30: 197–201, Institute of Natural Fibres (Poland), special edition, 1998/2.

    Google Scholar 

  • Michelmore, R.W., I. Paran & R.V. Kesseli, 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88: 9828–9832.

    Article  PubMed  CAS  Google Scholar 

  • Migal, N.D., 1986. Genetic determination of sex in hemp. II. Sexual mutations and the general theory of genotypic control of sex in hemp. Genetika USSR 22: 829–837.

    Google Scholar 

  • Mulcahy, D.L., N.F. Weeden, R. Kesseli & S.B. Carroll, 1992. DNA probes for the Y-chromosome of Silene latifolia, a dioecious angiosperm. Sex Plant Reprod 5: 86–88.

    Article  Google Scholar 

  • Paran, I. & R.W. Michelmore, 1993. Development of reliable PCR based markers linked to downy mildew resistance gene in lettuce. Theor Appl Genet 85: 985–993.

    Article  CAS  Google Scholar 

  • Parasnis, A.S., V.S. Gupta, S.A. Tamhankar & P.K. Ranjekar, 2000. A highly reliable sex diagnostic PCR assay for mass screening of papaya seedlings. Mol Breed 6: 337–344.

    Article  CAS  Google Scholar 

  • Parker, J.S. & M.S. Clark, 1991. Dosage sex-chromosome systems in plants. Plant Sci 80: 79–92.

    Article  Google Scholar 

  • Polley, A., E. Seigner & M.W. Ganal, 1997. Identification of sex in hop (Humulus lupulus) using molecular markers. Genome 40: 357–361.

    CAS  PubMed  Google Scholar 

  • Reamon-Büttner, S.M., J. Schondelmaier & C. Jung, 1998. AFLP markers tightly linked to the sex locus in Asparagus officinalis L. Mol Breed 4: 91–98.

    Article  Google Scholar 

  • Sakamoto, K., Y. Akiyama, K. Fukui, H. Kamada & S. Satoh, 1998. Characterization, genom sizes and morfology of sex chromosomes in hemp (Cannabis sativa L). Cytologia 63: 459–464.

    Google Scholar 

  • Sakamoto, K., N. Ohmido, K. Fukui, H. Kamada & S. Satoh, 2000. Site-specific accumulation of a LINE-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa. Plant Mol Biol 44: 723–732.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto, K., K. Shimomura, Y. Komeda, H. Kamada & S. Satoh, 1995. A male-associated DNA sequence in a dioecious plant, Cannabis sativa L. Plant Cell Physiol 36: 1549–1554.

    PubMed  CAS  Google Scholar 

  • Sambrook, J., E.F. Fritsch & T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Warmke, H.E. & H. Davidson, 1944. Poliploid investigation. Yearbook of the Carnegie Institution of Washington 43: 135–139.

    Google Scholar 

  • Westergaard, M., 1958. The mechanism of sex determination in dioecious flowering plants. Adv Genet 9: 217–281.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, I., 1943. The sex-chromosome of Cannabis sativa L. Seiken Ziho 2: 64–68.

    Google Scholar 

  • Yampolsky, C. & H., Yampolsky, 1922. Distribution of sex forms in the phanerogamic flora. Bibl Genet 3: 1–62.

    Google Scholar 

  • Zhang, Y.H., V.S. Di Stilio, F. Rehman, A. Avery, D.L. Mulcahy & R.V. Kesseli, 1998. Y chromosome specific markers and the evolution of dioecy in the genus Silene. Genome 41: 141–147.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Törjék, O., Bucherna, N., Kiss, E. et al. Novel male-specific molecular markers (MADC5, MADC6) in hemp. Euphytica 127, 209–218 (2002). https://doi.org/10.1023/A:1020204729122

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020204729122

Navigation