Skip to main content
Log in

Experimental and theoretical studies on the excess capacity of Photosystem II

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

It has been recently suggested that compensatory changes in Photosystem II (PS II) electron turnover rates can protect photosynthesis from photoinhibition [Behrenfeld et al. (1998) Photosynth Res 58: 259–268]. We have further explored this feature of PS II using a rate electrode for simultaneous measurements of the steady-state rate of oxygen evolution and the oxygen flash yield depending on the background irradiance in both control and photoinhibited algal cells of Chlorella Böhm. Theoretical simulations based on the two-electron gate model agree qualitatively with experimental data if we assume an increase of the electron turnover rate in the remaining functional PS II centers of the photoinhibited sample. Our results confirm the hypothesis that the compensatory effect enables cells to maintain the maximal rates of photosynthesis even in the presence of moderate photoinhibition (decrease of up to 50% in the number of functional centers) and that the effect originates from the inner capacity of electron transport through PS II. The origin of the compensatory effect is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson JM, Park YI and Chow WS (1997) Photoinactivation and photoprotection of Photosystem II in nature. Physiol Plant 100: 214-223

    Article  CAS  Google Scholar 

  • Anderson JM, Park YI and Soon WS (1998) Unifying model for the photoinactivation of Photosystem II in vivo under steady-state photosynthesis. Photosynth Res 56: 1-13

    Article  CAS  Google Scholar 

  • Andree S, Weis E and Krieger A (1998) Heterogeneity and photoinhibition of Photosystem II studied with thermoluminescence. Plant Physiol 116: 1053-1061

    Article  CAS  Google Scholar 

  • Aro EM, Virgin I and Andersson B (1993) Photoinhibition of Photosystem II-inactivation, protein damage and turnover. Biochim Biophys Acta 1143: 113-134

    Article  PubMed  CAS  Google Scholar 

  • Baker NR and Bowyer JR (1994) Photoinhibition of Photosynthesis: fromMolecular Mechanisms to the Field. Bios Scientific, Oxford

    Google Scholar 

  • Bartoš J, Berková E and Šetlík I (1975) A versatile chamber for gas exchange measurements in suspensions of algae and chloroplasts. Photosynthetica 9: 395-406

    Google Scholar 

  • Behrenfeld MJ, Prášil O, Kolber ZS, Babin M and Falkowski PG (1998) Compensatory changes in Photosystem II electron turnover rates protect photosynthesis from photoinhibition. Photosynth Res 58: 259-268

    Article  CAS  Google Scholar 

  • Briantais JM, Cornic G and Hodges M (1988) The modification of chlorophyll fluorescence of Chlamydomonas reinhardtii by photoinhibition and chloramphenicol addition suggests a from of Photosystem II less susceptible to degradation. FEBS Lett 236: 226-230

    Article  CAS  Google Scholar 

  • Cleland RE (1998) Voltammetric measurement of the plastoquinone redox state in isolated thylakoids. Photosynth Res 58: 183-192

    Article  CAS  Google Scholar 

  • Crofts AR and Wraight CA (1983) The electrochemical domain of photosynthesis. Biochim Biophys Acta 726: 149-185

    CAS  Google Scholar 

  • Crofts AR, Baroli I, Kramer D and Taoka S (1993) Kinetics of electron-transfer between Qa and Qb in wild type and herbicide resistant mutants of Chlamydomonas reinhardtii. Z Naturforsch 48c: 259-266

    Google Scholar 

  • Dietz KJ and Heber U (1984a) Rate limiting factors in leaf photosynthesis. I. Carbon fluxes in the Calvin cycle. Biochim Biophys Acta 767: 432-443

    Article  CAS  Google Scholar 

  • Dietz KJ and Heber U (1984b) Rate limiting factors in leaf photosynthesis. II. Electron transport. Biochim Biophys Acta 767: 443-450

    Google Scholar 

  • Falk S, Leverenz JW, Samuelsson G and Oquist O (1992) Changes in Photosystem II fluorescence in Chlamydomonas reinhardtii exposed to increasing levels of irradiance in relationship to the photosynthetic response to light. Photosynth Res 31: 31-40

    Article  CAS  Google Scholar 

  • Falkowski PG (1992) Molecular Ecology of phytoplankton photosynthesis. In: Falkowski PG and Wood AD (eds) Primary Productivity of Biochemical Cycles in The Sea, pp 47-67. Plenum Press, New York

    Google Scholar 

  • Falkowski PG and Raven JA (1997) Aquatic Photosynthesis. Blackwell, Boston

    Google Scholar 

  • Gorkom HJ and Gast P (1996) Measurement of photosynthetic oxygen evolution. In: Amesz and Hoff J (eds) Biophysical Techniques in Photosynthesis, pp 391-405. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Haxo FT and Blinks LR (1950) Photosynthetic action spectra of marine algae. J Gen Physiol 33: 389-422

    Article  PubMed  CAS  Google Scholar 

  • Heber U, Neimanis S and Dietz KJ (1988) Fractional control of photosynthesis by the Qb protein, the cytochrome b 6 f complex and other components of the photosynthetic apparatus. Planta 173: 267-274

    Article  CAS  Google Scholar 

  • Henley WJ (1993) Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J Phycol 29: 729-739

    Article  Google Scholar 

  • Herron HA and Mauzerall D (1971) The development of photosynthesis in a greening mutant of Chlorella and an analysis of the light saturation curve. Plant Physiol 50: 141-148

    Google Scholar 

  • Hsu B-D (1992a) The active Photosystem II centers can make a significant contribution to the initial fluorescence rise from F0 to Fi. Plant Sci 81: 169-174

    Article  CAS  Google Scholar 

  • Hsu B-D (1992b) A theoretical study on the fluorescence induction curve of spinach thylakoids in the absence of DCMU. Biochim Biophys Acta 1140: 30-36

    Article  CAS  Google Scholar 

  • Joliot P, Lavergne J and Beal D (1992) Plastoquinone compartmentation in chloroplasts. 1. Evidence for domains with different rates of photo-reduction. Biochim Biophys Acta 1101: 1-12

    CAS  Google Scholar 

  • Kirchhoff H, Horstmann S and Weis E (2000) Control of the photosynthetic electron transport by PQ diffusion microdomains in thylakoids of higher plants. Biochim Biophys Acta 1459: 148-168

    Article  PubMed  CAS  Google Scholar 

  • Kirk JTO (1993) Light &; Photosynthesis in Aquatic Ecosystems Photosynthesis. Cambridge University Press, Oxford

    Google Scholar 

  • Kitajama M and Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta 376: 105-115

    Article  Google Scholar 

  • Kok B (1956) On the inhibition of photosynthesis by intense light. Biochim Biophys Acta 21: 234-244

    Article  PubMed  CAS  Google Scholar 

  • Komenda J, Masojídek J, Prášil O and B?cek J (1992) Two mechanisms of Photosystem 2 photoinactivation: do they exist in vivo? Photosynthetica 27: 99-108

    CAS  Google Scholar 

  • Kyle DJ, Osmond CB and Arntzen CJ (1987) Photoinhibition. Elsevier Science, Oxford

    Google Scholar 

  • Laisk A and Oja V (2000) Electron transport through Photosystem II in leaves during light pulses: acceptor resistance increases with nonphotochemical excitation quenching. Biochim Biophys Acta 1460: 255-267

    Article  PubMed  CAS  Google Scholar 

  • Lavergne J, Bouchaud JP and Joliot P (1992) Plastoquinone compartmentation in chloroplasts. 2. Theoretical aspects. Biochim Biophys Acta 1101: 13-22

    CAS  Google Scholar 

  • Lazár D (1999) Chlorophyll a fluorescence induction. Biochim Biophys Acta 1412: 1-28

    Article  PubMed  Google Scholar 

  • Lazár D, Nauš J, Matoušková M and Flašarová M (1997) Mathematical modeling of changes in chlorophyll fluorescence induction caused by herbicides. Pestic Biochem Physiol 57: 200-210

    Article  Google Scholar 

  • Leverenz JW (1994). Factors determining the nature of the light dosage response curve of leaves. In: Baker NR and Bowyer JR (eds) Photoinhibition of Photosynthesis: from Molecular Mechanisms to the Field, pp 221-251. Bios Scientific, Oxford

    Google Scholar 

  • Leverenz JW, Falk S, Pilström CM and Samuelsson G (1990) The effects of photoinhibition on the photosynthetic light-response curve of green plant cells (Chlamydomonas reinhardtii). Planta 182: 161-168

    Article  CAS  Google Scholar 

  • Ley AC and Mauzerall DC (1982) Absolute absorption crosssections for Photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris. Biochim Biophys Acta 680: 95-106

    Article  CAS  Google Scholar 

  • Lichtenthaler HK and Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in deferent solvents. Biochem Soc Transactions 11: 591-592

    CAS  Google Scholar 

  • Long SP, Humphries S and Falkowski PG (1994) Photoinhibition of photosynthesis in nature. An Rev Plant Phys Plant Mol Bio 45: 633-662

    Article  CAS  Google Scholar 

  • Marshall HL, Geider RJ and Flynn KJ (2000) A mechanistic model of photoinhibition. N Phytol 145: 347-359

    Article  Google Scholar 

  • Mendes P (1993) GEPASI: a software package for modeling the dynamics, steady-states and control of biochemical and other systems. Comput Appl Biosci 9: 563-571

    PubMed  CAS  Google Scholar 

  • Mendes P (1997) Biochemistry by numbers: simulation of biochemical pathways with Gepasi 3. Trends Biochem Sci 22: 361-363

    Article  PubMed  CAS  Google Scholar 

  • Myers J and Graham J-R (1971) The photosynthetic unit of Chlorella measured by repetitive short flashes. Plant Physiol 48: 282-286

    PubMed  Google Scholar 

  • Neale PJ and Melis A (1991) Dynamics of Photosystem II heterogeneity during photoinhibition depletion of PS II beta from non-appressed thylakoids during strong irradiance exposure of Chlamydomonas reinhardtii. Biochim Biophys Acta 1056: 195-203

    CAS  Google Scholar 

  • Osmond CB (1994) What is photoinhibition-some insights from comparisons of shade and sun plants. In: Baker NR and Bowyer JR (eds) Photoinhibition of Photosynthesis: from Molecular Mechanisms to the Field, pp 1-24. Bios Scientific, Oxford

    Google Scholar 

  • Park YI, Chow WS and Anderson JM (1995) Light inactivation of functional Photosystem II in leaves of peas grown in moderate light depends on photon exposure. Planta 196: 401-411

    Article  CAS  Google Scholar 

  • Park YI, Chow WS and Anderson JM (1997) Antenna size dependency of photoinactivation of Photosystem II in light-acclimated pea leaves. Plant Physiol 115: 151-157

    Article  PubMed  CAS  Google Scholar 

  • Prášil O, Adir N and Ohad I (1992) Dynamics of Photosystem II: mechanism of photoinhibition and recovery processes. In: Barber J (ed) The Photosystems: Structure, Function and Molecular Biology, Vol 11, pp 295-348. Elsevier Science, Oxford

    Google Scholar 

  • Renger G and Schulze A (1985) Quantitative analysis of fluorescence induction curves in isolated spinach chloroplasts. Photobiochem Photobiophys 9: 79-87

    CAS  Google Scholar 

  • Sakshaug E, Bricaud A, Dandonneau Y, Falkowski PG, Kiefer DA, Legendre L, Morel A, Parlslow J and Takahashi M (1997) Parameters of photosynthesis: definitions, theory and interpretation of results. J Plankton Res 19: 1637-1670

    CAS  Google Scholar 

  • Šetlík I, Šetlíková E, Masojídek J, Zachleder V, Kalina T and Mader P (1981) The effect of translation and transcription inhibitors on the development of the photosynthetic apparatus in cell cycles of Scenedesmus quadricauda. In: Akoyunoglou G (ed) Photosynthesis, pp 481-490. Balaban Philadelphia

    Google Scholar 

  • Stitt M (1986) Limitation of photosynthesis by carbon metabolism, I. Evidence for excess electron transport capacity in leaves carrying out photosynthesis in saturating light and CO2. Plant Physiol 81: 1115-1122

    Article  PubMed  CAS  Google Scholar 

  • Sukenik A, Bennett J and Falkowski P (1987) Light-saturated photosynthesis-limitation by electron transport or carbon fixation. Biochim Biophys Acta 891: 205-215

    Article  CAS  Google Scholar 

  • Tomek P, Lazár D, Ilík P and Nauš J (2001) On the intermediate steps between the O and P steps in chlorophyll it a fluorescence rise measured at different intensities of exciting light. Aust J Plant Physiol 28: 1151-1160

    Google Scholar 

  • Trtílek M, Kramer DM, Koblíek M and Nedbal L (1997) Dualmodulation LED kinetic fluorometer. J Lumin 72-4: 597-599

    Article  Google Scholar 

  • Wang RT and Myers J (1976) On the distribution of excitation energy to two photoreactions of photosynthesis. Photochem Photobiol 23: 405-410

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radek Kaňa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaňa, R., Lazár, D., Prášil, O. et al. Experimental and theoretical studies on the excess capacity of Photosystem II. Photosynthesis Research 72, 271–284 (2002). https://doi.org/10.1023/A:1019894720789

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019894720789

Navigation