Skip to main content
Log in

Directional mutational pressure affects the amino acid composition and hydrophobicity of proteins in bacteria

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The relationship between change in genomic GC content and protein evolution in bacteria was studied by simple correlational analysis (at the genus level) and by Felsenstein's (1985) independent contrast test. We first used the dnaA gene in bacteria as an example to show (1) that the amino acid composition of a protein can be dramatically affected by mutational pressure (the genomic GC content), (2) that surprisingly, deleting relatively closely-related genera may increase rather than decrease the correlation between genomic GC content and amino acid composition, and (3) that most unexpectedly, as the genomic GC content increases, both strongly hydrophobic and strongly hydrophilic amino acids tend to change to ambivalent amino acids, suggesting that the majority of these amino acid substitutions are not caused by positive Darwinian selection. These patterns were then also shown to hold for the 14 other genes studied, indicating their generality for the evolution of bacterial proteins. As directional mutation pressure can affect the amino acid composition of proteins, it may mislead phylogenetic inference, even if protein instead of DNA sequences are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argos, P., M.G. Rossmann, U.M. Grau, A. Zuber, G. Frank & J.D. Tratschin, 1979. Thermal stability and protein structure. Biochemistry 18: 5698-5703.

    Article  PubMed  CAS  Google Scholar 

  • Bronson, E. C. & J. N. Anderson, 1994. Nucleotide composition as a driving force in the evolution of retroviruses. J. Mol. Evol. 38: 506-532.

    Article  PubMed  CAS  Google Scholar 

  • Cedano, J., A. Patrick, J. Perez-Pons & E. Querol, 1997. Relation between amino acid composition and cellular location of proteins. J. Mol. Biol. 266: 594-600.

    Article  PubMed  CAS  Google Scholar 

  • Collins, D.W. & T.H. Jukes, 1993. Relationship between G+C in silent sites of codons and amino acid compositions of human proteins. J. Mol. Evol. 36: 201-203.

    Article  PubMed  CAS  Google Scholar 

  • Dickerson, R.E. & I. Geis, 1983. Hemoglobins: Structure, Function, Evolution, and Pathology. The Benjamin/Cummings Publishing Company, Inc. Menlo Park, CA.

    Google Scholar 

  • D'Onofrio, G., D. Mouchiroud, B. Aissani, C. Gautier & G. Bernardi, 1991. Correlations between the compositional properties of human genes, codon usage and amino acid composition of proteins. J. Mol. Evol. 32: 504-510.

    Article  PubMed  Google Scholar 

  • Doolittle, R.F., D.-F Feng, S. Tsang, G. Cho & E. Little, 1996. Determining divergence times of the major kindoms of living organisms with a protein clock. Science 271: 470-477.

    PubMed  CAS  Google Scholar 

  • Eisen, J.A., 1995. The RecA proteins as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J. Mol. Evol. 41: 1105- 1123.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J., 1985. Phylogenies and the comparative method. American Naturalist. 125: 1-15.

    Article  Google Scholar 

  • Fitch, W.M., 1977. Phylogenies constrained by the crossover process as illustrated by human hemoglobines and a thirteen cycle, eleven-amino-acid repeat in human apolipoprotein A1. Genetics 86: 623-644.

    PubMed  CAS  Google Scholar 

  • Harvey, P.H. & G.M. Mace, 1982. Comparisons between taxa and adpative trends: problems of methodology. Current Problems in Sociobiology (ed. King's College Sociobiology group), pp.343-361. Cambridge University Press.

  • Harvey, P.H. & M.D. Pagel., 1991. The Comparative Methods in Evolutionary Biology. Oxford university press.

  • Hasegawa, M., T. Hashimota, J. Adachi, N. Iwabe & T. Miyata, 1993. Early branchings in the evolution of eukaryotes: ancient divergence of entamoeba that lacks mitochondria revealed by protein sequence data. J. Mol. Evol. 36: 380-388.

    Article  PubMed  CAS  Google Scholar 

  • Jukes T.H. & V. Bhushan, 1986. Silent nucleotide substitutions and G+C contents of some mitochondrial and bacterial genes. J. Mol. Evol. 24: 39-44.

    Article  PubMed  CAS  Google Scholar 

  • Kagawa, Y., N. Nojima, N. Nukiwa, M. Ishizuka, T. Nakajima, T. Yasuhara, T. Tanaka & T. Oshima, 1984. High guanine plus cytocine content in the third letter of codons of an extreme thermophile. J. Biol. Chem. 259: 2956-2960.

    PubMed  CAS  Google Scholar 

  • Kimura, M., 1968. Evolutionary rate at the molecular level. Nature. 217: 624-626.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.

    Google Scholar 

  • King, J.L. & T.H. Jukes, 1969. Non-Darwinian evolution. Science 164: 788-798.

    PubMed  CAS  Google Scholar 

  • Kushiro, A., M. Shimizu & K. I. Tomita, 1987. Molecular cloning and sequence determination of the tuf gene coding for the elongation factor Tu of Thermus thermophilus. Eur. J. Biochem. 170: 93-98.

    Article  PubMed  CAS  Google Scholar 

  • Lockhart, P.J., M.A. Steel, M.D. Hendy & D. Penny, 1994. Recovering evolutionary trees under a more realistic model of sequence evolution. Mol. Biol. Evol. 11: 605-612.

    CAS  Google Scholar 

  • Moran, N.A., 1996. Accelerated evolution and Muller's rachet in endosymbiotic bacteria. Proc. Natl. Acad. Sci. USA. 93: 2873- 2878.

    Article  PubMed  CAS  Google Scholar 

  • Muto, A. & S. Osawa, 1987. The guanine and cytosine content of genomic DNA and bacterial evolution. Proc. Natl. Acad. Sci. USA. 84: 166-169.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima, H. & K. Nishikawa, 1994. Discrimination of intracellular and extracellular proteins using amino acid compositions and residue-pair frequencies. J. Mol. Biol. 238: 54-61.

    Article  PubMed  CAS  Google Scholar 

  • Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Ohta, T., 1973. Slightly deleterious mutant substitutions in evolution. Nature 246: 96-98.

    Article  PubMed  CAS  Google Scholar 

  • Saitou, N. & M. Nei, 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.

    PubMed  CAS  Google Scholar 

  • Schachtel, G.A., P. Bucher, E. Mocarski, B.E. Blaisdel & S. Karlin, 1991. Evidence for selective evolution in codon usage in conserved amino acid segments of human alphaherpesvirus proteins. J. Mol. Evol. 33: 483-494.

    Article  PubMed  CAS  Google Scholar 

  • Sogin, M.L., G. Hinkle & D.D. Leipe, 1993. Universal tree of life. Nature 362: 795.

    Article  PubMed  CAS  Google Scholar 

  • Sueoka, N., 1961. Compositional correlation between deoxyribonucleic acid and protein. Cold Spring Harbor Symp. Quant. Biol. 26: 35-43.

    PubMed  CAS  Google Scholar 

  • Sueoka, N., 1962. On the genetic basis of variation and heterogeneity of DNA base composition. Proc. Natl. Acad. Sci. USA. 48: 582-592.

    Article  PubMed  CAS  Google Scholar 

  • Sueoka, N., 1988. Directional mutation pressure and neutral molecular evolution. Proc. Natl. Acad. Sci. USA. 85: 2653-2657.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C.R., 1987. Bacterial evolution. Microbiol. Rev. 51: 221-271.

    PubMed  CAS  Google Scholar 

  • Zhang, Ch. & K. Chou, 1992. A correlation-coefficient method to predicting protein structural classes from amino acid compositions. Eur. J. Biochem. 207: 429-433.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Hsiung Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, X., Hewett-Emmett, D. & Li, WH. Directional mutational pressure affects the amino acid composition and hydrophobicity of proteins in bacteria. Genetica 102, 383–391 (1998). https://doi.org/10.1023/A:1017028102013

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017028102013

Navigation