Skip to main content
Log in

Microbial aspects of atrazine degradation in natural environments

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The potential toxicity of thes-triazine herbicide atrazine motivates continuous bioremediation-directed research. Several indigenous soilatrazine-catabolizing microbialassociations and monocultures have been enriched/isolated from compromised sites. Of these, Pseudomonas sp. strain ADP has become a reference strain and has been used to elucidate sequences of the catabolic enzymes atzA, atzB, atzCand atzD involvedin one aerobic degradation pathway and develop probes for the genes which encode these enzymes. Despite this, hitherto unknown or novel microorganisms, with unique sequences and different enzyme-mediated operative pathways, warrant continued investigations for effective site bioremediation. Also, the sustained effectiveness of natural attenuation must be demonstrated continually so regular site evaluations and results analyses, despite the limitations of chemical extraction methodologies, are crucial practices. For both directed and intrinsic bioremediation monitoring, traditional microbial association studies must be complemented by more advanced physiological and molecular approaches. The occurrence of catabolic plasmids, in particular, should be probed with DNA hybridization techniques. Also, PCR-DGGEand subsequent new sequenceelucidation should be used prior to developing new primers for DNA sequences encoding novel catabolic enzymes, and for hybridization probe development, to establish the degradative potential of a compromised site, or adoption of FISH to, for example, monitor bioaugmented remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelhafid R, Houot S & Barriuso E (2000) How increasing availabilities of carbon and nitrogen affect atrazine behaviour in soils. Biol. Fert. Soils 30: 333-340

    Google Scholar 

  • Agdi K, Bouaid A, Esteban AM, Hernando PF, Azmani A & Camara C (2000) Removal of atrazine and four organophosphorus pesticides from environmental waters by diatomaceous earth-remediation method. J. Environ. Monitor. 2: 420-423

    Google Scholar 

  • Allran JW & Karasov WH (2000) Effects of atrazine and nitrate on northern leopard frog (Rana pipiens) larvae exposed in the laboratory from posthatch through metamorphosis. Environ. Toxicol. Chem. 19: 2850-2855

    Google Scholar 

  • Almeida JS, Barreto CMT, Figueiredo MJJ, Noble PA, MacNaughton SJ, Stephen JR, White DC and Carrondo MJT (1999) Microbial typing for management of remediation in contaminated soils. Proceedings of the 1999 African International Environmental Protection Symposium, (CD-ROM), Pietermaritzburg

  • Alvey S & Crowley DE (1995) Influence of organic amendments on biodegradation of atrazine as a nitrogen source. J. Environ. Qual. 24: 1156-1162

    Google Scholar 

  • Alvey S & Crowley DE (1996) Survival and activity of an atrazinemineralizing bacterial consortium in rhizosphere soil. Environ. Sci. Technol. 30: 1596-1603

    Google Scholar 

  • Amann RI, Ludwig W & Schleifer KH (1995) Phylogenetic identi-fication and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169

    Google Scholar 

  • Ames RA & Hoyle BL (1999) Biodegradation and mineralization of atrazine in shallow subsurface sediments from Illinois. J. Environ. Qual. 28: 1674-1681

    Google Scholar 

  • Anon (1996) South African Water Quality Guidelines, Domestic Water Use, Department of Water Affairs and Forestry, Second Edition

  • Assaf NA & Turco RF (1994a) Accelerated biodegradation of atrazine by a microbial consortium is possible in culture and soil. Biodegradation 5: 29-35

    Google Scholar 

  • Assaf NA & Turco RF (1994b) Influence of carbon and nitrogen application on the mineralization of atrazine and its metabolites. Pest. Sci. 41: 41-47

    Google Scholar 

  • Behki RM & Khan SU (1986) Degradation by Pseudomonas: n-Dealkylation and dehalogenation of atrazine and its metabolites. J. Agric. Food Chem, 34: 746-749

    Google Scholar 

  • Behki RM & Khan SU (1994) Degradation of atrazine, propazine and simazine by Rhodococcus strain B-30. J. Agric. Food Chem. 42: 1237-1241

    Google Scholar 

  • Behki R, Topp E, Dick W & Germon P (1993) Metabolism of the herbicide atrazine by Rhodococcus strains. Appl. Environ. Microbiol. 59: 1955-1959

    Google Scholar 

  • Bichat F, Sims GK & Mulvaney RL (1999) Microbial utilization of heterocyclic nitrogen from atrazine. Soil Sci. Soc. Amer. J. 63: 100-110

    Google Scholar 

  • Biradar DP & Rayburn AL (1995) Chromosomal damage induced by herbicide contamination at concentrations observed in public water supplies. J. Environ. Qual. 24: 1222-1225

    Google Scholar 

  • Boundy-Mills K, de Souza ML, Mandelbaum RM, Wackett LP & Sadowsky MJ (1997) The atzB gene of Pseudomonas sp. strain ADP encodes the second enzyme of a novel atrazine degradation pathway. Appl. Environ. Microbiol. 63: 916-923

    Google Scholar 

  • Bouquard C, Ouazzani J, Prom, J-C, Michel-Briand Y & Plésiat P (1997) Dechlorination of atrazine by a Rhizobium sp. isolate. Appl. Environ. Microbiol. 63: 862-866

    Google Scholar 

  • Brockman FJ (1995) Nucleic acid-based methods for monitoring the performance of in situ bioremediation. Molec. Ecol. 4: 567-578

    Google Scholar 

  • Brouwer WWM, Boesten JJTI & Siegers WG (1990) Adsorption of transformation products of atrazine by soil. Weed Res. 30: 123-128

    Google Scholar 

  • Campos C, Snoeyink VL, Marinas B, Baudin I & Laine JM (2000) Atrazine removal by powdered activated carbon in floc blanket reactors. Water Res. 34: 4070-4080

    Google Scholar 

  • Chin Y-P, Kimble KD & Swank CR (1996) The sorption of 2-methylnaphthalene by Rossburg soil in the absence and presence of a nonionic surfactant. J. Contam. Hydrol. 22: 83-94

    Google Scholar 

  • Chung N & Alexander M (1998) Differences in sequestration and bioavailability of organic compounds aged in dissimilar soils. Environ. Sci. Technol. 32: 855-860

    Google Scholar 

  • Cook AM (1987) Biodegradation of s-triazine xenobiotics. FEMS Microbiol. Rev. 46: 93-116

    Google Scholar 

  • de Souza ML, Newcombe D, Alvey S, Crowley DE, Hay A, Sadowsky MJ & Wackett LP (1998a) Molecular basis of a bacterial consortium: Interspecies catabolism of atrazine. Appl. Environ. Microbiol. 64: 178-184

    Google Scholar 

  • de Souza ML, Sadowsky MJ & Wackett LP (1996) Atrazine chlorohydrolase from Pseudomonas sp. strain ADP: Gene sequences, enzyme purification, and protein characterization. J. Bacteriol. 178: 4894-4900

    Google Scholar 

  • de Souza ML, Seffernick J, Martinez B, Sadowsky MJ & Wackett LP (1998b) The atrazine catabolism genes atzABC are widespread and highly conserved. J. Bacteriol. 180: 1951-1954

    Google Scholar 

  • de Souza ML, Wackett LP & Sadowsky MJ (1998c) The atzABC genes encoding atrazine catabolism are located on a selftransmissible plasmid in Pseudomonas sp. strain ADP. Appl. Environ. Microbiol. 64: 2323-2326

    Google Scholar 

  • Donnelly PK, Entry JA & Crawford DL (1993) Degradation of atrazine and 2,4-dichlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentrations in vitro. Appl. Environ. Microbiol. 59: 2642-2647

    Google Scholar 

  • El Fantroussi S, Verschuere L, Verstraete W & Top EM (1999) Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles. Appl. Environ. Microbiol. 65: 982-988

    Google Scholar 

  • Erickson EL & Lee KH (1989) Degradation of atrazine and related s-triazines. Crit. Rev. Environ. Cont. 19: 1-14

    Google Scholar 

  • Gao JP, Maguhn J, Spitzauer P & Kettrup A (1998) Sorption of pesticides in the sediment of the Teufelsweiher pond (Southern Germany). I: Equilibrium assessments, effect of organic carbon content and pH. Water Res. 32: 1662-1672

    Google Scholar 

  • Garland JL (1997) Analysis and interpretation of community-level physiology profiles in microbial ecology. FEMS Microbial Ecol. 24: 289-300

    Google Scholar 

  • Gebendinger N & Radosevich M (1999) Inhibition of atrazine degradation by cyanazine and exogenous nitrogen in bacterial isolate M91-3. Appl. Microbiol. Biotechnol. 51: 375-381

    Google Scholar 

  • Gerstl Z, Nasser A & Mingelgrin U (1998) Controlled release of pesticides into water from clay-polymer formulations. J. Agric. Food Chem. 46: 3803-3809

    Google Scholar 

  • Green CT & Scow KM (2000) Analysis of phospholipid fatty acids (PLFA) to characterize microbial communities in aquifers. Hydrogeol. J. 8: 126-141

    Google Scholar 

  • Grigg BC, Bischoff M & Turco RF (1997) Cocontaminant effects on degradation of triazine herbicides by a mixed microbial culture. J. Agric. Food Chem. 45: 995-1000

    Google Scholar 

  • Guo C, Sun W, Harsh JB & Ogram A (1997) Hybridization analysis of microbial DNA from fuel oil-contaminated and noncontaminated soil. Microbial Ecol. 34: 178-187

    Google Scholar 

  • Haack SK & Bekins BA (2000) Microbial populations in contaminant plumes. Hydrogeol. J. 8: 63-76

    Google Scholar 

  • Head IM, Saunders JR & Pickup RW (1998) Microbial evolution, diversity and ecology: A decade of ribosomal analysis of uncultivated microorganisms. Microbial Ecol. 35: 1-21

    Google Scholar 

  • Heuer H & Smalla K (1997) Application of denaturing gradient gel electrophoresis and temperature gradient gel electrophoresis for studying soil microbial communities. In: van Elsas JD, Trevor JT & Wellington EMH (Eds) Modern Soil Microbiology (pp. 353-373). Marcel Dekker Inc., New York

    Google Scholar 

  • Huang PM, Grover R & McKercher RB (1984) Components and particle size fractions involved in atrazine adsorption by soils. Soil Sci. 28: 20-24

    Google Scholar 

  • Katz I, Green M, Ruskol Y & Dosoretz CG (2000) Characterization of atrazine degradation and nitrate reduction by Pseudomonas sp. strain ADP. Adv. Environ. Res. 4: 219-224

    Google Scholar 

  • Kauffmann C, Shoseyov O, Shpigel E, Bayer EA, Lamed R, Shoham Y & Mandelbaum RT (2000) Novel methodology for enzymatic removal of atrazine from water by CBD-fusion protein immobilized on cellulose. Environ. Sci. Technol. 34: 1292-1296

    Google Scholar 

  • Kolpin DW, Thurman EM & Linhart SM (1998) The environmental occurrence of herbicides: The importance of degradates in ground water. Arch. Environ. Contam. Toxicol. 35: 385-390

    Google Scholar 

  • Konstantinou IK, Zarkadis AK & Albanis TA (2001) Photodegradation of selected herbicides in various natural waters and soils under environmental conditions. J. Environ. Qual. 30: 121-130

    Google Scholar 

  • Loprieno N, Barale R, Mariani L, Presciuttini S, Rossi AM, Sbrana I, Zaccaro L, Abbondandolo A & Bonatti S (1980) Results of mutagenicity tests on the herbicide atrazine. Mutat. Res. 74: 250

    Google Scholar 

  • Ma J & Graham NJD (2000) Degradation of atrazine by manganesecatalysed ozonation-Influence of radical scavengers.Water Res. 34: 3822-3828

    Google Scholar 

  • Mandelbaum RT, Allan BH & Wackett LP (1995) Isolation of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine. Appl. Environ. Microbiol. 61: 1451-1457

    Google Scholar 

  • Mandelbaum RT, Wackett LP & Allan DL (1993) Mineralization of the s-triazine ring of atrazine by stable bacterial mixed cultures. Appl. Environ. Microbiol. 59: 1695-1701

    Google Scholar 

  • Martín-Esteban A, Fernández P & Cámara C (1997) Immunosorbents: A new tool for pesticide sample handling in environmental analysis. Fresenius' J. Analyt. Chem. 357: 927-933

    Google Scholar 

  • Martin-Laurent F, Philippot L, Hallet S, Chaussod R, Germon JC, Soulas G & Catroux G (2001) DNA extraction from soils: Old bias for new microbial diversity analysis methods. Appl. Environ. Microbiol. 67: 2354-2359

    Google Scholar 

  • Masaphy S & Mandelbaum RT (1997) Atrazine mineralization in slurries from soils irrigated with treated waste water. Appl. Soil Ecol. 6: 283-291

    Google Scholar 

  • Mason JR, Haider I, Henkler C & Fenwick C (1998) Assessment of biodegradative potential and activity in contaminated sites: Molecular approaches to environmental monitoring. Biochem. Soc. Transact. 26: 694-697

    Google Scholar 

  • Mata-Sandoval JC, Karns J & Torrents A (2000) Effects of rhamnolipids produced by Pseudomonas aeruginosa UG2 on the solubilization of pesticides. Environ. Sci. Technol. 34: 4923-4930

    Google Scholar 

  • Moreau-Kervévan C & Mouvet C (1998) Adsorption and desorption of atrazine, deethylatrazine and hydroxyatrazine by soil components. J. Environ. Qual. 27: 46-53

    Google Scholar 

  • Mougin C, Laugero C, Asther M, Dubroca J, Frasse P & Asther M (1994) Biotransformation of the herbicide atrazine by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 60: 705-708

    Google Scholar 

  • Mulbry WW (1994) Purification and characterization of an inducible s-triazine hydrolase from Rhodococcus corallinus NRRL B-15444R. Appl. Environ. Microbiol. 60: 613-618

    Google Scholar 

  • Muyzer G & Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. A. van Leeuw. 73: 127-141

    Google Scholar 

  • Nagy I, Compernolle F, Ghys K, Vanderleyden J & de Mot R (1995) A single cytochrome P-450 system is involved in degradation of the herbicides EPTC (s-ethyl dipropylthiocarbamate) and atrazine by Rhodococcus sp. strain N186/21. Appl. Environ. Microbiol. 61: 2056-2060

    Google Scholar 

  • Newcombe DA & Crowley DE (1999) Bioremediation of atrazinecontaminated soil by repeated applications of atrazine-degrading bacteria. Appl. Microbiol. Biotechnol. 51: 877-882

    Google Scholar 

  • Noble PA, Almeida JS & Lovell CR (2000) Application of neural computing methods for interpreting phospholipid fatty acid pro-files of natural microbial communities. Appl. Environ. Microbiol. 66: 694-699

    Google Scholar 

  • Parkes RJ (1987) Analysis of microbial communities within sediments using biomarkers. In: Fletcher M, Gray TRG and Jones JG (Eds) Ecology of Microbial Communities, (pp. 147-177). Cambridge University Press, Cambridge

    Google Scholar 

  • Pick FE, van Dyk LP & Botha E (1992) Atrazine in ground and surface water in maize production areas of Transvaal, South Africa. Chem. 25: 335-341

    Google Scholar 

  • Protzman RS, Lee PH, Ong SK & Moorman TB (1999) Treatment of formulated atrazine rinsate by Agrobacterium radiobacter strain J14A in a sequencing batch biofilm reactor.Water Res. 33: 1399-1404

    Google Scholar 

  • Radosevich M, Hao Y-L, Traina SJ & Tuovinen OH (1995) Degradation and mineralization of atrazine by a soil bacterial isolate. Appl. Environ. Microbiol. 61: 297-302

    Google Scholar 

  • Ralebitso TK, Röling WFM, van Verseveld HW & Senior E (1999) A molecular approach to characterizing atrazine-and selected petroleum hydrocarbon-catabolizing microbial associations isolated from soil. Proceedings of the 1999 African International Environmental Protection Symposium, (CD-ROM), Pietermaritzburg

  • Rittmann BE (2000) Natural attenuation's promise and application. Water 21 8: 20-22

    Google Scholar 

  • Roy WR & Krapac IG (1994) Adsorption and desorption of atrazine and deethylatrazine by 16 low organic carbon geologic materials. J. Environ. Qual. 23: 549-556

    Google Scholar 

  • Sadowsky MJ, Tong Z, de Souza ML & Wackett LP (1998) AtzC is a new member of the amidohydrolase protein superfamily strain and is homologous to other atrazine-metabolizing enzymes. Journal of Bacteriology 180: 152-158

    Google Scholar 

  • Sanchez-Camazano M, Sanchez-Martin MJ & Rodriguez-Cruz MS (2000) Sodium dodecyl sulphate-enhanced desorption of atrazine: Effect of surfactant concentration and of organic matter content of soils. Chemosphere 41: 1301-1305

    Google Scholar 

  • Seiler A, Brenneisen P & Green DH (1992) Benefits and risks of plant protection products-possibilities of protecting drinking water: Case atrazine. Water Sup. 10: 31-42

    Google Scholar 

  • Senior E, Bull AT & Slater JH (1976) Enzyme evolution in a microbial community growing on the herbicide Dalapon. Nature (London) 263: 476-479

    Google Scholar 

  • Shao ZQ, Seffens W, Mulbry W & Behki RM (1995) Cloning and expression of the s-triazine hydrolase gene (trzA) from Rhodococcus corallinus and development of Rhodococcus recombinant strains capable of dealkylating and dechlorinating the herbicide atrazine. J. Bacteriol. 177: 5748-5755

    Google Scholar 

  • Shapir N, Goux S, Mandelbaum RT & Pussemier L (2000) The potential of soil microorganisms to mineralize atrazine as predicted by MCH-PCR followed by nested PCR. Canadian J. Microbiol. 46: 425-432

    Google Scholar 

  • Shapir N, Mandelbaum RT and Jacobsen CS (1998) Rapid atrazine mineralization under denitrifying conditions by Pseudomonas sp. strain ADP in aquifer sediments. Environ. Sci. Technol. 32: 3789-3792

    Google Scholar 

  • Shati MR, Rönen D & Mandelbaum R (1996) Method for in situ study of bacterial activity in aquifers. Environ. Sci. Technol. 30: 2646-2653

    Google Scholar 

  • Shows ME & Olesik SV (2000) Extraction of atrazine and its metabolites using supercritical fluids and enhanced-fluidity liquids. J. Chromatogr. Sci. 38: 399-408

    Google Scholar 

  • Sluszny C, Graber ER & Gerstl Z (1999) Sorption of s-triazine herbicides in organic matter amended soils: Fresh and incubated systems. Water Air Soil Pol. 115: 395-410

    Google Scholar 

  • Sparling G, Dragten R, Aislabie J & Fraser R (1998) Atrazine mineralization in New Zealand topsoils and subsoils: Influence of edaphic factors and numbers of atrazine-degrading microbes. Aus. J. Soil Res. 36: 557-570

    Google Scholar 

  • Sprague LA, Herman JS, Hornberger GM & Mills AL (2000) Atrazine adsorption and colloid-facilitated transport through the unsaturated zone. J. Environ. Qual. 29: 1632-1641

    Google Scholar 

  • Strong LC, McTavish H, Sadowsky MJ & Wackett LP (2000) Field-scale remediation of atrazine-contaminated soil using recombinant Escherichia coli expressing atrazine chlorohydrolase. Environ. Microbiol. 2: 91-98

    Google Scholar 

  • Struthers JK, Jayachandran K & Moorman TB (1998) Biodegradation of atrazine by Agrobacterium radiobacter J14A and use of this strain in bioremediation of contaminated soil. Appl. Environ. Microbiol. 64: 3368-3375

    Google Scholar 

  • Topp E (2001) A comparison of three atrazine-degrading bacteria for soil bioremediation. Biol. Fert. Soils 33: 529-534

    Google Scholar 

  • Topp E, Mulbry WM, Zhu H, Nour SM & Cuppels D (2000a) Characterization of s-triazine herbicide metabolism by a Nocardioides sp. isolated from agricultural soils. Appl. Environ. Microbiol. 66: 3134-3141

    Google Scholar 

  • Topp E, Zhu H, Nour SM, Houot S, Lewis M & Cuppels D (2000b) Characterization of an atrazine-degrading Pseudaminobacter sp. isolated from Canadian and French agricultural soils. Appl. Environ. Microbiol. 66: 2773-2782

    Google Scholar 

  • Turiel E, Fernandez P, Perez-Conde C, Gutierrez AM & Camara C (1999) Oriented antibody immobilization for atrazine determination by flow-through fluoroimmunosensor. Fresenius' J. Anal. Chem. 365: 658-662

    Google Scholar 

  • Yanze-Kontchou C & Gschwind N (1994) Mineralization of the herbicide atrazine as the carbon source by a Pseudomonas strain. Appl. Environ. Microbiol. 60: 4297-4302

    Google Scholar 

  • Yanze-Kontchou C & Gschwind N (1995) Mineralization of the herbicide atrazine in soil inoculated with a Pseudomonas strain. J. Agricul. Food Chem. 43: 2291-2294

    Google Scholar 

  • Zelles L (1997) Phospholipid fatty acid profiles in selected members of soil microbial communities. Chem. 35: 275-294

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komang Ralebitso, T., Senior, E. & van Verseveld, H.W. Microbial aspects of atrazine degradation in natural environments. Biodegradation 13, 11–19 (2002). https://doi.org/10.1023/A:1016329628618

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016329628618

Navigation