Skip to main content
Log in

Promoter and Intronic Sequences of the Human Thiopurine S-Methyltransferase (TPMT) Gene Isolated from a Human Pacl Genomic Library

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To isolate and characterize the polymorphic human thiopurine S-methyltransferase (TPMT) gene.

Methods. The human TPMT gene was isolated by PCR screening of a phage artificial chromosome (PAC) library, using exon- and intron-specific primers, then mapped and sequenced.

Results. Two separate PAC1 clones were isolated that contained the same 25 kb gene with 9 exons encompassing the entire TPMT open reading frame. Structural characterization revealed distinct differences when compared to a TPMT gene previously isolated from a chromosome 6-specific human genomic library; the 5′-flanking region (putative promoter) contains 17 additional nucleotides located at position-77 upstream from the transcription start site, in addition to several nucleotide sequence differences, and intron 8 is only 1.6 kb, 5 kb shorter than previously reported. Southern and PCR analyses of genomic DNA from 18 unrelated individuals revealed only the TPMT gene structure corresponding to the PAC clones we isolated. Analysis of the TPMT promoter activity using the 5′-terminal region confirmed transcriptional activity in human HepG2 and CCRF-CEM cells. The 5′-flank is 71% GC rich and does not contain consensus sequences for TATA box or CCAAT elements. FISH analysis demonstrated the presence of the TPMT-homologous sequence on the short arm of chromosome 6 (sublocalized to 6p22).

Conclusions. These findings establish the genomic structure of the human TPMT gene, revealing differences in the promoter and intronic sequences compared to that previously reported and providing a basis for future studies to further elucidate its biological function and regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. E. Y. Krynetski, H. L. Tai, C. R. Yates, M. Y. Fessing, T. Loennechen, J. D. Schuetz, M. V. Relling, and W. E. Evans. Pharmacogenetics 6:279–290 (1996).

    Google Scholar 

  2. R. M. Weinshilboum, and S. L. Sladek. Am. J. Hum. Genet. 32:651–662 (1980).

    Google Scholar 

  3. H. L. McLeod, J. S. Lin, E. P. Scott, C. H. Pui, and W. E. Evans. Clin. Pharmacol. Ther. 55:15–20 (1994).

    Google Scholar 

  4. L. Lennard, J. S. Lilleyman, J. Van Loon, and R. M. Weinshilboum. Lancet 336:225–229 (1990).

    Google Scholar 

  5. L. Lennard, J. A. Van Loon, J. S. Lilleyman, and R. M. Weinshilboum. Clin. Pharmacol. Ther. 41:18–25 (1987).

    Google Scholar 

  6. W. E. Evans, M. Horner, Y. Q. Chu, D. Kalwinsky, and W. M. Roberts. J. Pediatr. 119:985–989 (1991).

    Google Scholar 

  7. E. Schutz, J. Gummert, F. Mohr, and M. Oellerich. Lancet 341:436 (1993).

    Google Scholar 

  8. H. L. McLeod, D. R. Miller, and W. E. Evans. Lancet 341:1151 (1993).

    Google Scholar 

  9. L. Lennard, B. E. Gibson, T. Nicole, and J. S. Lilleyman. Arch. Dis. Child 69:577–579 (1993).

    Google Scholar 

  10. E. Y. Krynetski, J. D. Schuetz, A. J. Galpin, C. H. Pui, M. V. Relling, and W. E. Evans. Proc. Natl. Acad. Sci. USA 92:949–953 (1995).

    Google Scholar 

  11. H. L. Tai, E. Y. Krynetski, C. R. Yates, T. Loennechen, M. Y. Fessing, N. F. Krynetskaia, and W. E. Evans. Am. J. Hum. Genet. 58:694–702 (1996).

    Google Scholar 

  12. H. L. Tai, E. Y. Krynetski, E. G. Schuetz, Y. Yanishevski, and W. E. Evans. Proc. Natl. Acad. Sci. USA 94:6444–6449 (1997).

    Google Scholar 

  13. C. R. Yates, E. Y. Krynetski, T. Loennechen, M. Y. Fessing, H. L. Tai, C. H. Pui, M. V. Relling, and W. E. Evans. Ann. Int. Med. 126:608–614 (1997).

    Google Scholar 

  14. D. Lee, C. Szumlanski, J. Houtman, R. Honchel, K. Rojas, J. Overhauser, E. D. Wieben, and R. M. Weinshilboum. Drug Metab. Dispos. 23:398–405 (1995).

    Google Scholar 

  15. C. Szumlanski, D. Otterness, C. Her, D. Lee, B. Brandriff, D. Kelsell, N. Spurr, L. Lennard, E. Wieben, and R. Weinshilboum. DNA Cell Biol. 15:17–30 (1996).

    Google Scholar 

  16. P. A. Ioannou, C. T. Amemiya, J. Garnes, P. M. Kroisel, H. Shizuya, C. Chen, M. A. Batzer, and P. J. de Jong. Nat. Genet. 6:84–89 (1994).

    Google Scholar 

  17. Genetics Computer Group:Program manual for the GCG Package, version 7. April (1991).

  18. R. Honchel, I. A. Aksoy, C. Szumlanski, T. C. Wood, D.M. Otterness, E. D. Wieben, and R. M. Weinshilboum. Mol. Pharmacol. 43:878–887 (1993).

    Google Scholar 

  19. P. Senapathy, M. B. Shapiro, and N. L. Harris. Methods Enzymol. 183:252–278 (1990).

    Google Scholar 

  20. J. T. Kadonaga, K. A. Jones, and R. Tjian. TIBS 11:20–23 (1986).

    Google Scholar 

  21. M. J. Lenardo, and D. Baltimore, Cell 58:227–229 (1989).

    Google Scholar 

  22. T. Williams, and R. Tjian. Genes Develop. 5:670–682 (1991).

    Google Scholar 

  23. B. Christy, and D. Nathans. Proc. Natl. Acad. Sci. USA 86:8737–8741 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Evans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krynetski, E.Y., Fessing, M.Y., Yates, C.R. et al. Promoter and Intronic Sequences of the Human Thiopurine S-Methyltransferase (TPMT) Gene Isolated from a Human Pacl Genomic Library. Pharm Res 14, 1672–1678 (1997). https://doi.org/10.1023/A:1012111325397

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012111325397

Navigation