Skip to main content
Log in

Molecular Properties and Physiological Roles of Ion Channels in the Immune System

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

The discovery of a diverse and unique set of ion channels in T lymphocytes has led to a rapidly growing body of knowledge about their functional roles in the immune system. Here we review the biophysical and molecular characterization of K+, Ca2+, and Cl channels in T lymphocytes. Potent and specific blockers, especially of K+ channels, have provided molecular tools to elucidate the involvement of voltage- and calcium-activated potassium channels in T-cell activation and cell-volume regulation. Their unique and differential expression makes lymphocyte K+ channels excellent pharmaceutical targets for modulating immune system function. This review surveys recent progress at the biophysical, molecular, and functional roles of the ion channels found in T lymphocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. DeCoursey TE, Chandy KG, Gupta S, Cahalan MD: Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature 307:465–468, 1984

    Google Scholar 

  2. Cahalan MD, Chandy KG, DeCoursey TE, Gupta S: A voltage-gated potassium channel in human T lymphocytes. J Physiol (Lond) 358:197–237, 1985

    Google Scholar 

  3. Decoursey TE, Chandy KG, Gupta S, Cahalan MD: Two types of potassium channels in murine T lymphocytes. J Gen Physiol 89:379–404, 1987

    Google Scholar 

  4. Lewis RS, Cahalan MD: Subset-specific expression of potassium channels in developing murine T lymphocytes. Science 239:771–775, 1988

    Google Scholar 

  5. Grissmer S, Lewis RS, Cahalan MD: Ca 21-activated K 1 channels in human leukemic T cells. J Gen Physiol 99:63–84, 1992

    Google Scholar 

  6. Grissmer S, Nguyen AN, Cahalan MD: Calcium-activated potassium channels in resting and activated human T lymphocytes. Expression levels, calcium dependence, ion selectivity, and pharmacology. J Gen Physiol 102:601–630, 1993

    Google Scholar 

  7. Partiseti M, Korn H, Choquet D: Pattern of potassium channel expression in proliferating B lymphocytes depends upon the mode of activation. J Immunol 151:2462–2470, 1993

    Google Scholar 

  8. Lewis RS, Cahalan MD: Mitogen-induced oscillations of cytosolic Ca 21 and transmembrane Ca 21 current in human leukemic T cells. Cell Regul 1:99–112, 1989

    Google Scholar 

  9. Hoth M, Penner R: Calcium release-activated calcium current in rat mast cells. J Physiol (Lond) 465:359–386, 1993

    Google Scholar 

  10. Hoth M, Penner R: Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356, 1992

    Google Scholar 

  11. Zweifach A, Lewis RS: Mitogen-regulated Ca 21 current of T lymphocytes is activated by depletion of intracellular Ca 21 stores. Proc Natl Acad Sci USA 90:6295–6299, 1993

    Google Scholar 

  12. Lewis RS, Cahalan MD: Potassium and calcium channels in lymphocytes. Annu Rev Immunol 13:623–653, 1995

    Google Scholar 

  13. Partiseti M, Le Deist F, Hivroz C, Fischer A, Korn H, Choquet D: The calcium current activated by T cell receptor and store depletion in human lymphocytes is absent in a primary immuno-deficiency. J Biol Chem 269:32327–32335, 1994

    Google Scholar 

  14. Le Deist F, Hivroz C, Partiseti M, Thomas C, Buc HA, Oleastro M, Belohradsky B, Choquet D, Fischer A: A primary T-cell immunodeficiency associated with defective transmembrane calcium influx. Blood 85:1053–1062, 1995

    Google Scholar 

  15. Lewis RS, Ross PE, Cahalan MD: Chloride channels activated by osmotic stress in T lymphocytes. J Gen Physiol 101:801–826, 1993

    Google Scholar 

  16. Ross PE, Cahalan MD: Ca 21 influx pathways mediated by swelling or stores depletion in mouse thymocytes. J Gen Physiol 106:415–444, 1995

    Google Scholar 

  17. Ross PE, Ehring GR, Cahalan MD: Dynamics of ATP-induced calcium signaling in single mouse thymocytes. J Cell Biol 138:87–98, 1997

    Google Scholar 

  18. Schilling T, Gratopp A, Heinemann U, Eder C: Electrophysiological properties of voltage-activated proton currents in human leukemic T cells. Biohys J 78:351A, 2000

    Google Scholar 

  19. DeCoursey TE, Cherny VV, Zhou W, Thomas LL: Simultaneous activation of NADPH oxidase-related proton and electron currents in human neutrophils. Proc Natl Acad Sci USA 97:6885–6889, 2000

    Google Scholar 

  20. DeCoursey TE, Cherny VV: Common themes and problems of bioenergetics and voltage-gated proton channels. Biochim Biophys Acta 1458:104–119, 2000

    Google Scholar 

  21. Eder C, DeCoursey TE: Voltage-gated proton channels in microglia. Prog Neurobiol 64:277–305, 2001

    Google Scholar 

  22. Yellen G, Jurman ME, Abramson T, MacKinnon R: Mutations affecting internal TEA blockade identify the probable pore-forming region of a K 1 channel. Science 251:939–942, 1991

    Google Scholar 

  23. MacKinnon R, Yellen G: Mutations affecting TEA blockade and ion permeation in voltage-activated K 1 channels. Science 250:276–279, 1990

    Google Scholar 

  24. Kavanaugh MP, Varnum MD, Osborne PB, Christie MJ, Busch AE, Adelman JP, North RA: Interaction between tetraethylammonium and amino acid residues in the pore of cloned voltage-dependent potassium channels. J Biol Chem 266:7583–7587, 1991

    Google Scholar 

  25. Aiyar J, Withka JM, Rizzi JP, Singleton DH, Andrews GC, Lin W, Boyd J, Hanson DC, Simon M, Dethlefs B, Lee C-L, Hall JE, Gutman GA, Chandy KG. Topology of the pore-region of a K+ channel revealed by the NMR-derived structures of scorpion toxins. Neuron 15:1169–1181, 1995

    Google Scholar 

  26. Aiyar J, Rizzi JP, Gutman GA, Chandy KG: The signature sequence of voltage-gated potassium channels projects into the external vestibule. J Biol Chem 271:31013–31016, 1996

    Google Scholar 

  27. Doupnik CA, Davidson N, Lester HA: The inward rectifier potassium channel family. Curr Opin Neurobiol 5:268–277, 1995

    Google Scholar 

  28. Nichols CG, Lopatin AN: Inward rectifier potassium channels. Annu Rev Physiol 59:171–191, 1997

    Google Scholar 

  29. Chandy KG, Williams CB, Spencer RH, Aguilar BA, Ghanshani S, Tempel BL, Gutman GA: A family of three mouse potassium channel genes with intronless coding regions. Science 247:973–975, 1990

    Google Scholar 

  30. Douglass J, Osborne PB, Cai YC, Wilkinson M, Christie MJ, Adelman JP: Characterization and functional expression of a rat genomic DNA clone encoding a lymphocyte potassium channel. J Immunol 144:4841–4850, 1990

    Google Scholar 

  31. Grissmer S, Dethlefs B, Wasmuth JJ, Goldin AL, Gutman GA, Cahalan MD, Chandy KG: Expression and chromosomal localization of a lymphocyte K 1 channel gene. Proc Natl Acad Sci USA 87:9411–9415, 1990

    Google Scholar 

  32. Cai YC, Osborne PB, North RA, Dooley DC, Douglass J: Characterization and functional expression of genomic DNA encoding the human lymphocyte type n potassium channel. DNA Cell Biol 11:163–172, 1992

    Google Scholar 

  33. MacKinnon R: Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350:232–235, 1991

    Google Scholar 

  34. Kavanaugh MP, Hurst RS, Yakel J, Varnum MD, Adelman JP, North RA: Multiple subunits of a voltage-dependent potassium channel contribute to the binding site for tetraethylammonium. Neuron 8:493–497, 1992

    Google Scholar 

  35. Sheng Z, Skach W, Santarelli V, Deutsch C: Evidence for interaction between transmembrane segments in assembly of Kv1.3. Biochemistry 36:15501–15513, 1997

    Google Scholar 

  36. Spencer RH, Sokolov Y, Li H, Takenaka B, Milici AJ, Aiyar J, Nguyen A, Park H, Jap BK, Hall JE, Gutman GA, Chandy KG: Purification, visualization, and biophysical characterization of Kv1.3 tetramers. J Biol Chem 272:2389–2395, 1997

    Google Scholar 

  37. Tu L, Deutsch C: Evidence for dimerization of dimers in K 1 channel assembly. Biophys J 76:2004–2017, 1999

    Google Scholar 

  38. Grissmer S, Ghanshani S, Dethlefs B, McPherson JD, Wasmuth JJ, Gutman GA, Cahalan MD, Chandy KG: The Shaw-related potassium channel gene, Kv3.1, on human chromosome 11, encodes the type 1 K 1 channel in T cells. J Biol Chem 267:20971–20979, 1992

    Google Scholar 

  39. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R: The structure of the potassium channel: Molecular basis of K 1 conduction and selectivity. Science 280:69–77, 1998

    Google Scholar 

  40. MacKinnon R, Cohen SL, Kuo A, Lee A, Chait BT: Structural conservation in prokaryotic and eukaryotic potassium channels. Science 280:106–109, 1998

    Google Scholar 

  41. Kalman K, Pennington MW, Lanigan MD, Nguyen A, Rauer H, Mahnir V, Paschetto K, Kem WR, Grissmer S, Gutman GA, Christian EP, Cahalan MD, Norton RS, Chandy KG: ShK-Dap22, a potent Kv1.3-specific immunosuppressive polypeptide. J Biol Chem 273:32697–32707, 1998

    Google Scholar 

  42. Rauer H, Pennington M, Cahalan M, Chandy KG: Structural conservation of the pores of calcium-activated and voltage-gated potassium channels determined by a sea anemone toxin. J Biol Chem 274:21885–21892, 1999

    Google Scholar 

  43. Holmgren M, Shin KS, Yellen G: The activation gate of a voltage-gated K 1 channel can be trapped in the open state by an intersubunit metal bridge. Neuron 21:617–621, 1998

    Google Scholar 

  44. Papazian DM, Shao XM, Seoh SA, Mock AF, Huang Y, Wainstock DH: Electrostatic interactions of S4 voltage sensor in Shaker K 1 channel. Neuron 14:1293–1301, 1995

    Google Scholar 

  45. Seoh SA, Sigg D, Papazian DM, Bezanilla F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+channel. Neuron 16:1159–1167.

  46. Glauner KS, Mannuzzu LM, Gandhi CS, Isacoff EY: Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel. Nature 402:813–817, 1999

    Google Scholar 

  47. Sato C, Ueno Y, Asai K, Takahashi K, Sato M, Engel A, Fujiyoshi Y: The voltage-gated sodium channel is a bell-shaped molecule with several cavities. Nature 209:1047–1051, 2001

    Google Scholar 

  48. Grissmer S, Cahalan M: TEA prevents inactivation while blocking open K 1 channels in human T lymphocytes. Biophys J 55:203–206, 1989

    Google Scholar 

  49. Panyi G, Sheng Z, Deutsch C: C-type inactivation of a voltage-gated K 1 channel occurs by a cooperative mechanism. Biophys J 69:896–903, 1995

    Google Scholar 

  50. Nguyen A, Kath JC, Hanson DC, Biggers MS, Canniff PC, Donovan CB, Mather RJ, Bruns MJ, Rauer H, Aiyar J, Lepple-Wienhues A, Gutman GA, Grissmer S, Cahalan MD, Chandy KG: Novel nonpeptide agents potently block the C-type inacti-vated conformation of Kv1.3 and suppress T cell activation. Mol Pharmacol 50:672–679, 1996

    Google Scholar 

  51. Hanson DC, Nguyen A, Mather RJ, Rauer H, Koch K, Burgess LE, Rizzi JP, Donovan CB, Bruns MJ, Canniff PC, Cunningham AC, Verdries KA, Mena E, Kath JC, Gutman GA, Cahalan MD, Grissmer S, Chandy KG: UK-78,282, a novel piperidine com-pound that potently blocks the Kv1.3 voltage-gated potassium channel and inhibits human T cell activation. Br J Pharmacol 126:1707–1716, 1999

    Google Scholar 

  52. Kreusch A, Pfaffinger PJ, Stevens CF, Choe S: Crystal structure of the tetramerization domain of the Shaker potassium channel. Nature 392:945–948, 1998

    Google Scholar 

  53. Minor D, Lin Y, Mobley B, Avelar A, Jan Y, Jan L, Berger J: The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel. Cell 102:657–670, 2000

    Google Scholar 

  54. Gulbis J, Zhou M, Mann S, MacKinnon R: Structure of the cytoplasmic beta subunit-T1 assembly of voltage-dependent K 1 channels. Science 289:123–127, 2000

    Google Scholar 

  55. Nakahira K, Shi G, Rhodes K, JS T: Selective interaction of voltage-gated K1 channel beta-subunits with alpha-subunits. J Biol Chem 271:7084–7089, 1996

    Google Scholar 

  56. Autieri M, Belkowski S, Constantinescu C, Cohen J, MB P: Lymphocyte-specific inducible expression of potassium channel beta subunits. J Neuroimmunol 77:8–16, 1997

    Google Scholar 

  57. Xu J, Li M: Kvbeta2 inhibits the Kvbeta1-mediated inactivation of K 1 channels in transfected mammalian cells. J Biol Chem 272:11728–11735, 1997

    Google Scholar 

  58. McCormack T, McCormack K, Nadal MS, Vieira E, Ozaita A, Rudy B: The effects of shaker beta-subunits on the human lymphocyte K 1 channel Kv1.3. J Biol Chem 274:20123–20126, 1999

    Google Scholar 

  59. van Huizen R, Czajkowsky DM, Shi D, Shao Z, Li M: Images of oligomeric Kv beta 2, a modulatory subunit of potassium channels. FEBS Lett 457:107–111, 1999

    Google Scholar 

  60. Shi G, Nakahira K, Hammond S, Rhodes KJ, Schechter LE, Trimmer JS: Beta subunits promote K 1 channel surface expression through effects early in biosynthesis. Neuron 16:843–852, 1996

    Google Scholar 

  61. Gong J, Xu J, Bezanilla M, van Huizen R, Derin R, Li M: Differential stimulation of PKC phosphorylation of potassium channels by ZIP1 and ZIP2. Science 285:1565–1569, 1999

    Google Scholar 

  62. Hanada T, Lin L, Chandy KG, Oh SS, Chishti AH: Human homologue of the Drosophila discs large tumor suppressor binds to p56lck tyrosine kinase and Shaker type Kv1.3 potassium channel in T lymphocytes. J Biol Chem 272:26899–26904, 1997

    Google Scholar 

  63. Cayabyab F, Khanna R, Jones O, Schlichter L. Suppression of the rat microglia Kv1.3 current by src-family tyrosine kinases and oxygen/glucose deprivation. Eur J Neurosci 12:1949–1960, 2000

    Google Scholar 

  64. Doyle DA, Lee A, Lewis J, Kim E, Sheng M, MacKinnon R: Crystal structures of a complexed and peptide-free membrane protein-binding domain: Molecular basis of peptide recognition by PDZ. Cell 85:1067–1076, 1996

    Google Scholar 

  65. Szabo I, Gulbins E, Apfel H, Zhang X, Barth P, Busch A, K S, Pongs O, Lang F: Tyrosine phosphorylation-dependent suppression of a voltage-gated K 1 channel in T lymphocytes upon Fas stimulation. J Biol Chem 271:20465–20469, 1996

    Google Scholar 

  66. Gulbins E, Szabo I, Baltzer K, Lang F: Ceramide-induced inhibition of T lymphocyte voltage-gated potassium channel is mediated by tyrosine kinases. Proc Natl Acad Sci USA 94:7661–7666, 1997

    Google Scholar 

  67. Levite M, Cahalon L, Peretz A, Hershkoviz R, Sobko A, Ariel A, Desai R, Attali B, Lider O: Extracellular K 1 and opening of voltage-gated potassium channels activate T cell integrin function: Physical and functional association between Kv1.3 channels and betal integrins. J Exp Med 191:1167–1176, 2000

    Google Scholar 

  68. Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP, Maylie J: A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci USA 94:11651–11656, 1997

    Google Scholar 

  69. Joiner WJ, Wang LY, Tang MD, Kaczmarek LK: hSK4, a member of a novel subfamily of calcium-activated potassium channels. Proc Natl Acad Sci USA 94:11013–11018, 1997

    Google Scholar 

  70. Logsdon NJ, Kang J, Togo JA, Christian EP, Aiyar J: A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J Biol Chem 272:32723–32726, 1997

    Google Scholar 

  71. Jensen BS, Strobaek D, Christophersen P, Jorgensen TD, Hansen C, Silahtaroglu A, Olesen SP, Ahring PK: Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel. Am J Physiol 275:C848–C856, 1998

    Google Scholar 

  72. Vandorpe DH, Shmukler BE, Jiang L, Lim B, Maylie J, Adelman JP, de Franceschi L, Cappellini MD, Brugnara C, Alper SL: cDNA cloning and functional characterization of the mouse Ca 21-gated K 1 channel, mIK1. Roles in regulatory volume decrease and erythroid differentiation. J Biol Chem 273:21542–21553, 1998

    Google Scholar 

  73. Desai R, Peretz A, Idelson H, Lazarovici P, Attali B: Ca 21-activated K 1 channels in human leukemic jurkat T cells. Molecular cloning, biochemical and functional characterization. J Biol Chem 275:39954–39963, 2000

    Google Scholar 

  74. Jaeger H, Adelman JP, Grissmer S: SK2 encodes the apamin-sensitive Ca2+-activated K+ channels in the human leukemic T cell line, Jurkat. FEBS Lett 469:196–202, 2000

    Google Scholar 

  75. Fanger CM, Rauer H, Neben AL, Miller MJ, Rauer H, Wulff H, Rosa JC, Ganellin CR, Chandy KG, Cahalan MD: Calcium-activated potassium channels sustain calcium signaling in T lymphocytes. J Biol Chem 276:12249–12256, 2001

    Google Scholar 

  76. Alizadeh AA, Staudt LM: Genomic-scale gene expression profiling of normal and malignant immune cells. Curr Opin Immunol 12:219–225, 2000

    Google Scholar 

  77. Xia XM, Fakler B, Rivard A, Wayman G, Johnson-Pais T, Keen JE, Ishii T, Hirschberg B, Bond CT, Lutsenko S, Maylie J, Adelman JP: Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395:503–507, 1998

    Google Scholar 

  78. Fanger CM, Ghanshani S, Logsdon NJ, Rauer H, Kalman K, Zhou J, Beckingham K, Chandy KG, Cahalan MD, Aiyar J: Calmodulin mediates calcium-dependent activation of the inter-mediate conductance KCa channel, IKCa1.J Biol Chem274:5746–5754, 1999

    Google Scholar 

  79. Lewis RS: Calcium signaling mechanisms in T lymphocytes. Ann. Rev Immunol 19:497–521, 2001

    Google Scholar 

  80. Runnels LW, Yue L, Clapham DE: TRP-PLIK, a bifunctinal protein with kinase and ion channel activity. Science 291:1043–1047, 2001

    Google Scholar 

  81. Hermosura MC, Nadler MJS, Inabe K, Perraud A-L, Zhu Q, Kinet J-P, Kurosaki T, Penner R, Scharenberg AM, Fleig A: LTRPC7 encodes an ATP-sensitive calcium channel. Biophys J 80:458A, 2001

    Google Scholar 

  82. Yue L, Peng J-B, Hediger MA, Clapham DE: CaT1 manifests the pore properties of the calcium release activated calcium channel (ICRAC ). Nature 410:705–709, 2001

    Google Scholar 

  83. Almers W, Neher E: The Ca signal from fura-2 loaded mast cells depends strongly on the method of dye-loading. FEBS Lett 192:13–18, 1995

    Google Scholar 

  84. Lepple-Wienhues A, Cahalan MD: Conductance and permeation of monovalent cations through depletion-activated Ca 21 channels (ICRAC ) in Jurkat T cells. Biophys J 71:787–794, 1996

    Google Scholar 

  85. Kerschbaum HH, Cahalan MD: Monovalent permeability, rectification, and ionic block of store-operated calcium channels in Jurkat T lymphocytes. J Gen Physiol 111:521–537, 1998

    Google Scholar 

  86. Kerschbaum H, Cahalan MD: Single-Channel Recording of a store-operated Ca 21 channel in Jurkat T lymphocytes. Science 283:836–839, 1999

    Google Scholar 

  87. Fomina A, Fanger C, Kozak J, Cahalan M: Single channel properties and regulated expression of Ca 21 release-activated Ca 21 (CRAC) channels in human T cells. J Cell Biol 150:1435–1444, 2000

    Google Scholar 

  88. Putney JW Jr: A model for receptor-regulated calcium entry. Cell Calcium 7:1–12, 1986

    Google Scholar 

  89. Putney JW Jr: Capacitative calcium entry revisited. Cell Calcium 11:611–624, 1990

    Google Scholar 

  90. Putney JW Jr: The integration of receptor-regulated intracellular calcium release and calcium entry across the plasma membrane. Curr Top Cell Regul 31:111–127, 1990

    Google Scholar 

  91. Randriamampita C, Tsien RY: Emptying of intracellular Ca 21 stores releases a novel small messenger that stimulates Ca 21 influx. Nature 364:809–814, 1993

    Google Scholar 

  92. Bird GS, Bian X, Putney JW, Jr: Calcium entry signal? Nature 373:481–482, 1995

    Google Scholar 

  93. Kim HY, Hanley MR: Calcium influx factor (CIF) as a diffusible messenger for the activation of capacitative calcium entry in Xenopus oocytes. Mol Cells 9:326–332, 1999

    Google Scholar 

  94. Takemura H, Ohshika H: Capacitative Ca 21 entry involves Ca 21 influx factor in rat glioma C6 cells. Life Sci 64:1493–1500, 1999

    Google Scholar 

  95. Csutora P, Su Z, Kim HY, Bugrim A, Cunningham KW, Nuccitelli R, Keizer JE, Hanley MR, Blalock JE, Marchase RB: Calcium influx factor is synthesized by yeast and mammalian cells depleted of organellar calcium stores. Proc Natl Acad Sci USA 96:121–126, 1999

    Google Scholar 

  96. Bird GS, Putney JW Jr: Inhibition of thapsigargin-induced calcium entry by microinjected guanine nucleotide analogues. Evidence for the involvement of a small G-protein in capacitative calcium entry. J Biol Chem 268:21486–21488, 1993

    Google Scholar 

  97. Montecucco C: Protein toxins and membrane transport. Curr Opin Cell Biol 10:530–536, 1998

    Google Scholar 

  98. Yao Y, Ferrer-Montiel AV, Montal M, Tsien RY: Activation of store-operated Ca 21 current in Xenopus oocytes requires SNAP-25 but not a diffusible messenger. Cell 98:475–845, 1999

    Google Scholar 

  99. Irvine RF: Inositol phosphates and calcium entry. Nature 328:386, 1987

    Google Scholar 

  100. Berridge MJ: Capacitative calcium entry. Biochem J 312:1–11, 1995

    Google Scholar 

  101. Kiselyov K, Xu X, Mozhayeva G, Kuo T, Pessah I, Mignery G, Zhu X, Birnbaumer L, Muallem S: Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396:478–482, 19978

    Google Scholar 

  102. Boulay G, Brown DM, Qin N, Jiang M, Dietrich A, Zhu MX, Chen Z, Birnbaumer M, Mikoshiba K, Birnbaumer L: Modulation of Ca(21 ) entry by polypeptides of the inositol 1,4,5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca(21 ) entry. Proc Natl Acad Sci USA 96:14955–14960, 1999

    Google Scholar 

  103. Ma HT, Patterson RL, van Rossum DB, Birnbaumer L, Mikoshiba K, Gill DL: Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science 287:1647–1651, 2000

    Google Scholar 

  104. Duan D, Winter C, Cowley S, Hume JR, Horowitz B: Molecular identification of a volume-regulated chloride channel. Nature 390:417–421, 1997

    Google Scholar 

  105. Chandy KG, DeCoursey TE, Cahalan MD, McLaughlin C, Gupta S: Voltage-gated potassium channels are required for human T lymphocyte activation. J Exp Med 160:369–385, 1984

    Google Scholar 

  106. DeCoursey TE, Chandy KG, Gupta S, Cahalan MD: Voltage-dependent ion channels in T-lymphocytes. J Neuroimmunol 10:71–95, 1985

    Google Scholar 

  107. Ehring GR, Kerschbaum HH, Eder C, Neben AL, Fanger CM, Khoury RM, Negulescu PA, Cahalan MD: A nongenomic mechanism for progesterone-mediated immunosuppression: Inhibition of K 1 channels, Ca 21 signaling, and gene expression in T lymphocytes. J Exp Med 188:1593–1602, 1998.

    Google Scholar 

  108. Negulescu PA, Shastri N, Cahalan MD: Intracellular calcium dependence of gene expression in single T lymphocytes. Proc Natl Acad Sci USA 91:2873–2877, 1994

    Google Scholar 

  109. Cahalan MD, Lewis RS: Role of potassium and chloride channels in volume regulation by T lymphocytes. In Cell Physiology of Blood, R Gunn, J Parker (eds). New York, Rockefeller University Press, 1988, pp 282–301

    Google Scholar 

  110. Price M, Lee SC, Deutsch C: Charybdotoxin inhibits proliferation and interleukin 2 production in human peripheral blodd lymphocytes. Proc Natl Acad Sci USA 86:10171–10175, 1989

    Google Scholar 

  111. Sands SB, Lewis RS, Cahalan MD: Charybdotoxin blocks voltage-gated K 1 channels in human and murine T lymphocytes. J Gen Physiol 93:1061–1074, 1989

    Google Scholar 

  112. Deutsch C, Price M, Lee S, King V, Garcia M: Characterization of high affinity binding sites for charybdotoxin in human T lymphocytes. Evidence for association with the voltage-gated K 1 channel. J Biol Chem 266:3668–3674, 1991

    Google Scholar 

  113. Miller C, Moczydlowski E, Latorre R, Phillips M: Charybdotoxin, a protein inhibitor of single Ca 21-activated K 1 channels from mammalian skeletal muscle. Nature 313:316–318, 1985

    Google Scholar 

  114. Gimenez-Gallego G, Navia MA, Reuben JP, Katz GM, Kaczorowski GJ, Garcia ML: Purification, sequence, and model structure of charybdotoxin, a potent selective inhibitor of calcium-activated potassium channels. Proc Natl Acad Sci USA 85:3329–3333, 1988

    Google Scholar 

  115. MacKinnon R, Miller C: Mechanism of charybdotoxin block of the high-conductance, Ca 21 activated K 1 channel. J Gen Physiol 91:335–349, 1988

    Google Scholar 

  116. Leonard R, Garcia M, Slaughter R, Reuben J: Selective blockers of voltage-gated K 1 channels depolarize human T lymphocytes: Mechanism of the antiproliferative effect of charybdotoxin. Proc Natl Acad Sci USA 89:10094–10098, 1992

    Google Scholar 

  117. Rauer H, Lanigan MD, Pennington MW, Aiyar J, Ghanshani S, Cahalan MD, Norton RS, Chandy KG: Structure-guided transformation of charybdotoxin yields an analog that selectively targets Ca 21-activated over voltage-gated K 1 channels. J Biol Chem 275:1201–1208, 2000

    Google Scholar 

  118. MacKinnon R, Reinhart PH, White MM: Charybdotoxin block of Shaker K 1 channels suggests that different types of K 1 channels share common structural features. Neuron 1:997–1001, 1988

    Google Scholar 

  119. Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, Gutman GA, Karmilowicz MJ, Auperin DD, Chandy KG: Pharmacological characterization of five cloned voltage-gated K 1 channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol 45:1227–1234, 1994

    Google Scholar 

  120. Garcia-Calvo M, Leonard RJ, Novick J, Stevens SP, Schmalhofer W, Kaczorowski GJ, Garcia ML: Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. J Biol Chem 268:18866–18874, 1993

    Google Scholar 

  121. Lin CS, Boltz RC, Blake JT, Nguyen M, Talento A, Fischer PA, Springer MS, Sigal NH, Slaughter RS, Garcia ML, Kaczorowski G, Koo G. Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation. J Exp Med 177:637–645, 1993

    Google Scholar 

  122. Bednarek M, Bugianesi R, Leonard R, Felix J: Chemical synthesis and structure-function studies of margatoxin, a potent inhibitor of voltage-dependent potassium channel in human T lymphocytes. Biochem Biophys Res Commun 198:619–625, 1994

    Google Scholar 

  123. Garcia ML, Garcia-Calvo M, Hidalgo P, Lee A, MacKinnon R: Purification and characterization of three inhibitors of voltage-dependent K1 channels from Leiurus quinquestriatus var. hebraeus venom. Biochemistry 33:6834–6839, 1994

    Google Scholar 

  124. Drakopoulou E, Cotton J, Virelizier H, Bernardi E, Schoofs A, Partiseti M, Choquet D, Gurrola G, Possani L, Vita C: Chemical synthesis, structural and functional characterisation of noxius-toxin, a powerful blocker of lymphocyte voltage-dependent K+ channels. Biochem Biophys Res Commun 213:901–907, 1995

    Google Scholar 

  125. Kharrat R, Mabrouk K, Crest M, Darbon H, Oughideni R, Martin-Eauclaire M, Jacquet G, el Ayeb M, Van Rietschoten J, Rochat H, Sabatier J: Chemical synthesis and characterization of maurotoxin, a short scorpion toxin with four disulfide bridges that acts on K 1 channels. Eur J Biochem 242:491–498, 1996

    Google Scholar 

  126. Lebrun B, Romi-Lebrun R, Martin-Eauclaire M, Yasuda A, Ishiguro M, Oyama Y, Pongs O, Nakajima T: A four-disulphide-bridged toxin, with high affinity towards voltage-gated K1 channels, isolated from Heterometrus spinnifer (Scorpionidae) venom. Biochem J 328:321–327, 1997.

    Google Scholar 

  127. Koschak A, Bugianesi RM, Mitterdorfer J, Kaczorowski GJ, Garcia ML, Knaus HG: Subunit composition of brain voltage-gated potassium channels determined by hongotoxin-1, a novel peptide derived from Centruroides limbatus venom. J Biol Chem 273:2639–2644, 1998

    Google Scholar 

  128. Peter MJ, Varga Z, Panyi G, Bene L, Damjanovich S, Pieri C, Possani L, Gaspar RJ: Pandinus imperator scorpion venom blocks voltage-gated K 1 channels in human lymphocytes. Biochem Biophys Res Commun 242:621–625, 1998

    Google Scholar 

  129. Mourre C, Chernova M, Martin-Eauclaire M, Bessone R, Jacquet G, Gola M, Alper S, Crest M: Distribution in rat brain of binding sites of kaliotoxin, a blocker of Kv1.1 and Kv1.3 alpha-subunits. J Pharmacol Exp Ther 291:943–952, 199

  130. Peter MJ, Hajdu P, Varga Z, Damjanovich S, Possani L, Panyi G, Gaspar RJ: Blockage of human T lymphocyte Kv1.3 channels by pil, a novel class of scorpion toxin. Biochem Biophys Res Commun 278:34–37, 2000

    Google Scholar 

  131. Peter MJ, Varga Z, Hajdu P, Gaspar RJ, Damjanovich S, Horjales E, Possani L, Panyi G: Effects of toxins Pi2 and Pi3 on human T lymphocyte Kv1.3 channels: The role of Glu7 and Lys24. J Membr Biol 179:13–25, 2000

    Google Scholar 

  132. Michne W, Guiles J, Treasurywala A, Castonguay L, Weigelt C, Oconnor B, Volberg W, Grant A, Chadwick C, Krafte D: Novel inhibitors of potassium ion channels on human T lymphocytes. J Med Chem 38:1877–1883, 1995

    Google Scholar 

  133. Goetz MA, Hensens OD, Zink DL, Borris RP, Morales F, Tamayo-Castillo G, Slaughter RS, Felix J, Ball RG: Potent Nor-triterpinoid blockers of the voltage-gated potassium channel Kv1.3 from Spachea correae. Tetrahedron Lett 2895–2898, 1998

  134. Felix JP, Bugianesi RM, Schmalhofer WA, Borris R, Goetz MA, Hensens OD, Bao JM, Kayser F, Parsons WH, Rupprecht K, Garcia ML, Kaczorowski GJ, Slaughter RS: Identification and biochemical characterization of a novel nortriterpene inhibitor of the human lymphocyte voltage-gated potassium channel, Kv1.3. Biochemistry 38:4922–4930, 1999

    Google Scholar 

  135. Hanner M, Schmalhofer WA, Green B, Bordallo C, Liu J, Slaughter RS, Kaczorowski GJ, Garcia ML: Binding of correolide to Kv1 family potassium channels. J Biol Chem 274:25237–25244, 1999

    Google Scholar 

  136. Koo GC, Blake JT, Shah K, et al. Correolide and derivatives are novel immunosuppressants blocking the lymphocyte Kv1.3 potassium channels. Cell Immunol 197:99–107, 1999

    Google Scholar 

  137. Baker R, Chee J, Bao J, Garcia ML, Kaczorowski G, Kotliar A, Kayser F, Liu C, Miao S, Rupprecht KM, Parsons WH, Schmalhofer W, Liverton N, Clairborne CF, Claremon DA, Wayne J: Carbocyclic potassium channel inhibitors. PCT Int Appl WO 0025770, 2000

  138. Castle NA, Hollinshead SP, Hughes PF, Mendoza GS, Wilson JW, Amato GS, Beaudoin S, Gross M, McNaughton-Smith G: Potassium channel inhibitors. US patent 6083986, 2000

  139. Wulff H, Rauer H, During T, Hanselmann C, Ruff K, Wrisch A, Grissmer S, Ha¨nsel W: Alkoxypsoralens, novel nonpeptide blockers of Shaker-type K+ channels: Synthesis and photoreac-tivity. J Med Chem 41:4542–4549, 1998

    Google Scholar 

  140. Strauss U, Wissel K, Jung S, Wulff H, Ha¨nsel W, Zhu J, Rolfs A, Mix E: K+channel blocking alkoxypsoralens inhibit the immune response of encephalitogenic T line cells and lymphocytes from Lewis rats challenged for experimental autoimmune encephalomyelitis. Immunopharmacology 48:51–63, 2000

    Google Scholar 

  141. Strauss U, Wittstock U, Teuscher E, Jung S, Mix E: Cicutotoxin from Cicuta virosa-a new and potent potassium channel blocker in T lymphocytes. Biochem. Biophys Res Commun 219:332–336, 1996

    Google Scholar 

  142. Alvarez J, Montero M, Garcia-Sancho J: High affinity inhibition of Ca 21-dependent K1 channels by cytochrome P-450 inhibitors. J Biol Chem 267:11789–11793, 1992

    Google Scholar 

  143. Wojtulewski JA, Gow PJ, Walter J, Grahame R, Gibson T, Panayi GS, Mason J: Clotrimazole in rheumatoid arthritis. Ann Rheum Dis 39:469–472, 1980

    Google Scholar 

  144. Wulff H, Miller MJ, Ha¨nsel W, Grissmer S, Cahalan MD, Chandy KG: Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa 1: A potential immunosuppressant. Proc Natl Acad Sci USA 97:8151–8156, 2000

    Google Scholar 

  145. Garber SS, Cahalan MD: Volume-regulated anion channels and the contril of a simple cell behavior. Cell Physiol Biochem 7:229–241, 1997

    Google Scholar 

  146. Li JH, Spence KT, Dargis PG, Christian EP: Properties of Ca 21 release-activated Ca 21 channel block by 5-nitro-2-(3-phenylpro-pylamino)-benzoic acid in Jurkat cells. Eur J Pharmacol 394:171–179, 2000

    Google Scholar 

  147. Matteson DR, Deutsch C: K channels in T lymphocytes: A patch clamp study using monoclonal antibody adhesion. Nature 307:468–471, 1984

    Google Scholar 

  148. Schlichter L, Sidell N, Hagiwara S: K channels are expressed early in human T-cell development. Proc Natl Acad Sci USA 83:5625–5629, 1986

    Google Scholar 

  149. Fanger CM, Neben AL, Cahalan MD: Differential Ca 21 influx, KCa channel activity, and Ca 21 clearance distinguish Th1 and Th2 lymphocytes. J Immunol 164:1153–1160, 2000

    Google Scholar 

  150. Chandy KG, DeCoursey TE, Fischbach M, Talal N, Cahalan MD, Gupta S: Altered K+channel expression in abnormal T lymphocytes from mice with the 1pr gene mutation. Science 233:1197–1200, 1986

    Google Scholar 

  151. Grissmer S, Cahalan MD, Chandy KG: Abundant expression of type 1 K+ channels. A marker for lymphoproliferative diseases? J Immunol 141:1137–1142, 1988

    Google Scholar 

  152. Chandy KG, Cahalan MD, Grissmer S: Autoimmune diseases linked to abnormal K1 channel expression in double-negative CD42CD8-T cells. Eur J Immunol 20:747–751, 1990

    Google Scholar 

  153. Grissmer S, Hanson DC, Natoli EJ, Cahalan MD, Chandy KG: CD42CD8-T cells from mice with collagen arthritis display aberrant expression of type 1 K+ channels. J Immunol 145:2105–2109, 1990

    Google Scholar 

  154. Judge SIV, Paterson PY, Mannie MD, Yeh JZ: Modulation of outward K 1 conductance is a post-activational event in rat T lymphocytes responsible for the adoptive transfer of experimental allergic encephalomyelitis. J Biomed Sci 4:98–110, 1997

    Google Scholar 

  155. Strauss U, Schubert R, Jung S, Mix E: K 1 currents of encepha-litogenic memory T cells decrease with encephalitogenicity while interleukin-2 (IL-2) receptor expression remains stable during IL-2 dependent expansion. Recept Channels 6:73–87, 1998

    Google Scholar 

  156. Schwab A, Reinhardt J, Schneider SW, Gassner B, Schuricht B: K+ channel-dependent migration of fibroblasts and human mel-anoma cells. Cell Physiol Biochem 9:126–132, 1999

    Google Scholar 

  157. Schwab A, Westphale HJ, Wojnowski L, Wu¨nsch S, Oberleithner H: Spontaneously oscillating K1 channel activity in transformed Madin-Darby canine kidney cells. J Clin Invest 92:218–223, 1993

    Google Scholar 

  158. Schwab A, Wojnowski L, Gabriel K, Oberleithner H: Oscillating activity of a Ca 21-sensitive K 1 channel. A prerequisite for migration of transformed Madin-Darby canine kidney focus cells. J Clin Invest 93:1631–1636, 1994

    Google Scholar 

  159. Schwab A, Gabriel K, Finsterwalder F, Folprecht G, Greger R, Kramer A, Oberleithner H: Polarized ion transport during migration of transformed Madin-Darby canine kidney cells. Eur J Physiol 430:802–807, 1995

    Google Scholar 

  160. Reinhardt J, Golenhofen N, Pongs O, Oberleithner H, Schwab A: Migrating transformed MDCK cells are able to structurally polarize a voltage-activated K1 channel. Proc Natl Acad Sci USA 95:5378–5382, 1994

    Google Scholar 

  161. Wei X, Tromberg BJ, Cahalan MD: Mapping the sensitivity of T cells with an optical trap: polarity and minimal number of receptors for Ca 21 signaling. Proc Natl Acad Sci USA 96:8471–8476, 1999

    Google Scholar 

  162. Fanger CM, Hoth M, Crabtree GR, Lewis RS: Characterization of T cell mutants with defects in capacitative calcium entry: Genetic evidence for the physiological roles of CRAC channels. J Cell Biol 131:655–667, 1995

    Google Scholar 

  163. Dolmetsch RE, Xu K, Lewis RS: Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392:933–936, 1998

    Google Scholar 

  164. Koo GC, Blake JT, Talento A, Nguyen M, Lin S, Sirotina A, Shah K, Mulvany K, Hora D Jr, Cunningham P, Wunderler DL, McManus OB, Slaughter R, Bugianesi R, Felix J, Garcia M, Williamson J, Kaczorowski G, Sigal NH, Springer MS, Feeney W: Blockade of the voltage-gated potassium channel Kv1.3 inhibits immune responses in vivo. J Immunol 158:5120–5128, 1997

    Google Scholar 

  165. Ghanshani S, Wulff H, Miller MJ, Rohm H, Neben A, Gutman GA, Cahalan: Up-regulation of the IKCa1 potassium channel during T-cell activation: Molecular mechanism and functional consequences. J Biol Chem 275:37137–437139, 2000

    Google Scholar 

  166. Khanna R, Chang MC, Joiner WJ, Kaczmarek LK, Schlichter LC: hSK4/hIK1, a calmodulin-binding KCa channel in human T lymphocytes. J Biol Chem 274:14838–14849, 1999

    Google Scholar 

  167. Beeton C, Barbaria J, Giraud P, Devaux J, Benoliel A, Gola M, Sabatier J, Bernard D, Crest M, Beraud E: Selective blocking of voltage-gated K+channels improves experimental autoimmune encephalomyelitis and inhibits T cell activation. J Immunol 166:936–944, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cahalan, M.D., Wulff, H. & Chandy, K.G. Molecular Properties and Physiological Roles of Ion Channels in the Immune System. J Clin Immunol 21, 235–252 (2001). https://doi.org/10.1023/A:1010958907271

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010958907271

Navigation