Skip to main content
Log in

Differential and Numerically Invariant Signature Curves Applied to Object Recognition

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We introduce a new paradigm, the differential invariant signature curve or manifold, for the invariant recognition of visual objects. A general theorem of É. Cartan implies that two curves are related by a group transformation if and only if their signature curves are identical. The important examples of the Euclidean and equi-affine groups are discussed in detail. Secondly, we show how a new approach to the numerical approximation of differential invariants, based on suitable combination of joint invariants of the underlying group action, allows one to numerically compute differential invariant signatures in a fully group-invariant manner. Applications to a variety of fundamental issues in vision, including detection of symmetries, visual tracking, and reconstruction of occlusions, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ackerman, M. and Hermann, R. 1975. Sophus Lie's 1880 Transformation Group Paper. Math. Sci. Press: Brookline, MA.

    Google Scholar 

  • Ackerman, M. and Hermann, R. 1976. Sophus Lie's 1884 Differential Invariant Paper. Math. Sci. Press: Brookline, MA.

    Google Scholar 

  • Alvarez, L., Lions, P.L., and Morel, J.M. 1992. Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal., 29:845-866.

    Google Scholar 

  • Blake, A. and Yuille, A. (Eds.) 1992. Active Vision. MIT Press: Cambridge, MA.

    Google Scholar 

  • Blaschke, W. 1923. Vorlesungen über Differentialgeometrie. J. Springer: Berlin, Vol. II.

    Google Scholar 

  • Bruckstein, A.M., Holt, R.J., Netravali, A.N., and Richardson, T.J. 1993. Invariant signatures for planar shape recognition under partial occlusion. CVGIP: Image Understanding, 58:49-65.

    Article  Google Scholar 

  • Bruckstein, A.M., Katzir, N., Lindenbaum, M., and Porat, M. 1992. Similarity invariant signatures and partially occluded planar shapes. Int. J. Comput. Vision, 7:271-285.

    Google Scholar 

  • Bruckstein, A.M. and Netravali, A.N. 1995. Ondifferential invariants of planar curves and recognizing partially occluded planar shapes. Ann. Math. Artific. Int., 13:227-250.

    Google Scholar 

  • Bruckstein, A.M., Rivlin, E., and Weiss, I. 1997. Scale space semilocal invariants. Image and Vision Computing, 15:335-344.

    Article  Google Scholar 

  • Calabi, E., Olver, P.J., and Tannenbaum, A. 1997. Affine geometry, curve flows, and invariant numerical approximations. Adv. in Math., 124:154-196.

    Article  Google Scholar 

  • Cartan, É. 1935. La Méthode du Repére Mobile, la Théorie des Groupes Continus, et les Espaces Généralisés. Exposés de Géométrie No. 5, Hermann, Paris.

  • Caselles, V., Kimmel, R., and Sapiro, G. 1997. Geodesic active contours. Int. J. Computer Vision, 22:61-79.

    Article  Google Scholar 

  • Cham, T.-J. and Cipolla, R. 1995. Geometric saliency of curve correspondences and grouping of symmetric contours. Preprint, Dept. of Engineering, Univ. of Cambridge.

  • Channell, P.J. and Scovel, C. 1990. Symplectic integration of Hamiltonian systems. Nonlinearity, 3:231-259.

    Article  Google Scholar 

  • Cipolla, R. and Blake, A. 1997. Image divergence and deformation from closed curves. Int. J. Robotics Res., 16:77-96.

    Google Scholar 

  • Dorodnitsyn, V.A. 1994. Symmetry of finite difference equations In CRC Handbook of Lie Group Analysis of Differential Equations, N.H. Ibragimov (Ed.), CRC Press: Boca Raton, FL, Vol. 1, pp. 349-403.

    Google Scholar 

  • Faugeras, O. 1993. On the evolution of simple plane curves of the real projective plane. Comptes Rendus Acad. Sci. (Paris), Série I, 317:565-570.

    Google Scholar 

  • Faugeras, O. and Keriven, R. 1995. Scale-spaces and affine curvature. In Proc. Europe-China Workshop on Geometrical Modelling and Invariants for Computer Vision, R. Mohr and C. Wu (Eds.), pp. 17-24.

  • Gage, M. and Hamilton, R.S. 1986. The heat equation shrinking convex plane curves. J. Diff. Geom., 23:69-96.

    Google Scholar 

  • Grayson, M. 1987. The heat equation shrinks embedded plane curves to round points. J. Diff. Geom., 26:285-314.

    Google Scholar 

  • Green, M.L. 1978. The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces. Duke Math. J.45:735-779.

    Google Scholar 

  • Gross, A.D. and Boult, T.E. 1994. Analyzing skewed symmetries. Int. J. Comput. Vision, 13:91-111.

    Google Scholar 

  • Guggenheimer, H.W. 1963. Differential Geometry. McGraw-Hill: New York.

    Google Scholar 

  • Huttenlocher, D.P. and Ullman, S. 1990. Recognising solid objects by alignment with an image. Int. J. Computer Vision, 5:195-212.

    Google Scholar 

  • Jensen, G.R. 1977. Higher order contact of submanifolds of homogeneous spaces. Lecture Notes in Math., No. 610, Springer-Verlag: New York.

    Google Scholar 

  • Kass, M., Witkin, A., and Terzopoulos, D. 1988. Snakes: Active contour models. Int. J. Computer Vision, 1:321-331.

    Google Scholar 

  • Kichenassamy, S., Kumar, A., Olver, P.J., Tannenbaum, A., and Yezzi, T. 1996. Conformal curvature flows: From phase transitions to active vision. Arch. Rat. Mech. Anal., 134:275-301.

    Google Scholar 

  • Kimia, B., Tannenbaum, A., and Zucker, S. 1995. Shapes, shocks and deformations I: The components of two-dimensional shape and reaction-diffusion space. Int. J. Comp. Vision, 15:189- 224.

    Google Scholar 

  • Klein, F. and Lie, S. 1871. Über diejenigen ebenen Curven, welche durch ein geschlossenes System von einfach unendlich vielen vertauschbaren linearen Transformationen in sich übergeben. Math. Ann., 4:50-84.

    Google Scholar 

  • Lei, Z., Keren, D., and Cooper, D.B. 1995. Recognition of complex free-form objects based on mutual algebraic invariants for pairs of patches of data. Preprint, Brown University.

  • Lie, S. 1880. Theorie der Transformationsgruppen I. Math. Ann., 16:441-528; also Gesammelte Abhandlungen, Vol. 6, B.G. Teubner, Leipzig, 1927, pp. 1-94; see (Ackerman and Hermann, 1975) for an English translation.

  • Lie, S. 1884. Über Differentialinvarianten. Math. Ann.24:537-578; also Gesammelte Abhandlungen, B.G. Teubner, Leipzig, 1927, Vol. 6, pp. 95-138; see (Ackerman and Hermann, 1976) for an English translation.

  • Marsden, J.E. 1992. Lectures on Mechanics. Cambridge Univ. Press: London.

    Google Scholar 

  • Moons, T., Pauwels, E., van Gool, L., and Oosterlinck, A. 1995. Foundations of semi-differential invariants. Int. J. Comput. Vision, 14:25-48.

    Google Scholar 

  • Mumford, D. 1991. Mathematical theories of shape: Do they model perception? In Geometrical Methods in Computer Vision, SPIE Proceedings, San Diego, Vol. 1570, pp. 2-10.

    Google Scholar 

  • Mundy, J.L. and Zisserman, A. (Eds.) 1992. Geometric Invariance in Computer Vision. MIT Press: Cambridge, MA.

    Google Scholar 

  • Mundy, J.L., Zisserman, A., and Forsyth, D. (Eds.) 1994. Applications of Invariance in Computer Vision. Springer-Verlag: New York.

    Google Scholar 

  • Olver, P.J. 1995. Equivalence, Invariants, and Symmetry. Cambridge University Press.

  • Olver, P.J., Sapiro, G., and Tannenbaum, A. 1994a. Classification and uniqueness of invariant geometric flows. Comptes Rendus Acad. Sci. (Paris), Sërie I, 319:339-344.

    Google Scholar 

  • Olver, P.J., Sapiro, G., and Tannenbaum, A. 1994b. Differential invariant signatures and flows in computer vision: A symmetry group approach. In Geometry-Driven Diffusion in Computer Vision, B.M. Ter Haar Romeny (Ed.), Kluwer Acad. Publ. Dordrecht, Netherlands, pp. 255-306.

    Google Scholar 

  • Olver, P.J., Sapiro, G., and Tannenbaum, A. 1995. Affine invariant edge maps and active contours. Preprint, University of Minnesota.

  • Olver, P.J., Sapiro, G., and Tannenbaum, A. 1997. Invariant geometric evolutions of surfaces and volumetric smoothing. SIAM J. Appl. Math., 57:176-194.

    Article  Google Scholar 

  • Osher, S.J. and Sethian, J.A. 1988. Front propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comp. Phys., 79:12-49.

    Article  Google Scholar 

  • Pauwels, E., Moons, T., Van Gool, L.J., Kempenaers, P., and Oosterlinck, A. 1995. Recognition of planar shapes under affine distortion, Int. J. Comput. Vision, 14:49-65.

    Google Scholar 

  • ter Haar Romeny, B. (Ed.) 1994. Geometry-Driven Diffusion in Computer Vision. Kluwer, Holland.

    Google Scholar 

  • Rothwell, C.A., Zisserman, A., Forsyth, D.A., and Mundy, J.L. 1995. Planar object recognition using projective shape representation. Int. J. Comput. Vision, 16:57-99.

    Google Scholar 

  • Sapiro, G. and Tannenbaum, A. 1994. On affine plane curve evolution. J. Func. Anal., 119:79-120.

    Article  Google Scholar 

  • Sato, J. and Cipolla, R. 1995. Invariant signatures and outlier detection. Preprint, Dept. of Engineering, Univ. of Cambridge.

  • Shah, J. 1995. Recovery of shapes by evolution of zero crossings, preprint. Department of Mathematics, Northeastern University, Boston.

    Google Scholar 

  • Shokin, Yu. I. 1983. The Method of Differential Approximation.Springer-Verlag: New York.

    Google Scholar 

  • Sturmfels, B. 1993. Algorithms in Invariant Theory. Springer-Verlag: New York.

    Google Scholar 

  • van Beckum, F.P.H. and van Groesen, E. 1987. Discretizations conserving energy and other constants of the motion. In Proc. ICIAM 87, Paris, pp. 17-35.

  • Van Gool, L., Moons, T., Pauwels, E., and Oosterlinck, A. 1994. Semi-differential invariants. In Applications of Invariance in Computer Vision, J.L. Mundy and A. Zisserman (Eds.), Springer-Verlag: New York, pp. 157-192.

    Google Scholar 

  • Van Gool, L., Moons, T., Pauwels, E., and Oosterlinck, A. 1995. Vision and Lie's approach to invariance. Image and Vision Comp., 13:259-277.

    Article  Google Scholar 

  • Weiss, I. 1993a. Geometric invariants and object recognition. Int. J. Comp. Vision, 10:207-231.

    Google Scholar 

  • Weiss, I. 1993b. Noise-resistant invariants of curves. IEEE Trans. Pattern Anal. Machine Intelligence, 15:943-948.

    Article  Google Scholar 

  • Weyl, H. 1946. Classical Groups. Princeton Univ. Press: Princeton, N.J.

    Google Scholar 

  • Wilczynski, E.J. 1906. Projective Differential Geometry of Curves and Ruled Surfaces.B.G. Teubner: Leipzig.

    Google Scholar 

  • Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P.J., and Tannenbaum, A. 1997. A geometric snake model for segmentation of medical imagery. IEEE Trans. Medical Imaging, 16:199-209.

    Article  Google Scholar 

  • Yezzi, A., Kichenassamy, S., Olver, P., and Tannenbaum, A. 1996. A gradient surface approach to 3D segmentation. Proceedings of IS&T.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calabi, E., Olver, P.J., Shakiban, C. et al. Differential and Numerically Invariant Signature Curves Applied to Object Recognition. International Journal of Computer Vision 26, 107–135 (1998). https://doi.org/10.1023/A:1007992709392

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007992709392

Navigation