Skip to main content
Log in

Theories and Observations of Ion Energization and Outflow in the High Latitude Magnetosphere

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

A review is given of several mechanisms causing outflow at high latitudes of ionospheric ions to the terrestrial magnetosphere. The upward ion motion along the geomaagnetic field can be divided into several categories, including polar wind, bulk ion outflow in the auroral region, upwelling ions and ion conics and beams. More than one ion energization mechanism can be operating within each category, and a combination of categories is important for the total ion outflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abe, T., Whalen, B. A., Yau, A. W., Horita, R. E., Watanabe, S., and Sagawa, E.: 1993a, 'EXOS D (Akebono) Suprathermal Mass Spectrometer Observations of the Polar Wind', J. Geophys. Res. 98, 11,191.

    Google Scholar 

  • Abe, T., Whalen, B. A., Yau, A. W., Watanabe, S., Sagawa, E., and Oyama, K. I.: 1993b, 'Altitude Profile of the Polar Wind Velocity and its Relationship to Ionospheric Conditions', Geophys. Res. Lett. 20, 2825.

    Google Scholar 

  • André, M., Koskinen, H., Matson, L., and Erlandson, R.: 1988, 'Local Transverse Ion Energization In and Near the Polar Cusp', Geophys. Res. Lett. 15, 107.

    Google Scholar 

  • André, M., Crew, G. B., Peterson, W. K., Persoon, A. M., Pollock, C. J., and Engebretson, M. J.: 1990, 'Ion Heating by Broadband Low-Frequency Waves in the Cusp/Cleft', J. Geophys. Res. 95, 20,809.

    Google Scholar 

  • André, M. and Chang, T.: 1993, 'Ion Heating Perpendicular to the Magnetic Field', Physics of Space Plasmas (1992) 12, Scientific Publishers, Cambridge, MA, 35.

    Google Scholar 

  • André, M., Norqvist, P., Vaivads, A., Eliasson, L., Norberg, O., Eriksson, A. I., and Holback, B.: 1994, 'Transverse Ion Energization and Wave Emissions Observed by the Freja Satellite', Geophys. Res. Lett. 21, 1915.

    Google Scholar 

  • André, M.: 1997, 'Waves and Wave-Particle Interactions in the Auroral Region', J. Atmos. Terr. Phys., in press.

  • André, M., Norqvist, P., Andersson, L., Eliasson, L., Erikson, A. I., Blomberg, L., Erlandson, R. E., and Waldemark, J.: 1997, 'Ion Energization Mechanisms at 1700 km in the Auroral Region', J. Geophys. Res., in press.

  • Arnoldy, R. L., Lynch, K. A., Kintner, P. M., Bonnell, J., Moore, T. E., and Pollock, C. J.: 1996, 'SCIFER—Structure of the Cleft Ion Fountain at 1400 km Altitude', Geophys. Res. Lett. 23, 1869.

    Google Scholar 

  • Ashour-Abdalla, M. and Okuda, H.: 1984, 'Turbulent Heating of Heavy Ions on Auroral Field Lines', J. Geophys. Res. 89, 2235.

    Google Scholar 

  • Ashour-Abdalla, M., Schriver, D., and Okuda, H.: 1988, 'Transverse Ion Heating in Multicomponent Plasmas Along Auroral Zone Field Lines', J. Geophys. Res. 93, 12,826.

    Google Scholar 

  • Axford, W. I.: 1968, 'The Polar Wind and the Terrestrial Helium Budget', J. Geophys. Res. 73, 6855.

    Google Scholar 

  • Ball, L.: 1989, 'Can Ion Acceleration by Double-Cyclotron Absorption Produce O+ Ion Conics?', J. Geophys. Res. 94, 15,257.

    Google Scholar 

  • Ball, L. and André, M.: 1991a, 'Heating of O+ Ions in the Cusp/Cleft: Double-Cyclotron Absorbtion Versus Cyclotron Resonance', J. Geophys. Res. 96, 1429.

    Google Scholar 

  • Ball, L. and André, M.: 1991b, 'What Parts of Broadband Spectra are Responsible for Ion Conic Production?' Geophys. Res. Lett. 18, 1683.

    Google Scholar 

  • Barakat, A. R. and Schunk, R. W.: 1983, 'O+ Ions in the Polar Wind', J. Geophys. Res. 88, 7887.

    Google Scholar 

  • Blelly, P. L. and Schunk, R. W.: 1993, 'A Comparative Study of the Time-Dependent Standard 8-, 13-, and 16-Moment Transport Formulations of the Polar Wind', Annales Geophys. 11, 443.

    Google Scholar 

  • Bonnell, J., Kintner, P., Wahlund, J.-E., Lynch, K., and Arnoldy R.: 1996, 'Interferometric Determination of Broadband ELF Wave Phase Velocity Within a Region of Transverse Auroral Ion Acceleration', Geophys. Res. Lett. 23, 3297.

    Google Scholar 

  • Borovsky, J. E., 1984, 'The Production of Ion Conies by Oblique Double Layers', J. Geophys. Res. 89, 2251.

    Google Scholar 

  • Borovsky, J. E.: 1993, 'Auroral Arc Thickness as Predicted by Various Theories', J. Geophys. Res. 98, 6101.

    Google Scholar 

  • Burch, J. L.: 1988, 'Energetic Particles and Currents: Results From Dynamics Explorer', Rev. Geophys. 26, 215.

    Google Scholar 

  • Chang, T. and Coppi, B.: 1981, 'Lower Hybrid Acceleration and Ion Evolution in the Supraauroral Region', Geophys. Res. Lett. 8, 1253.

    Google Scholar 

  • Chang, T., Crew, G. B., Hershkowitz, N., Jasperse, J. R., Retterer, J. M., and Winningham, J. D.: 1986, 'Transverse Acceleration of Oxygen lons by Electromagnetic Ion Cyclotron Resonance with Broadband Left-Hand-Polarized Waves', Geophys. Res. Lett. 13, 636.

    Google Scholar 

  • Chang, T.: 1993, 'Lower-Hybrid Collapse, Caviton Turbulence, and Charged Particle Energization in the Topside Auroral Ionosphere and Magnetosphere', Phys. Fluids B 5, 2646.

    Google Scholar 

  • Chappell, C. R.: 1988, 'The Terrestrial Plasma Source: A New Perspective in Solar-Terrestrial Processes From Dynamics Explorer'. Rev. Geophys. 26, 229.

    Google Scholar 

  • Cladis, J. B.: 1986, 'Parallel Acceleration and Transport of Ions From Polar Ionosphere to Plasma Sheet', Geophys. Res. Lett. 13, 893.

    Google Scholar 

  • Collis, P., Häggström, I., Kaila, K., and Rietveld, M. T.: 1991, 'EISCAT Radar Observations of Enhanced Incoherent Scatter Spectra; Their Relation to Red Aurora and Field Aligned Currents', Geophys. Res. Lett. 18, 1031.

    Google Scholar 

  • Demars, H. G. and Schunk, R. W.: 1987, 'Temperature Anisotropies in the Terrestrial Ionosphere and Plasmasphere', Rev. Geophys. 25, 1659.

    Google Scholar 

  • Demars, H. G. and Schunk, R. W.: 1989, 'Solutions to Bi-Maxwellian Transport Equations for the Polar Wind', Planet. Space Sci. 37, 85.

    Google Scholar 

  • Ergun, R. E., Klementis, E., Delory, G. T., McFadden, J. P., and Carlsson, C. W.: 1995, 'VLF Wave Localization in the Low Altitude Auroral Oval', Geophys. Res. Lett. 22, 2099.

    Google Scholar 

  • Erlandson, R. E., Zanetti, L. J., Acũna, M. H., Eriksson, A. I., Eliasson, L., Boehm, M. H., and Blomberg, L. G.: 1994, 'Freja Observations of Electromagnetic Ion Cyclotron ELF Waves and Transverse Ion Acceleration on Auroral Field Lines', Geophys. Res. Lett. 21, 1855.

    Google Scholar 

  • Ganguli, S. B.: 1996, 'The Polar Wind', Rev. Geophys. 34, 311.

    Google Scholar 

  • Ganguli, G., Keskinen, M. J., Romero, H., Heelis, R., Moore, T., and Pollock, C. J.: 1994, 'Coupling of Microprocesses and Macroprocesses due to Velocity Shear: An Application to the Low-Altitude Ionosphere', J. Geophys. Res. 99, 8873.

    Google Scholar 

  • Gombosi, T. I., Cravens, T. E., and Nagy, A. F.: 1985, 'A Time Dependent Theoretical Model of the Polar Wind: Preliminary Results', Geophys. Res. Lett. 12, 167.

    Google Scholar 

  • Gombosi, T. I. and Rasmussen, C. E.: 1991, 'Transport of Gyration-Dominated Space Plasmas of Thermal Origin, 1, Generalized Transport Equations', J. Geophys. Res. 96, 7759.

    Google Scholar 

  • Gustafsson, G., André, M., Matson, L., and Koskinen, H.: 1990, 'On Waves Below the Local Proton Gyrofrequency in Auroral Acceleration Regions', J. Geophys. Res. 95, 5889.

    Google Scholar 

  • Giles, B. L., Chappell, C. R., Moore, T. E., Comfort, R. H., and Waite Jr., J. H.: 1994, 'Statistical Survey of Pitch Angle Distributions in Core (0–50 eV) Ions from Dynamics Explorer 1: Outflow in the Auroral Zone, Polar Cap, and Cusp', J. Geophys. Res. 99, 17,483.

    Google Scholar 

  • Heelis, R. A., Bailey, G. B., Sellek, R., Moffett, R. J., and Jenkins, B.: 1993, 'Field-Aligned Drifts of Subauroral Ion Drift Events', J. Geophys. Res. 98, 21,493.

    Google Scholar 

  • Horwitz, J. L.: 1984, 'Features of Ion Trajectories in the Polar Magnetosphere', Geophys. Res. Lett. 11, 1111.

    Google Scholar 

  • Horwitz, J. L.: 1986, 'Velocity Filter Mechanism for Ion Bowl Distributions (Bimodal Conics)', J. Geophys. Res. 91, 4513.

    Google Scholar 

  • Horwitz, J. L., Ho, C. W., Scarbo, H. D., Wilson, G. R., and Moore, T. E.: 1994, 'Centrifugal Acceleration of the Polar Wind', J. Geophys. Res., 99, 15,051.

    Google Scholar 

  • Hultqvist, B.: 1991, 'Review Paper: Extraction of Ionospheric Plasma by Magnetospheric Processes', J. Atmos. Terr. Phys. 53, 3.

    Google Scholar 

  • Hultqvist, B.: 1996, 'On the Acceleration of Positive Ions by High-Latitude, Large-Amplitude Electric Field Fluctuations', J. Geophys. Res. 101, 27111.

    Google Scholar 

  • Johnson, J. R., Chang, T., and Crew, G. B.: 1995, 'A Study of Mode Conversion in an Oxygen-Hydrogen Plasma', Phys. Plasmas 2, 1274.

    Google Scholar 

  • Kintner, P. M., LaBelle, J., Scales, W., Yau, A. W., and Whalen, B. A.: 1986, 'Observations of Plasma Waves Within Regions of Perpendicular Ion Acceleration', Geophys. Res. Lett. 13, 1113.

    Google Scholar 

  • Kintner, P. M., Vago, J., Chesney, S., Arnoldy, R. L., Lynch, K. A., Pollock, C. J., and Moore, T. E.: 1992, 'Localized Lower Hybrid Acceleration of Ionospheric Plasma', Phys. Rev. Lett. 68, 2448.

    Google Scholar 

  • Kintner, P. M., Bonnell, J., Arnoldy, R., Lynch, K., Pollock, C., and Moore, T.: 1996, 'SCIFER-Transverse Ion Acceleration and Plasma Waves', Geophys. Res. Lett. 23, 1873.

    Google Scholar 

  • Klumpar, D. M., Peterson, W. K., and Shelley, E. G.: 1984, 'Direct Evidence for Two-Stage (Bimodal) Acceleration of Ionospheric Ions', J. Geophys. Res. 95, 10,779.

    Google Scholar 

  • Klumpar, D. M.: 1986, 'A Digest and Comprchensive Bibliography on Transverse Auroral Ion Acceleration', Ion Acceleration in the Magnetosphere and lonosphere, American Geophysical Union, Washington D.C., 389.

    Google Scholar 

  • Knudsen, D. J., Clemmons, J. H., and Wahlund, J.-E.: 1997, 'Correlation Between Core Ion Energization, Suprathermal Electron Bursts, and Broad-Band ELF Plasma Waves', J. Geophys. Res., in press.

  • Lemaire, J.: 1972, 'Effect of Escaping Photoelectrons in a Polar Exospheric Model', Space Res. 12, 1413.

    Google Scholar 

  • Le Quéau, D., Roux, A., Rauch, J. L., Lefeuvre, F., and Bosqued, J. M.: 1993, 'Heating of Protons by Resonant Absorption in a Multicomponent Plasma, 2. Theoretical Model', J. Geophys. Res. 98, 13,363.

    Google Scholar 

  • Li, X. and Temerin, M.: 1993, 'Ponderomotive Effects on Ion cceleration in the Auroral Zone', Geophys. Res. Lett. 20, 13.

    Google Scholar 

  • Liu, C., Horwitz, J. L., and Richards, P. G.: 1995, 'Effects of Frictional Heating and Soft-Electron Precipitation on High-Latitude F-Region Upflows', Geophys. Res. Lett. 22, 2713.

    Google Scholar 

  • Lockwood, M., Waite Jr. J. H., Moore, T., Johnson, J. F. E., and Chappell, C. R.: 1985a, 'A New Source of Suprathermal O+ Ions Near the Dayside Polar Cap Boundary', J. Geophys. Res. 90, 4099.

    Google Scholar 

  • Lockwood, M., Chandler, M. O., Horwitz, J. L., Waite Jr., J. H., Moore, T. E., and Chappell, C. R.: 1985b, 'The Cleft Ion Fountain', J. Geophys. Res. 90, 9736.

    Google Scholar 

  • Loranc, M., Hanson, W. B., Heelis, R. A., and St.-Maurice, J. P.: 1991, 'A Morphological Study of Vertical Ionospheric Flows in the High-Latitude F Region', J. Geophys. Res. 96, 3627.

    Google Scholar 

  • Lundin, R. and Eliasson, L.: 1991, 'Auroral Energization Processes', Annales Geophys. 9, 202.

    Google Scholar 

  • Lundin, R., Haerendel, G., Boehm, M., and Holback, B.: 1994, 'Large-Scale Auroral Plasma Density Cavities Observed by Freja', Geophys. Res. Lett. 21, 1903.

    Google Scholar 

  • Lynch, K. A., Arnoldy, R. L., Kintner, P. M., and Bonnell, J.: 1996, 'The AMICIST Auroral Sounding Rocket: A Comparison of Transverse Ion Acceleration Mechanisms', Geophys. Res. Lett. 23, 3293.

    Google Scholar 

  • Lysak, R. L.: 1986, 'Ion Acceleration by Wave-Particle Interaction', Ion Acceleration in the Magnetosphere and Ionosphere, American Geophysical Union, Washington D.C., 261.

    Google Scholar 

  • Miyake, W., Mokai, T., and Kaya, N.: 1996, 'On the Origins of the Upward Shift of Elevated (Bimodal) Ion Conics in Velocity Space', J. Geophys. Res. 101, 26,961.

    Google Scholar 

  • Moore, T. E., Chappell, C. R., Lockwood, M., and Waite Jr., J. H.: 1985, 'Superthermal Ion Signatures of Auroral Acceleration Processes', J. Geophys. Res. 90, 1611.

    Google Scholar 

  • Moore, T. E., Lockwood, M., Chandler, M. O., Waite Jr., J. H., Chappell, C. R., Persoon, A., and Sugiura, M.: 1986, 'Upwelling O+ Ion Source Characteristics', J. Geophys. Res. 91, 7019.

    Google Scholar 

  • Moore, T. E., Pollock, C. J., Adrian, M. L., Kintner, P. M., Arnoldy, R. I., Lynch, K. A., and Holtet, J. A.: 1996, 'The Cleft Ion Plasma at Low Solar Activity', Geophys. Res. Lett. 23, 1877.

    Google Scholar 

  • Norqvist, P., André, M., Eliasson, L., Erikson, A. I., Blomberg, L., Lühr, H., and Clemmons, J. H.: 1996, 'Ion Cyclotron Heating in the Dayside Magnetosphere', J. Geophys. Res. 101, 13,179.

    Google Scholar 

  • Peterson, W. K., Collin, H. L., Doherty, M. F., and Bjorklund, C. M.: 1992, 'O+ and He+ Restricted and Extended (Bi-Modal) Ion Conic Distributions', Geophys. Res. Lett. 19, 1439.

    Google Scholar 

  • Pollock, C. J., Chandler, M. O., Moore, T. E., Waite Jr., J. H., Chappel, C. R., and Gurnett, D. A.: 1990, 'A Survey of Upwelling Ion Event Characteristics', J. Geophys. Res. 95, 18,969.

    Google Scholar 

  • Raitt, W. J. and Schunk, R. W.: 1983, Energetic Ion Composition in the Earth's Magnetosphere, Terra Scientific Publishing, Tokyo, 99.

    Google Scholar 

  • Rauch, J. L., Lefeuvre, F., Le Quéau, D., Roux, A., Bosqued, J. M., and Berthelier, J. J.: 1993, 'Heating of Proton Conics by Resonant Absorption in a Multicomponent Plasma 1. Experi-mental Evidence', J. Geophys. Res. 98, 13,347.

    Google Scholar 

  • Reiff, P. H., Collin, H. L., Craven, J. D., Burch, J. L., Winningham, J. D., Shelley, E. G. Frank, L. A., and Friedman, M. A.: 1988, 'Determination of Auroral Electrostatic Potentials Using High and Low-Altitude Particle Distributions', J. Geophys. Res. 93, 7441.

    Google Scholar 

  • Retterer, J. M., Chang, T., Crew, G. B., Jasperse, J. R., and Winningham, J. D.: 1987, 'Monte Carlo Modeling of Ionospheric Oxygen Acceleration by Cyclotron Resonance with Broadband Electromagnetic Turbulence', Phys. Rev. Lett. 59, 148.

    Google Scholar 

  • Rosenbauer, H., Grünwaldt, H., Montgomery, M. D., Paschmann, G., and Sckopke, N.: 1975, 'Heos 2 Plasma Observations in the Distant Polar Magnetosphere: The Plasma Mantle', J. Geophys. Res. 80, 2723.

    Google Scholar 

  • Sharp, R. D., Johnson, R. G., and Shelley, E. G.: 1977, 'Observations of an Ionospheric Acceleration Mechanism Producing Energetic (keV) Ions Primarily Normal to the Geomagnetic Field Direction', J. Geophys. Res. 82, 3324.

    Google Scholar 

  • Sharp, R. D., Carr, D. L., Peterson, W. K., and Shelley, E. G.: 1981, 'Ion Streams in the Magnetotail', J. Geophys. Res. 86, 4639.

    Google Scholar 

  • Shelley, E. G., Johnson, R. G., and Sharp, R. D.: 1972, 'Satellite Observations of Energetic Heavy Ions During a Geomagnetic Storm', J. Geophys. Res. 77, 6104.

    Google Scholar 

  • Shelley, E. G., Sharp, R. D., and Johnson, R. G.: 1976a, 'Satellite Observations of an Ionospheric Acceleration Mechanism', Geophys. Res. Lett. 3, 654.

    Google Scholar 

  • Shelley, E. G., Sharp, R. D., and Johnson, R. G.: 1976b, 'He++ H+ Flux Measurements in the Day Side Cusp: Estimates of Convection Electric Field', J. Geophys. Res. 81, 2363.

    Google Scholar 

  • Shelley, E. G.: 1988, Adv. Space Res. 6–3, 121.

    Google Scholar 

  • Shukla, P. K., Stenflo, L., Bingham, R., and Dendy, R. O.: 1996, 'Ponderomotive Force Acceleration of Ions in the Auroral Region', J. Geophys. Res. 101, 27,449.

    Google Scholar 

  • Schunk, R. W. and Watkins, D. S.: 1981, 'Electron Temperature Anisotropy in the Polar Wind', J. Geophys. Res. 86, 91.

    Google Scholar 

  • Schunk, R. W.: 1988, Modeling Magnetospheric Plasma, Geophys. Monogr. Ser. 44, American Geophysical Union, Washington D.C., 219.

    Google Scholar 

  • Singh, N.: 1994, 'Ponderomotive Versus Mirror Force in the Creation of the Filamentary Cavities in Auroral Plasma', Geophys. Res. Lett. 21, 257.

    Google Scholar 

  • Swift, D.: 1990, 'Simulation of the Ejection of Plasma from the Polar Ionosphere', J. Geophys. Res. 95, 12103.

    Google Scholar 

  • Tam S. W. Y., Yasseen, F., Chang, T., Ganguli, S. B., and Retterer, J. M.: 1995, 'Self-Consistent Kinetic Photoelectron Effects on the Polar Wind', Geophys. Res. Lett. 22, 2107.

    Google Scholar 

  • Temerin, M.: 1986, 'Evidence for a Large Bulk Ion Conic Heating Region', Geophys. Res. Lett. 13, 1059.

    Google Scholar 

  • Temerin, M. and Lysak, R. L.: 1984, 'Electromagnetic Ion Cyclotron Mode (ELF) Waves Generated by Auroral Electron Precipitation', J. Geophys. Res. 89, 2849.

    Google Scholar 

  • Temerin, M. and Roth, I.: 1986, 'Ion Heating by Waves with Frequencies Below the Ion Gyrofrequency', Geophys. Res. Lett. 13, 1109.

    Google Scholar 

  • Vago, J. L., Kintner, P. M., Chesney, S. W., Arnoldy, R. L., Lynch, K. A., Moore, T. E., and Pollock, C. J.: 1992, 'Transverse Ion Acceleration by Localized Lower Hybrid Waves in the Topside Auroral Ionosphere', J. Geophys. Res. 97, 16,935.

    Google Scholar 

  • Wahlund, J.-E., Opgenoorth, H. J., Häggström, I., Winser, K. J., and Jones, G. O. L.: 1992, 'EISCAT Observations of the Topside Ionospheric Ion Outflows During Auroral Activity: Revisited', J. Geophys. Res. 97, 3019.

    Google Scholar 

  • Wahlund, J. E., Eriksson, A. I., Holback, B., Boehm, M. H., Bonnell, J., Kintner, P. M., Seyler, C. E., Clemmons, J. H., Eliasson, L., Knudsen, D. J., Norqvist, P., and Zanetti, L. J.: 1996, 'Broadband ELF Plasma Emissions During Auroral Energization, I, Slow Ion Acoustic Waves', J. Geophys. Res., in press.

  • Whalen, B. A., Bernstern, W., and Daly, P. W.: 1978, 'Low Altitude Acceleration of Ionospheric Ions', Geophys. Res. Lett. 5, 55.

    Google Scholar 

  • Wilson, G. R.: 1994, 'Kinetic Modeling of O+ Upflows Resulting from E × B Convection Heating in the High-Latitude F Region Ionosphere', J. Geophys. Res. 99, 17,453.

    Google Scholar 

  • Winningham, J. D. and Gurgiolo, C.: 1982, 'DE-2 Photoelectron Measurements Consistent With a Large Scale Parallel Electric Field over the Polar Cap', Geophys. Res. Lett. 9, 977.

    Google Scholar 

  • Witt, E., Hudson, M. K., Li, X., Roth, I., and Temerin, M.: 1995, 'Ponderomotive Effects on Distributions of O+ Ions in the Auroral Zone', J. Geophys. Res. 100, 12,151.

    Google Scholar 

  • Yasseen, F., Retterer, J. M., Chang, T., and Winningham, J. D.: 1989, 'Monte-Carlo Modeling of Polar Wind Photoelectron Distributions with Anomalous Heat Flux', Geophys. Res. Lett. 16, 1023.

    Google Scholar 

  • Yasseen, F. and Retterer, J. M.: 1991, 'Critical Points in the 16-Moment Approximation', J. Geophys. Res. 96, 1827.

    Google Scholar 

  • Yau, A. W., Whalen, B. A., Abe, T., Mukai, T., Oyama, K. I., and Chang, T.: 1995, 'Akebono Observations of Electron Temperature Anisotropy in the Polar Wind', J. Geophys. Res. 100, 17,451.

    Google Scholar 

  • Yau, A. W. and André, M.: 1997, 'Sources of Ion Outflow in the High Latitude Ionosphere', Space Sci. Rev., this issue.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

André, M., Yau, A. Theories and Observations of Ion Energization and Outflow in the High Latitude Magnetosphere. Space Science Reviews 80, 27–48 (1997). https://doi.org/10.1023/A:1004921619885

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004921619885

Keywords

Navigation