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The difficulties to detect intact noncovalent complexes involving proteins and peptides by
MALDI-TOF mass spectrometry have hindered a widespread use of this approach. Recently,
“intensity fading MS” has been presented as an alternative strategy to detect noncovalent
interactions in solution, in which a reduction in the relative signal intensity of low molecular
mass binding partners (i.e., protease inhibitors) can be observed when their target protein (i.e.,
protease) is added to the sample. Here we have performed a systematic study to explore how
various experimental conditions affect the intensity fading phenomenon, as well as a
comparison with the strategy based on the direct detection of intact complexes by MALDI MS.
For this purpose, the study is focused on two different protease-inhibitor complexes naturally
occurring in solution, together with a heterogeneous mixture of nonbinding molecules derived
from a biological extract, to examine the specificity of the approach, i.e., those of carboxypep-
tidase A (CPA) bound to potato carboxypeptidase inhibitor (PCI) and of trypsin bound to
bovine pancreatic trypsin inhibitor (BPTI). Our results show that the intensity fading
phenomenon occurs when the binding assay is carried out in the sub-uM range and the
interacting partners are present in complex mixtures of nonbinding compounds. Thus, at these
experimental conditions, the specific inhibitor-protease interaction causes a selective reduction
in the relative abundance of the inhibitor. Interestingly, we could not detect any gaseous
noncovalent inhibitor-protease ions at these conditions, presumably due to the lower high-

mass sensitivity of MCP detectors.
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ionization time-of-flight mass spectrometry

(MALDI-TOF MS) to detect intact noncovalent
biomolecular complexes was demonstrated by Karas
and Hillenkamp and their coworkers only a few years
after they developed MALDI [1, 2], however, it has not
found widespread use up to now.

Several major effects have been described to result in
nonnative conditions for the noncovalent complexes:
MALDI matrix [3-5], sample preparation [4, 6, 7],
crystal morphology [4, 8, 9], pH of the solution [6,
10-12], organic solvent [7, 8], ionic strength [13, 14],
matrix/analyte ratio [15, 16], speed of solvent evapora-
tion [4], and sample concentration [9, 15]. The effect of
some instrumental parameters in the detection of com-
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plexes has also been studied; extraction delay time,
positive/negative ion mode, linear/reflector and accel-
eration mode were found to be of minor importance [7,
17], whereas laser pulse energy [8, 17, 18] and the
number of laser shots (i.e., “first shot phenomenon”) [4,
8, 13, 19, 20] was reported to be a decisive factor in a
number of cases.

Also, analyses by electrospray ionization (ESI) [21]
are not carried out at physiological conditions as only
solutions of very low ionic strength can be analyzed.
However, ESI generates “colder” ions than MALDI
and it keeps the sample in aqueous “biological”
environment before ionization. For these reasons,
ESI has been used in numerous studies to detect
noncovalent complexes [22].

Relatively few cases have been reported where spe-
cific intact noncovalent complexes were successfully
observed with MALDI. Besides the frequent dissocia-
tion of noncovalent complexes due to the experimental
conditions employed, a further complication for their
study by MALDI MS is the presence of nonspecific
aggregates, i.e., “cluster ions” [23, 24]. Thus, the speci-
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ficity of binding should be always verified by compet-
itive and comparative assays after the addition of
known ligands and nonbinding molecules. Following
these control experiments, the interaction is confirmed
when no cluster ions are observed or when the “spe-
cific” complex is far more abundant than “nonspecific”
aggregates.

Within this context, one of our groups recently
introduced an alternative strategy to detect the presence
of noncovalent complexes in solution by MALDI MS
[25].6 Withé thisé strategy,éaéreductionéiné theérelative
abundance of peptide ligands, visualized as a reduction
of their relative intensity in the mass spectra, can be
observed when their receptor protein is added to the
MALDI sample; accordingly, we named this approach
intensityé fadingé (IF-)é MALDI-TOFé MSé [25].€ Thisé is
equivalent to immunological procedures to identify
epitopic peptides by their specific removal by antibod-
iesé[26,627].6Weéhaveéextendedéitétoéaéwideérangeéof
biological interactions (i.e., protein-protein, protein-
nucleicécid, éndéprotein-organickompounds)q25]énd,
more recently, as a promising approach to screen
ligands in heterogeneous biological extracts (i.e.,
proteaseéinhibitors)§28,&9].

However, no systematic study of the influence of
various experimental conditions on the “intensity fad-
ing” phenomenon has been conducted until now. With
this aim, here we report a study to (1) investigate how
various experimental conditions and instrumental pa-
rameters affect the “intensity fading” phenomenon, and
(2) to elucidate if “intensity fading MS” approach is a
truly advantageous strategy by comparison with the
direct detection of intact noncovalent complexes by
MALDI TOF MS. For this purpose, we have selected the
noncovalent complexes formed between two different
enzymes of intermediate size and two proteic inhibitors
(representative of small protein and peptide ligands),
all of them well characterized: the pairs bovine car-
boxypeptidase A (CPA)/potato carboxypeptidase in-
hibitor§PCl)écomplexé[30]éandétrypsin/bovineépancre-
aticétrypsinéinhibitoré (BPTI)é complexé[31].6 Weéhave
explored the “fading” behavior of these protease inhib-
itors (in the low mass range) interacting with the
enzymes as well as the observation of the entire specific
complex (in the high mass range), with several MALDI
matrices (in the presence or absence of ammonium
salts). Various sample preparation procedures yielding
different crystal morphologies were also investigated.

Experimental
Materials

The MALDI matrices sinapic acid (SIN), 6-aza-2-thio-
thyamine (ATT), 2,6-dihydroxyacetophenone (DHAP),
a-cyano-4-hydroxycinnamic acid (CHCA), 2-(4-hy-
droxyphenylazo)benzoic acid (HABA), and the struc-
tural isomers 2,5- and 2,6-dihydroxybenzoic acid (2,5-
and 2,6-DHB) were purchased from Sigma-Aldrich (St.
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Louis, MO) and were used without further purification.
Ammonium acetate, ammonium citrate, and ammo-
nium dihydrogen phosphate were purchased from
Fluka (Buchs, Switzerland). Universal pH indicator
strips, pH 0.0 to 2.5, 2.5 to 4.5, and 4.0 to 7.0 were
purchased from Merck KGaA (Darmstadt, Germany).
Trypsin (modified/sequencing grade) was purchased
from Promega (Madison, WI). Carboxypeptidase A
modified from bovine pancreas was purchased from
Boehringer Mannheim (Ingelheim, Germany). The sol-
vents acetonitrile (ACN) and acetone were analytical or
LiChrosolv grade (Merck, Darmstadt, Germany). Leech
carboxypeptidase inhibitor (LCI), potato carboxypepti-
dase inhibitor (PCI) were obtained as previously de-
scribedd[32,633].éAprotining BPTI)ébovineéwasérecombi-
nant, expressed in Nicotiana (tobacco) (Sigma-Aldrich,
St. Louis, MO). All aqueous solutions were prepared
using Milli-Q water filtered with a 0.2 um membrane
filter (Millipore, Bedford, MA). Extract from Hirudo
medicinalis was supplied by the group of Professors H.
Fritz and C. Sommerhoff (Chirurgischen Klinik Innen-
stadt, Ludwig-Maximilians-Universitat, Munich, Ger-
many). Hirudo medicinalis extract was dissolved in
deionized water at a concentration of 20 mg/mL. These
solutions were centrifuged at 8000 ¢ for 10 min, and the
supernatant was processed by size-exclusion chroma-
tography Superdex Peptide HR 10/30 (Amersham Bio-
sciences, Barcelona, Spain). The chromogenic substrate
N-(4-methoxyphenylazoformyl)-Phe-OH was obtained
from Bachem (Weil am Rhein, Germany).

Sample Preparation

Lyophilized samples of LCI, PCI, Aprotinin, and CPA
were dissolved in 20 mM ammonium acetate at the
desired molar concentration. Trypsin was dissolved
in Milli-Q water at the desired molar concentration.
The size-exclusion chromatography fraction of Hirudo
medicinalis (essentially enriched with proteins in the
range of 3 to 5 kDa) was lyophilized and dissolved in
Milli-Q water. Possible inhibitory activity of the
selected fraction was determined by measuring the
inhibition of the hydrolysis of the chromogenic sub-
strate N-(4-methoxyphenylazoformyl)-Phe-OH by
carboxypeptidase type A at 350 nm.

Nonbinding control samples were diluted to yield
ion abundances similar to that of the protease inhibitor
assayed in parallel; 0.5 uL of each solution (i.e., protease
inhibitor, nonbinding molecules, and protease or am-
monium salt) were mixed and incubated for 3 min at
room temperature. (1) For the dried-droplet sample
preparation method, the following solutions were pre-
pared: 10 mg/mL SIN, ATT, a-CHCA, 2,5-DHB, DHAP,
and 2 mg/mL HABA, in ACN mixed with either water
20 mM ammonium acetate, 20 mM ammonium citrate,
or 20 mM ammonium dihydrogen phosphate 1:4 (vol/
vol). For the MALDI analysis, 1.5 to 2 uL of sample and
3 to 4 uL of matrix solution were mixed into a 0.5 mL
tube and 0.5 uL of this mixture was deposited on a
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Table 1. Intensity fading assays for protease inhibitors (PCI, BPTI) and detection of the intact complexes in presence of their target
proteases (CPA, trypsin)

Trypsin-BPTI

CPA-PCI interaction interaction

Intensity fading Detection of the intact non-covalent Detection of the intact

MALDI matrix?® of PCIP complex® noncovalent complex
SIN (dried droplet) + + 4
SIN (thin layer) - nt nt
a-CHCA (dried droplet) + + +
a-CHCA (thin layer) - - nt
DHAP (dried droplet) + + n
ATT (dried droplet, large crystals) - - Ny
ATT (dried droplet, micro crystals) + + +/—
2,5-DHB (dried droplet) - - +/—
2,6-DHB (thin layer) - - nt
HABA (dried droplet) + + n

2SIN, sinapic acid; a-CHCA, a-cyano-4-hydroxycinnamic acid; DHAP, 2,6-dihydroxyacetophenone; ATT, 6-aza-2-thiothyamine; HABA, 2-(4-Hydroxy-
phenylazo)benzoic acid; 2,5-DHB and 2,6-DHB, 2,5- and 2,6-dihydroxybenzoic acid.

PIntensity fading MS assays in a heterogeneous mixture of non-binding molecules. The relative intensity of protease inhibitor was measured in the
presence or absence of protease. + indicates that the relative abundance of inhibitor decreased by at least a factor of 10 in the presence of protease;
- indicates no significant decrease in the relative abundance of inhibitor in the presence of protease. The heterogeneous mixture consisted of more
than 50 nonbinding molecules obtained from a leech extract.

°Direct detection of the intact noncovalent complex between protease and inhibitor. The concentration of the interacting proteins was ~15- to 20-fold
increased with respect to that used for intensity fading experiments. Results are indicated without non-binding molecules in the mixture. + indicates
a 2-fold or higher relative abundance of the protease-inhibitor complex than that of the non-specific cluster ions formed by homo-aggregates of
protease or inhibitor; - indicates the absence of protease-inhibitor complex or a similar relative abundance of the protease-inhibitor complex and
nonspecific cluster ions formed by homo-aggregates of inhibitor or protease; +/— indicates ambiguous results due to a large shot-to-shot variability;

nt means not tested.

stainless steel target and dried at room-temperature. (2)
Thin-layer preparation: SIN, «-CHCA and 2,5-DHB
were dissolved in acetone at a concentration of 20
mg/mL; 2,6-DHB was dissolved in acetone at a concen-
tration of 100 mg/mL. A 5 uL aliquot of the matrix
solution was spotted onto the target. A thin microcrys-
talline layer of matrix remained after fast evaporation of
solvent; 0.5 uL of the sample solution was deposited
onto the thin matrix layer. After solvent evaporation at
room temperature, the sample was washed as follows: 2
uL of Milli Q water were added on the sample and
removed after a few seconds.

MALDI-TOF Mass Spectrometry

MALDI mass spectra were obtained using an Ultraflex
MALDI-TOF mass spectrometer (Bruker Daltonics, Bre-
men, Germany) equipped with a 337 nm nitrogen laser,
a gridless ion source, delayed-extraction (DE), and a 2
GHz digitizer. The instrument was operated in either
reflector or linear mode by applying an accelerating
voltage of 20 kV except where otherwise stated. De-
layed extraction was used and the delay time was set
according to the molecular weight of the analytes
(protease inhibitor or complex) to optimize resolution
of its molecular ion. Mass spectra were acquired by
averaging 300 to 600 shots (three different positions into
each spot and 100 to 200 shots per position). Laser pulse
energy was adjusted according to the various MALDI
matrices. All subsequent mass spectra acquisitions were
performed by applying the same laser fluence, includ-
ing control mass spectrum and after the addition of
target molecules.

Results

“Intensity Fading MS” in Different Experimental
Conditions

A broad variety of experimental conditions were tested
to study the specific binding of CPA to PCI, as deter-
mined by the “intensity fading MS” approach, when
added to a heterogeneous mixture of more than 50
unknown nonbinding molecules derived from a natural
extract of the leech Hirudo medicinalis. The only avail-
able information about these nonbinding molecules was
the absence of carboxypeptidase A inhibitory activity
(measured by classical spectrophotometric assays) (data
not shown).

The relative intensity of PCI at m/z 4298, after the
addition of its specific interacting partner, CPA
(~34.200 Da), was studied using the matrices SIN,
DHAP, a-CHCA, ATT, 2,5-DHB, and HABA, following
the “dried-droplet” MALDI sample preparation. On the
other hand, the MALDI matrices 2,6-DHB, SIN, and
a-CHCA were used with the “thin-layer” sample prep-
aration.éResultséareésummarizedéinéTableé1.é“Dried-
droplet” sample preparation is clearly better than the
“thin-layer” preparation for observing the “fading”
phenomenon.éFigureélaéshowsétheémasséspectraéfor
increasing amounts of CPA added to the complex
mixture. A clear gradual fading of the relative intensity
of PCI (0.6 pmol) is observed reaching almost a com-
plete reduction of the signal when a 1:1 M ratio of
CPA:PCI is employed. The other peaks are virtually
unaffected by the addition of the protease. A similar
fading phenomenon was observed using a-CHCA as
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Figure 1. MALDI-TOF mass spectra of a complex mixture containing nonbinding peptides obtained
from extract of leech and 0.6 pmol of potato carboxypeptidase inhibitor (PCI) in the presence or
absence of carboxypeptidase A (CPA). The peak corresponding to [PCI] " at m/z 4296 is indicated by
dotted lines. Only the mass range displaying the [PCI]" peak and its adjacent peaks are shown. Mass
spectra were obtained using the dried-droplet preparation method and (a) sinapic acid, (b) a-cyano-
4-hydroxycinnamic acid (CHCA) with ammonium citrate, (c) 6-azathiothymine (ATT) with ammo-
nium acetate, as MALDI matrices.
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Table 2. pH? values of the matrix solutions

NONCOVALENT INTERACTIONS BY MALDI-TOF 363

20% ACN/ 20mM

20% ACN/ 20mM 20% ACN/ 20mM ammonium

ammonium ammonium dihydrogen

MALDI matrices 20% ACN/water citrate acetate phosphate
SIN 2.5 4 4 3.5
a-CHCA 2-2.5 3-3.5 3.5 3.0
DHAP 4.0 5.0 5.5 4.5
ATT 3.5 4.5 4.5-5 4.0
2,5-DHB 1.5 3.0 3.0 2.5
HABA 3.5-4 5.0 5-5.5 45

2pH values were measured with universal pH indicator strips (pH ranges 0.0-2.5; 2.5-4.5; 4.0-7.0).

matrix§Figureélb).dnéheéaseéféhedesséncidicdALDI
matrixé(seeéTableé2)éATT étwoédifferentématrixécrystal
morphologies were observed. At the rim of the sample
spot, thin macrocrystalline long needles were promi-
nent, whereas the center was covered by a homoge-
neous microcrystalline layer of matrix (particularly
with ammonium acetate). Surprisingly, the relative sig-
nal intensity of PCI was not reduced in the presence of
CPA when the macrocrystalline needles were analyzed
(with and without ammonium salts) (data not shown).
By contrast, a marked reduction of the relative signal
intensity of PCI was detected in the microcrystalline
layeréFigureélc).éForéthedlongéneedles,éaéhighéspot-to-
spot signal variability was observed; at some positions,
the relative signal intensity of PCI was significantly
reduced from the spectra within the first few laser
shots. But, at increasing laser fluence or number of laser
shots, the inhibitor was unaffected, i.e., having the same
relative signal intensity as that of the control spectrum.
Similar long needles were observed at the rim of the
spot when the matrix 2,5-DHB was used. Also for this
matrix, the relative signal intensity of PCI was unaf-
fected by the addition of CPA, even in the presence of a
2-fold molar excess of the protease (data not shown). It
should be noted that neither the specific CPA-PCI
complex (m/z ~38,500) nor the free CPA (m/z ~34,200)
were detected in these experiments at the correspond-
ing mass range in the mass spectra, regardless of the
matrix and the experimental conditions conceived.

The same experiments were performed using SIN,
a-CHCA, and 2,6-DHB as matrices and the “thin-layer”
as sample preparation method. With these conditions,
the addition of CPA did not affect the relative signal
intensity of its natural ligand PCI (data not shown).

Variation of the laser fluence had no effect on the
fading phenomenon. We did not observe an equivalent
of the “first-shot phenomenon” for the “intensity fading
MS” approach, i.e., the relative signal intensity of the
ligand was reduced to the same extent after exposure to
200 subsequent laser shots on the same position of the
spot (except for macrocrystalline structures of ATT).
Switching from positive linear to positive reflectron
mode had no influence on the observed fading.

Intensity Fading MS Versus Direct Detection
of Intact Noncovalent Complexes
by MALDI-TOF MS

From a simple mechanistic point of view, the signal
fading of the protease inhibitor ion should be a direct
consequence of the preservation and detection of the
intact noncovalent complex formed between the tar-
get protease and its specific inhibitor. Therefore, both
strategies should be equally affected by the same
experimental conditions. However, our results indi-
cate that this is not true and that analyte concentra-
tion plays a key role, affecting in a different way both
strategies. The detection of the intact noncovalent
complexes assayed in this work (CPA-PCI and tryp-
sin-BPTI) could only be observed when the overall
amount of the analytes were increased ~15- to 20-
fold with regard to those applied in the intensity
fading experiments.

Detection of the intact CPA-PCI complex in the mass
spectrum. The formation of the noncovalent complex
between CPA and PCI was also tested using seven
different matrices and two different MALDI sample
preparation methods, i.e., “dried-droplet” and “thin-
layer”émethod.éAsé&ummarizedénél'ableél ,&heécomplex
was detected using SIN, o-CHCA, DHAP, HABA as
well as the microcrystalline surface of ATT, whereas no
complex could be observed using either 2,5-DHB or the
thindongéneedleséoféATT{Figure&).

The specificity of the assay was investigated by
adding another protease inhibitor (BPTI) with no affin-
ity for CPA in solution, as a nonbinding control mole-
cule. The preservation of the specific binding between
CPA and PCI was strongly dependent upon the type of
MALDI matrix. Only the CPA-PCI complex is observed
withé SINé matrixé (Figureé 3a),é whereasé ATTé matrix
results in the exclusive formation of the nonspecific
complexédetweendCPAénd@BPTIqFigure&b).&Noteédhat
although we exclusively detected the specific CPA-PCI
complex with SIN matrix, or the nonspecific CPA-BPTI
with ATT matrix, there was no detectable fading of the
m/z ion corresponding to PCI or BPTI, respectively, in
these experimental conditions. In the case of the DHAP
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Figure 2. MALDI-TOF mass spectra of a sample containing 7 pmol of PCI and 10 pmol of CPA.
Dried-droplet sample preparation with sinapic acid (a) and ATT (b) as matrices was used. Inset
displays amplified regions corresponding to free CPA and the specific CPA-PCI complex. (c)
MALDI-TOF mass spectra (same mixture and molar ratios as in (a) and (b) but shifted to the high m/z
region) showing free CPA and the specific complex CPA-PCI. HABA, ATT, a-CHCA, and 2,5-DHB
were used as matrices and dried-droplet as sample preparation.

matrix, neither the specific CPA-PCI complex nor the
nonspecific one between CPA and BPTI could be de-
tected; the mass spectrum was dominated by the three
unligated compounds (data not shown). For HABA, the
addition of BPTI led to reduction of the free CPA signal,

thereby hampering the possibility of detecting any
complex (data not shown). The effect of time-delayed
extraction in linear and reflector mode was also studied,
increasing from 120 to 500 ns, showing insignificant
changes in the spectra.
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Figure 3. MALDI-TOF mass spectra of a sample containing equimolar amounts of PCI, BPTI, and
CPA (20 pmol). Dried-droplet sample preparation with sinapic acid/ammonium dihydrogen phos-
phate (a) and ATT/ammonium acetate (b) as matrices was used.
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Detection of the intact trypsin-BPTI complex in the mass
spectrum. The noncovalent complex between trypsin
and its specific natural inhibitor BPTI (1:1 M ratio) was
also tested using the seven different matrices and
“dried-droplet” method for MALDI sample prepara-
tion.éAséummarizedénélableél ,&hedntactécomplexéwvas
detected using SIN, DHAP, «-CHCA, HABA (with and
without ammonium salts) as matrices, whereas a high
spatial signal variability was observed when ATT and
2,5-DHB were used.

A carboxypeptidase inhibitor, LCI, showing no affinity
for trypsin in solution, was added to the mixture as
nonbinding control molecule (1:1 M ratio). The nonspe-
cific complex between trypsin and LCI was observed with
all matrices. For DHAP, this unspecific complex was even
more abundant than the naturally occurring trypsin-BPTI
complexé(Figureéda).éNoteéagain,étheéabsenceéofésignal
fading for both the specific (BPTI) and nonspecific (LCI)
inhibitors in presence of trypsin. This is in contrast with
the intensity fading MS experiments performed in the
sub-picomole range with the same analytes, plus another
nonbindingémoleculediked’CI{Figureéb).d1ere &heBPTI
ion specifically faded after the addition of its target pro-
tease, trypsin, whereas LCI and PCI signals are virtually
unaffected. However, as stated also in the previous section
for CPA-PCI interaction, we could not observe the intact
trypsin-BPTI complex in its corresponding mass range of
the mass spectrum.

Discussion

The “intensity fading MS” methodology has the ability to
detect biomolecular interactions (ie., protease-protease
inhibitor in this work) in heterogeneous mixtures by a
simple comparison of MALDI mass spectra. It is based on
the phenomenon that signals of ligands can become
strongly suppressed in MALDI mass spectra when they
are engaged in complex formation with a receptor protein.
In the present study, we have investigated the “intensity
fading” phenomenon using a broad variety of MALDI
matrices in combination with two preparation methods
(dried-droplet and thin-layer) to explore and optimize the
conditions to implement it as a screening methodology to
detect biomolecular interactions (protease-protease inhib-
itor in our case) in heterogeneous biological mixtures, and
verify whether it is a truly advantageous strategy com-
pared with the direct detection of intact complexes by
MALDI mass spectrometry.

Our results show that the “intensity fading” effect
occurs under the specific experimental conditions char-
acterized by the low concentration (sub-picomole) of
the interacting partners and the complex mixture of
internal nonbinding compounds, as well as the use of
homogeneous crystal morphology obtained from dried-
droplet sample preparation. For the model systems
investigated in this work, pH-values of matrix-analyte
solutions is not a limitation, but may indeed become a
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restriction for systems more susceptible to pH. Larger
crystals of ATT and 2,5-DHB matrices as well as thin-
layer sample preparations with a-CHCA, 2,6-DHB, and
SIN matrices prevented the fading of the protease
inhibitors.

The absence of specific intact noncovalent complex
ions (as well as the free enzyme) in the mass spectra in
the “intensity fading” assays, is a consequence of the
poor efficiency of detection of high molecular weight
proteins, such as CPA or CPA-PCI complex, by MALDI-
TOF MS instruments equipped with conventional mi-
crochanneléplate§MCP)édetectors€[34,635].Besidesésen-
sitivity problems, with MCP there is often the issue that
when high molecular weight proteins are present in
complex mixture of lower mass ions, the latter turn off
channels of the detector by saturation during amplifi-
cation. Results with improved detection efficiency for
high mass ions by superconducting tunneling junction
detectorsé(i.e. &cryodetectors)d36]éconfirméthisépoint.

Given the complex experimental situation in MALDI, a
nonoccurrence of the intensity fading does not necessarily
mean that complexes are not formed. This is exemplified
when the applied overall amount of proteins was in-
creased by a factor of 15 to 20 with regard to those used in
the intensity fading assays (i.e., sub-picomole range). We
were able to detect the protease as well as the noncovalent
complex formed with its specific inhibitor. It is worth
mentioning that these analyte concentrations (~10 to 30
pmol/ul) reproduce the experimental conditions re-
ported in most of the previous studies of biomolecular
interactionséinésolutionédbyéMALDIg4,6,67,617,637].éHow-
ever, when the specific trypsin-BPTI and CPA-PCI inter-
action was probed by adding inhibitors that are known
not to interact with the protease in solution, we observed
abundant nonspecific protease-inhibitor complexes (e.g.,
CPA-BPTIéandétrypsin-LCIécomplexeséinéFigureé3béand
Figuredla &espectively)éindéggregateséndheénassépectra
(e.g. &etramericd CléndFiguredta).élhisémakeélearéhat,ét
certain analyte concentrations, the formation of gaseous
noncovalent complexes by MALDI does not originate
exclusively from specific interactions that are preformed
inéolution,éasérecentlyélsoéindicatedd17].

Conclusions

The “intensity fading MS” approach is attributable to an
exclusive reduction in the relative intensity of peptide/
small protein ligands (i.e., protease inhibitors in our
case) that can be observed when their target protein
(i.e., protease) is added to the MALDI sample. The other
peaks (i.e., nonbinding peptides, protein substrates) are
virtually unaffected by the addition of the protease. Our
results have shown that the “intensity fading” phenom-
enon shares some common disadvantages associated to
the detection of intact noncovalent complexes by
MALDI, such as sample preparation and choice of
matrix.

However, the detection of the intact noncovalent
complexes studied in this work by MALDI-TOF MS

J Am Soc Mass Spectrom 2007, 18, 359-367

was only possible because of the relatively high
amounts of interacting partners in the assays, which led
to the formation of nonspecific complexes or aggregates
(i.e., cluster ions). On the contrary, the “intensity fading
MS” strategy is focused in the low mass range (below 10
to 15 kDa), profiting from the best sensitivity in this
mass range of standard MALDI-TOF instruments
equippedéwithémicrochanneléplateédetectorsé[35].éThis
allowed us to work with rather highly complex mix-
tures of analytes in the sub-picomole range, which, we
suggest, preserve at least partially the specific natural
occurring bindings in solution and minimize the forma-
tion of nonspecific interactions in the gas phase.

Historically, any methodology to study noncovalent
interactions in solution based on MALDI mass spec-
trometry has inevitably suffered from the physical and
chemical processes associated to this technology. For
this reason, “intensity fading MS” will not replace
established affinity-based methodologies coupled to
mass spectrometry such as surface plasmon resonance,
cross-linking, or affinity purification among others.
Even within the soft ionization techniques, ESI has been
long recognized as the method of choice for studying
noncovalenté complexesé [21].é However,é toé date,é we
strongly believe that the real potential of MALDI mass
spectrometry in the study of noncovalent interactions
has been underestimated because of our limitation of a
complete understanding of all processes underlying
this technology. New experimental approaches not con-
ceived until recent years like “intensity fading MS” or
possibleémodificationsédasedéoné&heé&ameéprincipled28,
36],énfrared{IR)&MALDI{38,89] étmosphericépressure
(AP)MALDIg40,é41],6DIOS-MSg42-d4] éorénewégener-
ationédfdondletectorsd45,&6],dnaydputéondhedamedevel
MALDI and ESI mass spectrometry in the field of
noncovalent interactions.
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