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The first application of electron detachment dissociation (EDD) to carbohydrates is presented.
The structural characterization of glycosaminoglycan (GAG) oligosaccharides by mass spec-
trometry is a longstanding problem because of the lability of these acidic, polysulfated
carbohydrates. Doubly-charged negative ions of four GAG tetrasaccharides are examined by
EDD, collisionally activated dissociation (CAD), and infrared multiphoton dissociation
(IRMPD). EDD is found to produce information-rich mass spectra with both cross ring and
glycosidic cleavage product ions. In contrast, most of the product ions produced by CAD and
IRMPD result from glycosidic cleavage. EDD shows great potential as a tool for locating the
sites of sulfation and other modifications in glycosaminoglycan oligosaccharides. (J Am Soc
Mass Spectrom 2007, 18, 234–244) © 2007 American Society for Mass Spectrometry

Glycosaminoglycans (GAGs) are linear, polydis-
perse, sulfated polysaccharides found in a wide
variety of organisms, from bacteria to humans

[1]. GAGs play an important role in many biological
processes such as cell-cell signaling [2], the regulation of
biochemical pathways [3, 4], and inflammation reac-
tions [5]. GAGs form the carbohydrate portion of pro-
teoglycans, which are high molecular weight (up to and
	1 MDa) molecules of high complexity. GAGs are
composed of a repeating disaccharide of an acidic sugar
and an amino sugar, and exhibit complexity through
the degree and sites of sulfation in each disaccharide
unit, functionalization of the amino group in the glu-
cosamine residues, and chirality of the C5 carbon on the
hexuronic acid residues. Additional complexity arises
at the proteoglycan level from the distribution of GAG
chains that bind to the core proteins.
Heparin and heparan sulfate (HS) are the most

structurally complex GAGs [6]. They consist of 1,4-
linked repeating disaccharide of hexuronic acid and
glucosamine. The hexuronic acid is either glucuronic
(GlcA) or iduronic acid (IdoA), and may be sulfated
at the hydroxyl group on carbon C2. The glucosamine
(GlcN) may be sulfated at the hydroxyl group at
carbon C3 or C6, and may be unmodified, acetylated,
or sulfated at the amino group on carbon C2. Deter-
mining the pattern of modification (sulfation, N-
acetylation, GlcA versus IdoA) in heparin/HS poly-
saccharides is of significant interest as their biological

activities are believed to be controlled by the pattern
of modification [7–9].
Tandem mass spectrometry (MS/MS) is an excel-

lent tool for characterizing the structure of biomol-
ecules since it is rapid, versatile, and sensitive. How-
ever, the application of MS/MS to sulfated GAGs has
been hindered by their large size, sulfation heteroge-
neity, and the lability of the sulfate groups, particu-
larly during ion activation [10]. GAGs have been
ionized by fast atom bombardment (FAB) [11, 12],
electrospray ionization (ESI) [13], and matrix assisted
laser desorption/ionization (MALDI) [14–17]. Anal-
ysis of sulfated GAGs by FAB is relatively uninfor-
mative due to the abundant loss of NaSO3 and SO3
from the singly-charged precursor ions. Ion activa-
tion by collisionally activated dissociation (CAD) or
infrared multiphoton dissociation (IRMPD) of singly-
charged sulfated GAGs results in abundant loss of
SO3, frustrating efforts to determine sites of sulfation.
ESI is the preferred ionization technique for retaining
the labile sulfate groups. During MS/MS, SO3 loss
can be minimized and glycosidic cleavages maxi-
mized if the charge on the ion is equal to the number
of sulfate groups [18]. However, the lack of signifi-
cant cross ring cleavages makes it difficult to deter-
mine the site of modification within each saccharide
ring.
To increase the structural information that can be

derived by mass spectrometry, a number of techniques
have been investigated. Sulfated oligosaccharides have
been derivatized by permethylation [19]. Localization of
the site of sulfation is then determined from MS/MS of
the permethylated oligosaccharides. Small oligosaccha-
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ride sequences can be determined by a combination of
enzymatic digestion, MSn of the disaccharides, and
database searching [20]. Capillary electrophoresis has
been combined with MS/MS to sequence a complex
mixture [21]. These methods do not provide sufficient
cross-ring fragmentation to determine the pattern of
sulfation, acetylation, and hexuronic acid stereochemis-
try on a GAG oligosaccharide. There is thus great
interest in applying novel ion activation methods to
advance the MS/MS analysis of sulfated carbohydrates.
Ion activation by electrons is finding widespread

application to biomolecule structure analysis. First re-

ported in 1998, electron capture dissociation (ECD) is an
ion activation method in which an odd-electron ion is
formed by the recombination of a multiply-charged
positive ion with a low-energy (
1 eV) electron [22].
Informative fragment ions result from the dissociation
of the odd-electron ion. An intriguing aspect of ECD is
that it is believed to be nonergodic [23]. For example, it
promotes extensive fragmentation of peptide back-
bones without loss of labile post-translational modifica-
tions such as glycosylation or phosphorylation [24, 25].
Positively-charged oligosaccharides have been dissoci-
ated by ECD [26]. Due to the acidic nature of sulfated
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GAGs, the formation of multiply-charged positive ions
is difficult. We have recently obtained results for the
ECD analysis of sulfated GAGs (manuscript in prepa-
ration), but find that this approach is not widely appli-
cable because of the difficulty of forming multiply-
charged positive ions for these acidic molecules.
Given the propensity of GAGs to form negative

ions, we have explored the application of electron
detachment dissociation (EDD) for the fragmentation
of multiply-charged negative ions of some model
GAG tetrasaccharides. EDD is the negative ion com-
plement of ECD [27]; although electron detachment
can be achieved in high-energy collisions with inert
gases [28], it is more easily accomplished by irradi-
ating a multiply charged negative ion with electrons
of moderate kinetic energy (15 to 20 eV), causing
electron detachment and leading to ion fragmenta-
tion [29–34]. This technique has been applied princi-
pally to peptides [29–32], but also to other com-
pounds that can form negative ions, specifically
nucleotides [34] and a ganglioside [33], but otherwise
there are very few reports of EDD in the literature.
Here, we present the first examples of the application
of EDD to the analysis of GAG tetrasaccharides.

Experimental

Preparation of Heparan Sulfate Tetrasaccharides

Heparan sulfate sodium salt was obtained from Cel-
sus Laboratories (Cincinnati, OH). The heparan sul-
fate was digested with heparinase II (Sigma, St.
Louis, MO) and fractionated by gel-permeation chro-
matography using a P-10 column (Bio-Rad, Hercules,
CA) to obtain uniform sized oligosaccharides. The
fraction containing tetrasaccharides was desalted on
a Bio-Rad P-2 column and concentrated by freeze-
drying. Fractions containing individual tetrasacchar-
ides were collected from semi-preparative SAX-
HPLC (Shimadzu, Columbia, MD) using a Spherisorb
column (Waters Corp, Milford, MA), desalted on a
Bio-Rad P-2 column, and freeze-dried [35]. The struc-
ture of the three tetrasaccharides (Structures 1, 2, and
4) and were determined by 1D and 2D proton NMR.
Tetrasaccharide 3 was prepared from tetrasaccharide
1 by N-sulfonation using the following protocol: 50
�g of tetrasaccharide 1 was dissolved in 12.5 �L of
solution containing 10 mg/mL sodium bicarbonate
and 10 mg/mL trimethylamine-sulfurtrioxide com-
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Figure 2. Tandem mass spectra of the [M � 2H]2� precursor ion of tetrasaccharide 1, obtained by
using (a) EDD, (b) IRMPD, and (c) CAD. Doubly-charged product ions are indicated with an asterisk.
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plex and incubated at 50 °C for 12 h. Equal portions of
sodium bicarbonate and trimethylamine-sulfurtriox-
ide complex were added two more times at 12 h
intervals. The solution was then desalted by a P-2
spin column (Bio-Rad) and the product was freeze-
dried°[36].

Mass Spectrometry Analysis

Experiments were performed with a 7 T Bruker Apex
IV QeFTMS (Billerica, MA) fitted with an Apollo II
ESI source, a CO2 laser for infrared multiphoton
dissociation (IRMPD), and an indirectly heated hol-
low cathode for generating electrons for ECD and
EDD. The hollow cathode implementation with the
Infinity°cell°has°been°previously°described°[34].°Solu-
tions of each tetrasaccharide were made at a concen-

tration of 0.1 mg/mL in 50:50 methanol:H2O (Sigma,
St. Louis, MO) and ionized by nanospray using a
pulled fused silica tip (model # FS360-75-15-D-5, New
Objective, Woburn, MA). The sample solutions were
infused at a rate of 10 �L/h. All tetrasaccharides were
examined in negative ion mode.
For the EDD experiments, precursor ions were

isolated in the external quadrupole and accumulated
for 1 to 2 s before injection into the FTMS cell. The
isolation/cell fill was repeated up to six times. The
selection of the precursor ion was further refined by
using in-cell isolation with a coherent harmonic exci-
tation frequency (CHEF) event. The precursor ions
were then irradiated with electrons for 1 s. For
electron irradiation the cathode bias was set to �19 V,
the ECD lens was set to �17.5 V � 0.5 V, and the
cathode heater was set to 5 to 6 V. Twenty-four
acquisitions were signal averaged per mass spectrum.
For each mass spectrum, 512 k points were acquired,
padded with one zero fill, and apodized using a
sinebell window. Background spectra were acquired
by leaving all parameters the same but setting the
cathode bias to 0 V to ensure that no electrons
reached the analyzer cell. External calibration pro-
duced mass accuracy of 5 ppm. Internal calibration
was also performed using confidently assigned gly-
cosidic bond cleavage products as calibrants, and
produced mass accuracy of 1 ppm. All EDD products
are reported using the Domon and Costello nomen-
clature,°as°shown°in°Figure°1°[37].
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Results and Discussion

Irradiation of �UA-GlcN-GlcA-GlcNAc, 1, with 19 eV
electrons°produces°the°mass°spectrum°shown°in°Figure
2a.°The°mass°spectrum°contains°mostly°singly-charged
product ions, including the charged reduced precursor,
[M � 2H] �·, as well as a few doubly-charged products.
The efficiency of product ion conversion (the sum of
product ion intensities divided by the precursor ion
intensity measured before irradiation, as proposed by
Gorshkov°et°al.°[38])°is°�6%.°The°presence°of°both°the
doubly-charged product ions and the charge reduced
precursor ion in the product ion spectrum indicates that
products are formed via two fragmentation pathways,
as shown in Scheme 1. Irradiation of the doubly-
charged precursor ion with 19 eV electrons leads to an
activated ion, which can undergo direct decomposition
to yield even-electron product ions that are doubly- or
singly-charged. For example, direct decomposition of
the doubly-charged precursor produces doubly-
charged products such as C3

2�, 2,4A4
2�, 2,5A4

2�, and
0,2A4

2�. Alternatively, the activated precursor can lose
an electron to form an odd-electron ion that undergoes
further fragmentation to form singly-charged even- and

odd-electron product ions. The charge-reduced molec-
ular ion, [M � 2H]�·, and other odd-electron species
such as [M � 2H � CO2]

�· provide direct evidence of
electron detachment.
While doubly-charged product ions must arise via

direct decomposition, and singly-charged odd-electron
product ions must arise from electron detachment,
singly-charged even-electron products can be formed
by either dissociation pathway. To develop a correla-
tion between molecular structure and fragmentation
behavior, it is important to distinguish the dissociation
pathways. The singly-charged even-electron products
that arise from direct fragmentation of the doubly-
charged negative ion can be identified by using IRMPD
or CAD for ion activation, as their ions are produced by
dissociation of an even-electron precursor. IRMPD of 1
produces°the°mass°spectrum°shown°in°Figure°2b,°while
CAD°of°1 produces°the°mass°spectrum°shown°in°Figure
1c.°The°major°fragments°in°Figure°2b°and°c°are°princi-
pally from glycosidic bond cleavages (B, C, Y, and Z)
and a few cross ring cleavages in the form of 0,2A4 and
2,5A4. Such cleavages have been observed in the CAD
mass°spectra°of°GAG°of°di-°and°tetrasaccharides°[39,
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40].°All°of°the°fragments°observed°in°the°CAD°spectrum
are found in the IRMPD spectrum, and all the IRMPD
products°are°present°in°the°EDD°spectrum°(Figure°2,
insets). We have found this to be generally true for all of
the GAG tetrasaccharides examined to date, i.e., EDD
gives the most comprehensive set of fragment ions,
while the IRMPD products are a subset of the ions in the
EDD spectrum, and the CAD products are a subset of
the ions in the IRMPD spectrum. The EDD products
that also occur in the IRMPD and CAD spectrum
probably arise from direct fragmentation of the doubly-
charged precursor ion.
Electron activation of the precursor ion results in

cleavage of every glycosidic bond and abundant cross-
ring cleavages in the form of A ions, shown by dashed
lines°in°the°structure°shown°in°the°inset°in°Figure°2a.
Product peak assignment was determined by compari-
son of the accurately measured masses with the theo-
retical product ions from glycosidic fragmentation of
the tetrasaccharide. Other common cleavages such as
the 0,2An,

2,5An, and loss of CO2 were also identified in

this manner. The N-acetyl group on the reducing end of
the tetrasaccharide increases the mass defect of the
product ions containing the reducing end relative to
fragments from the nonreducing end, allowing one to
distinguish A, B, and C products from X, Y, and Z
products. The remainder of the product ions were
identified from their exact mass differences from [M �
2H] �·, which establishes the elemental composition of
the neutral loss. For example, the peak at m/z 452.099
differs from the charge reduced species, [M � 2H]�·, by
262.085 u. The calculated neutral loss for a 0,2A3 cleav-
age is 262.093 u, while the calculated neutral loss for a
2,4X2 cleavage is 262.069 u. The exact mass calculation of
the observed neutral loss suggests that this product ion
is 0,2A3. This assignment was confirmed by comparison
to the EDD spectrum of the closely related compound 2
(vide infra).
The EDD process can form a radical site by detach-

ment of an electron from the doubly-charged precur-
sor. Products from this singly-charged odd-electron
ion can be either odd-electron or even-electron. The
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majority of the observed product ions are even-
electron ions. Odd-electron products include ions
from the loss of small, stable neutral molecules (M�·-
2H-CO2, M

�·-2H-CH2O), as well as some glycosidic
(B3-H, C2-H) and cross-ring cleavages. Radical forma-
tion initially occurs at a site of negative charge. For 1,
the two initial sites of negative charge are the carbox-
ylic acid groups on the residues at the nonreducing
end and the GlcA residue next to the reducing end.
The large degree of fragmentation on the GlcA resi-
due next to the reducing end indicates a preference
for ion decomposition when the radical is located at
this site. Radical site formation at the nonreducing
end appears to form a stable species that is resistant
to further fragmentation. Radical site formation at the
GlcA carboxyl group can be followed by loss of CO2
to form the odd-electron product ion at m/z 670.196.
This species can undergo further radical-driven frag-
mentation of the glycosidic bond to produce the C2-H
ion, as shown in the proposed mechanism in Scheme
2. Alternatively, the radical ion [M � 2H � CO2]

�·

can lose a hydrogen atom to form a more stable even
electron ion, [M � 2H � CO2H]

�.
There is also evidence of H atom transfer to the

carboxyl radical from other positions in the glucuronic
acid residue. One possibility is H-atom transfer from

the hydroxyl group on carbon C3 to the carboxyl
radical, moving the radical site to the C3 oxygen atom,
as shown in Scheme 3. This radical site can promote
3,5A3 and

0,2A3 fragmentation. Alternatively, H-atom
transfer can come from C4 as shown in Scheme 4. The
resulting radical is stabilized by delocalization with the
oxygen that forms the glycosidic bond to C4. H-atom
transfer from carbon atoms in saccharide rings has been
observed in collision induced electron detachment mass
spectra°of°nucleotides°[28],°in°reactions°between°phenyl
radical°cations°and°ribose°[41],°and°in°the°ECD°mass
spectra°of°glycopeptides°[42].°The°radical°site°at°C4°can
promote 3,5A3 and

0,2A3 fragmentation as shown in
Scheme 4. The abundance of cross ring cleavage prod-
ucts from fragmentation in the second sugar residue
from the reducing end in the EDD spectrum, and their
absence in the CAD and IRMPD spectra, suggests
radical-induced fragmentation of many of the bonds in
this residue, which can be rationalized by mobility of
the radical site via hydrogen rearrangement. The excess
energy deposited into the ion during electron irradia-
tion can supply the energy necessary to drive the
hydrogen rearrangement.
Figure°3°shows°the°EDD°mass°spectrum°of°�UA-

GlcNAc-GlcA-GlcNAc, 2, which differs from 1 by N-
acetylation in the GlcNAc residue next to the nonreduc-
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ing°end.°The°product°ions°from°EDD°of°2,°Figure°3,°are
similar in assignment and in abundance as observed
products for EDD of 1. Some minor differences are
evident. The C2 and Z2 ions are not assigned for EDD of
2 as they overlap with the precursor ion, and would be
difficult to discern from the much more abundant
remaining precursor. Some new cross-ring product ions
are evident in the EDD mass spectrum of 2. The 2,4A3
product ion present in the EDD spectrum of 2 is not
assigned for 1, for if present, it would overlap with the
Z2 glycosidic cleavage for Structure 1. The 1,4X2 product
ion is observed as it does not overlap with the 1,5A3
cleavage, as it did for 1. Aside from these minor
differences, a majority of the assigned products are the
same for the two related tetrasaccharides 1 and 2. The
similarity of the EDD spectra for these two related
compounds shows that observed fragmentation is not
highly sensitive to small modifications of the sugar
residues, and suggests regularity in the types of frag-
ments that are observed.
Figure°4°shows°the°EDD°spectrum°of°the°sulfated

GAG tetrasaccharide �UA-GlcNSO3-GlcA-GlcNAc, 3.
Determining the sites of sulfation by MS/MS requires
abundant glycosidic and cross-ring fragmentation with-
out loss of SO3 from the labile sulfate group. The sulfate
group provides an additional site of ionization for the

tetrasaccharide. As sulfuric acid is more ionized in
solution than a carboxylic acid, doubly-charged nega-
tive ions formed by ESI are expected to be ionized at the
sulfate group and one of the carboxylic acid groups.
Electron detachment is expected to occur principally at
carboxylate, since the electron affinity of sulfate is
considerably higher than the electron affinity of the
carboxylate (EA(HSO4

�) � 4.7 eV; EA(DCO2
�) � 3.5

eV)°[43].°EDD°of°3,°Figure°4,°results°in°no°observed°loss
of SO3. Similar to EDD of 1 and 2, the odd-electron
product ion [M � 2H � CO2]

�· is observed, indicating
a preference for electron detachment from the carbox-
ylate group rather than the sulfate, as it is expected that
the sulfate radical would exhibit SO3 loss. The observed
EDD°product°ions°of°3 (Figure°4°inset)°are°similar°to
those ions observed for 1 and 2. The B2 and Y2 product
ion are not assigned for 3 as they overlap with the
precursor ion. In addition to the doubly-charged even-
electron ions observed in the EDD of 1 and 2, the
doubly-charged product ion B3 is also observed in the
EDD of 3. As with 1 and 2, there is substantial cross-ring
cleavage in the residue next to the reducing end. 0,2A3
and 3,5A3 can be rationalized as resulting from hydro-
gen atom transfer from the hydroxyl group on C3 or
from the hydrogen on C4, to the carboxyl radical at C5,
followed by �-cleavage, similar to the mechanisms for 1
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shown in Schemes 3 and 4. EDD of 3 leads to fragmen-
tation of every glycosidic bond. The glycosidic products
establish that the site of sulfation lies within the glu-
cosamine residue next to the reducing end. This glu-
cosamine residue has three possible sites of sulfation.
The 0,2A2 and

2,5A2 cross-ring fragments place the
sulfation on the amine group, establishing this as a
GlcNS residue.
Tetrasaccharide 4, �UA-GlcNSO3-IdoA-GlcNAc-6-

SO4, contains two sulfate groups. In this case, the
doubly-charged negative ion is expected to carry charge
at the two sulfates, and EDD is expected to form a
radical site at one of the sulfates. Dissociation of the [M
�°2H]2�°precursor°ion°of°4 by°IRMPD°or°CAD°(Figure
5b°or°c,°respectively)°results°in°principally°glycosidic
cleavages. Some product ions are also found to lose SO3,
and some glycosidic cleavages are only found with the
loss of SO3. Although the residues that are sulfated can
be determined from the glycosidic cleavage in the CAD
and IRMPD spectra, identification of the sites of sulfa-
tion is difficult due to the limited amount of fragmen-
tation that occurs by these methods of ion activation. In
contrast, irradiation of the [M � 2H]2� precursor ion of
4 with 19 eV electrons results in much more extensive

fragmentation, as seen in the mass spectrum shown in
Figure°5a.°Predominantly°singly-charged°even-electron
product ions are observed. Some doubly-charged prod-
uct ions are observed such as [M � 2H � SO3]

2� and
0,2A4

2-, as well as the Y3
2� and Z3

2� glycosidic cleav-
ages. Some product ions from the EDD fragmentation
of 4 are observed both as product ions with two sulfates
as well as with the loss of one molecule of SO3. For
example, the Z3 and Y3 product ions are also observed
as Z3-SO3 and Y3-SO3. The odd-electron product ions
[M � 2H� SO3]

�· and [M � 2H � CO2]
�· are observed

along with the even-electron product ions [M � 2H �
HSO3]

� and [M � 2H � HCO2]
�. Doubly-charged

negative ions of 4 formed by ESI are expected to be
ionized at both sulfate groups. The presence of the [M�
2H � CO2]

�· odd-electron product ion implies that
either a carboxylate anion was formed during ioniza-
tion or that the carboxyl radical was formed as a result
of H atom transfer. The presence of a carboxyl radical
on the IdoA residue next to the reducing end results in
fragmentation similar to EDD of 1, 2, and 3. Similar to
CAD°and°IRMPD°of°1 (Figure°2b°and°c),°all°of° the
product ions in the CAD spectrum are observed in the
IRMPD spectrum, and all product ions in the IRMPD
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spectrum°are°observed°in°the°EDD°spectrum°(Figure°5,
insets). Compared with IRMPD and CAD of 4, the EDD
mass spectrum of 4 exhibits peaks that result from
cleavage of all glycosidic bonds as well as from abun-
dant cross-ring cleavages. The cross-ring fragmentation
of the reducing end sugar places the sulfate on C6 and
identifies this sugar as GlcNAc-6-SO4. Glycosidic frag-
mentation identifies the sugar next to the nonreducing
end as a sulfated GlcN sugar. The cross-ring fragmen-
tation places the sulfate on either the C2 amino group or
C6. The observed fragmentation cannot isolate the site
of sulfation on this sugar.
The EDD spectra of the GAG tetrasaccharides exhibit

a substantial number of fragment ions, many with low
relative abundances. We find that the majority of these
peaks appear reproducibly from spectrum to spectrum.
The reproducibility of EDD fragmentation has been
ascertained by comparing the spectra from identical
samples acquired at an interval of one month (data not
shown). The peaks are reproducible in both the mass-
to-charge and abundance of the observed fragment
ions. All previously identified product ions are present
and no new product ions are observed. Even the
unassigned, low abundance product ions are remark-
ably reproducible. The close match between EDD spec-
tra collected at different times is reminiscent of the
reproducibility of electron ionization mass spectra, and
suggests that the product ions do not result from
random cleavage of the molecule, but rather that prod-
ucts result from well-defined fragmentation pathways.
These data suggest that EDD should be useful for
characterizing the sites of modification in other GAG
tetrasaccharides.

Conclusions

Irradiation of GAG tetrasaccharides with 19 eV elec-
trons results in predominantly even-electron product
ions. EDD uses moderate energy electrons compared
with the low-energy electrons used in ECD. These
moderate energy electrons promote ion dissociation by
direct fragmentation as well as via electron detachment.
The abundance of glycosidic and cross-ring cleavage
products by EDD will aid in the identification of this
important class of compounds.
H-atom transfer has been observed to occur between

hydroxyl groups and carboxyl radicals. Since such atom
transfers require proximity between the donor and accep-
tor sites, the particular hydroxyl group that participates in
this rearrangement may be influenced by the stereochem-
istry of the C5 carbon. Future experiments on GAG
epimerswill determinewhether the stereochemistry of the
hexuronic acid C5 carbon influences EDD fragmentation
in a manner that allows one to distinguish IdoA from
GlcA. While we have confined these studies to tetrasac-
charides, we believe that this approach should be exten-
sible to longer GAG oligosaccharides.
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