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In this paper, we model the epidemic course of a pathogen infection within a semi-
closed group which generates clinicayisals which do not ecessarily permit its
ready and certain identification. Typical examples of such a pathogen are influenza-
type viruses. We allow for time-varyingfectivity levels among individuals, and
modd the probabity of infection per contact as a function of the clinical signals.

In order to accomplish this, we introducenedified chain-binomial Reed—Frost
model. We obtain an expression for the basic reproduction ratio and determine
conditions which guarantee that the epidemic does not survive in the long-term.
These conditions being functions of the signal’s distribution, they can be used to
design and evaluate interventions, such as treatment protocols.

© 2003 Society for Mathematical Biology. Published by Elsevier Ltd. All rights
reserved.

1. INTRODUCTION

The Reed-Frost model was proposed by Reed and Frost in a series of lectures
held at Johns Hopkins UniversitAbbey, 1952. It is a particular case of a chain-
binomial model, in which it is assumed that each infected individual infects sus-
ceptible individuals independently, and that individuals are under the same contact
rate with each other. If we represent Ipythe probability of a contact between
a wsceptible and an infected individual resulting in a new case, we have that, at
time t, the probability that a susceptible individual does become infecigds
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equal to the probability of at least one infectious contact, i.e.,
ca=1-1A-p", t>0, (1

wherely is equal to the number of infected individuals at tim&imet is assumed

to be a discrete variable, and an individual's classification, as either susceptible,
infected or resistant, can only change when time changes ffriont + 1. Other
assumptions are that the probability of an infectious contact is fixed along the epi-
demic course and is the same, for all individuals.

The Reed—Frost modellf can be used to describe the spread of any infectious
disease affecting closed, uniformly-mixed groups. The group has a constant and
small sizeN, is homogeneous, both from the susceptibility and infectivity view-
points [seeBailey (1973], with individual members spending a significant and
constant part of the day in close contact. From the infection viewpoint, the infec-
tious period is assumed to be short compared to the incubation period which, in its
turn, is taken as constant.

The Reed—-Frost model assumes that individuals are classified according to their
disease status: susceptible and infected and, in some cases, also resistant or imm-
une. No error involved in the classification process, such as a truly infected indi-
vidual being classified as susceptible, is considered in the model. For a great num-
ber of infectious diseases, however, such a diagnostic test is neither readily nor
easily available: examples are influenza and several other viral and bacterial infec-
tions. The corresponding diagnostic process involves uncertainty, and is based
upon a set of clinical characteristics, often subjective, which wesgbls. It is
then important to consider, in the epidemic model, the uncertainty involved in the
classification process.

The homogeneity assumption is unlikely to hold in real epidemics, especially in
large groups [see, for exampRecker(1979]. In certain cases, the assumption of
time-invariant susceptibility/infectivity levels does not hold either. Each individual
may have avarying susceptibility level to infections, depending on physical and
psychological factors, even within a short-lasting epidemic. Infectivity levels may
also vary according to similar factors. Indeed, the capacity of an infected individual
to produce an infectious contact may depend upon the set of signals developed.
Same signals, such as sneezing and coughing in influenza-type infections, may
increase the probability that a contact be infectious, while others, such as fever,
may decrease it, by making the host less prone to contacts.

In this paper, we shall consider studies involving small groups, within which both
homogeneous mixing and homogeneous susceptibility still hold. We consider the
clinical signals involved in the classification process in the study of the epidemic
course. These clinical signals may include symptoms, results from laboratorial and
physical exams. We assume that, after being infected, no resistance is gained and
the individual becomes susceptible again.

In Section 2we nmodel an individual’s infectivity as a function of the signals,
therefore allowing for time-dependent, heterogeneous infectivity. We consider this
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model in the context of both prospective and retrospective studies. For each study;,
we obtain expressions for the epidemic basic reproduction ratieation 3 and

for its probability function inSection 4 In Section 5conditions are given under
which the proposed model is reduced to the classic Reed—Frost model. Finally, in
Sections 6and 7 we illustrate how the results can be applied to study long-term
disease establishment and impact of intervention, respectively.

2. A REED-FROST MODEL WITH UNCERTAINTIES

2.1. Overview. Clinical signals are recorded and are taken into account in the
epidemic course via a signal summary, both as part of the classification process
and to define the probability of an infectious contact. It is assumed that, the higher
the signal summary, the higher the probability that a contact be infectious. The
probability that an individual has at least one infectious contact, which is the core
of the Reed-Frost model, is then computed taking into account the heterogeneous
infectivity in the group.

The model can include both signals linked to an increased infectiousness and
signals linked to a decreased infectiousness. Both types of signals enter the signal
summary, affecting it in opposite directions. Distinct signals can have different
weights in the summary, reflecting the impact they are believed to have on both the
classification process and on the infectious contact probability.

A probability distribution is assigned to the signal summary, conditioning on
the previous probability of at least one infectious contact. This distribution is a
mixture of the one given the individual is infected, with the one given the patient
is susceptible. The classification is seen as a probabilistic step conditioned on the
signal summary. The probability of an infectious contact is taken as a deterministic,
polynomial function of the signal summary.

2.2. Definitions. In this formulation, we take a susceptible individual as refer-
ence, and construct a generalized Reed—Frost model. Hereafter, upper case letters
such as(Sj, Dit, Git, Pjt, Cit) represent random variables, while lower case
letters (sj.t, dit, Git. Pij.t, Git) represent values the corresponding variables may
assume. Greek letteca, 8, n) represent possibly unobservable quantities.

We first assume that, at time each individual has a true health status repre-
sented byn; ¢, which takes glue 1 if the individual is infected &t and O f the
individual is susceptible. Thus, the number of individuals infectedsagiven by

N
It ZZﬂi,t- (2)
i=1

Each individual has one or more clinical signals, which can be summarized by one
variable D; ¢, taking \alues between 0 and 1. At tintethe probability P ; that
a ontact between a susceptible individuaand an infected individudl results
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in a new case is a function of the signals of the infected individual oDy,
as a consequence of the susceptibility homogeneity assumption. We assume in
particular that this function can be written as a polynomial of deified hat is,

M
Pie=Ri=) ¢;D, 3

j=1

where 0< ¢; < 1and)_; ¢; = 1, thatis,P  is a convex combination o/,
guaranteeing tha® ; € [0, 1] for all i, t. Then the probability that a susceptible
individual has, at timd, a least one infectious contact defines our Reed—Frost
model as

N
CG=1-]Ja-Ro". 4

=1

We can interpretC; here as the probability that an individual be infected at time
t + 1, as in the classic Reed—Frost model, and we v@jte- P{n; .1 = 1}.

In some instances; ; is unknown, so individuals have to be diagnosed as either
infected or susceptible. This consists of a classification procedure which takes
into account the clinical signals or, for simplicity, the signals sumniry and is
defined outside the model, probably by specialists. &gt = 1 indicate that the
individual i is diagnosed as infected fatandG; ; = 0 indicate that the individual
is diagnosed as susceptible. The number of individuals diagnosed as infected at
timet is an estimator of the number of infected individuals,and isgiven by

N
I = Z Giy. (®)

The probability that a contact between a susceptible individuahd an infected
individual | results in a new case is defined as befored)wad, in this case 4) is
estimated as

N
C=1-[]a-Rp% (6)

=1

Thus, C; here is the estimated probability that an individual be infected at time
t+ 1.

2.3. Twokindsof study. This gopproach can be used in two related contexts. One
is that of a retrospective study, in which patients’ health status are observable and
modelled as random variables. The objective of such a study is typically to estimate
the parameters of the signals’ distributions, and it involves relati®yg4).

Once tlese parameter estimates are available, the approach can be used in a
prospective study, where the tr{g ;} are not known, due to either time or cost
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constraints. Such a study could include as an objective evaluating the fuRgtjon
and it involves expression8)( (5) and ).

This consists of recording patients’ clinical signals over a certain period of time,
and then estimating their true health stata using the model and the classification
process.

2.4. Probabilistic structurefor retrospective study. Each infectious disease pro-
duces clinical signals with varying degrees of severity, which depend upon both
pathogenic and individual variability. Susceptible individuals may also present
some of these signals, for reasons other than infection by the pathogen considered,
but it is expected that they do so with a lower severity than if they were infected.

The true health status;; is a binary variable. Fot > 1 andgiven all the
epidemic information up to — 1, P{n;; = 1} is equal to the probability of having
at least one infectious contacttatl, C;_1, which isthe same for all individuals due
to the homogeneous mixing assumption. Fer 1, we defineP{n;; = 1} = 6, as
thea priori probability that any individual is infected at the epidemic onset, which
must be evaluated via populational measurements (e.g., the estimated prevalence
of the pathogen).

For the pathogen under study, representXjythe clinical summary for any
infected individual, and by s the clinical summary for any susceptible individual.
Given an ndividual's health statug, X;, Xs are random variables intrinsically
linked to the pathogen, their distributions remaining unaffected by the epidemic
progress. Here we shall assume that they take a value within the inférdal
with a distribution within the beta family, as follows:

X, ~ Betaay, Bi), Xs ~ Betaas, Bs).

We definew; = E(X) andus = E(Xs). Note hat all manentsE(X¥), E(X)
of X, Xs are finite, for allk = 1, 2, ... (see appendix for their expressions). We
also defineA = X, — Xsands = E(A) = u; — us.

The olserved clinical summary for individualat timet, D; ¢, is equal to X, if
the individual is infected and it is equal ¥s if the individual is susceptible. So,
we can write

Dit = Xinit + Xs(1 —nit) = Xs+ Aniy, (7)

foralli =1,...,N andallt > 1. Fort > 1, the conditional mean dd; ;, given
C;_1, is given by

E(Dit | Ci—1) = us+06Ci_1. (8)
Similarly fort = 1,

E(Dit | 61) = ns+ 864. 9)
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In other words, the expected value of the signal summary at tileea convex
combination of the mean signals for infected and susceptible individuals, based
upon the probability of being truly infected.

GivenC;_1, thenumber of infected|;, defined by 2), is a sum of conditionally
independent binomial variables, all with the same probability of sucéass:for
t > 1, andd, fort = 1. Thus,l; is in this case a binomial random variable with
probability C;_; and sample sizé&\.

Since the probability of an infectious conta@t; is a deterministic function of
D, it is a constat, whenD, ; is given. Unconditionally, a probability distribu-
tion is effectively assigned to each probability of an infectious cont&gt, for
each individual at each generation| = 1,..., N, t > 0. The probability of at
least one infectious contadE;, does not have a well-known probabilistic distribu-
tion, but its conditional expected value, given the clinical summdiigs}, can be
computed.

In the above, we have preferred to perform calculations in terms;of instead
of us, ;. This separates the contribution of the signal’s distribution, which can be
treated as unaffected by the disease spread, from the probability that each indivi-
dual is infected. Therefore, it incorporates treatment effects naturally as a reduction
of the difference between mean signals: u, — us.

2.5. Probabilistic structure for prospective study. In a prospective study con-
text, most of the structure introduced 8ection 2.4applies, but the diagnostic
uncertainty must be included.

When the{n; ;} are unknown, patients must be classified as either infected or sus-
ceptible. The classification is representeddy and defined as a simple process:
given the clinical summarieD; ;}, each individual is independently classified as
infected with probability:

P{Git =1| Di{} = Djy. (10)

We can interpret the outlined probabilistic structure Byr;, G; ; as defining a con-
ditional binomial distribution foiG; ¢, given the probability of succeds; ; which
itself has a conditional beta distribution, given the health statusAs a conse-
qguence, we have th&(G;; | Dit) = Di.

The conditional probability that an individual is classified as infected in gene-
ration t, given the probability of at least one infectious contact in the previous
generatiorC;_1, is given by:

P{Git =1|Ci_1} = E[P{Git =11 Di} | Ci_1]
E[Dit | Ci-1l, t>1, (11)

where éher (8) or (9) can be used to re-express this as a function of the signals.



A Reed—Frost Model with Uncertainties 695

The number of patients diagnosed as infectigdefined by §), is again a sum
of conditionally independent binomial variables, give ;}, but since each one
of these has a different probability of success, the distributidr isfnot the usual
binomial.

3. THE BASIC REPRODUCTION RATIO

3.1. Definition. Weshall now study the basic reproduction ratfy, Itis defined

as the number of secondary infections resulting from a single case in an entirely
susceptible group, during its infectious perigkh@lerson and May1991). In our
context,Ry = |5, giventhatl; = 1. Note that this definition oR is coherent with

the Diekmannet al. (1990 definition of the next generation operator.

3.2. Expected valuein retrospective study. In this case, we have
N
E(R)=E(l2|l1=1 =) E@mj2|l1=1.
i=1

By conditioning onC,, we getE(nj2 | 11 = 1) = E[E(nj2 | Cp) | |1 = 1] =
E(Cy| I, =1),forall j =1,..., N. This means that

E(R) =NE(C, |11 =1). (12)

The same result is obtained by considering that, gi@nl, has binomial distri-
bution with meanNC;. Using the definition of 1, we can re-writeE(C, | I, = 1)
as

N

Y E(Cilna=1li=UP{ni=1]l1 =1} (13)

j=1
Alli ndividuals are equally likely to be the first one infected @1 =1 | I =1}
= 1/N. Moreover, given thay;; = 1 and all othern,, are equal to zero, we have
from (4) thatC, = P(Dj1) = P(X)), sincethis individual is infected. Therefore,
we can re-write 13) as

1 N
N 2 E(POX)} = E[P(X))},
j=1
and thus
M
E(Ro) = NE{P(X)} = N ) E(X}). (14)
k=1

In the simple case whefe(D) = D, we get

E(Ro) = Ny = N(us +9). (15)
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3.3. Expected Rj in prospective study. In a prospective study, a diagnostic is
estimated with a certain margin of error, and similar arguments to the ones used
in Section 3.2can be used to derive an expression for the expected val&g. of
Indeed, we now have

N
E(R)=E(2[l1=1) =) EGjz|l1=10),

j=1

where it is obvious that we must be sure about the first recorded case being indeed
an infection. By conditioning ol j,, we getE(Gj2 | 11 =1) = E(Dj2 | I3 = 1),

forall j = 1,..., N. Now oonditioning onC;, we getE(Dj> | 11 = 1) =
us+SE(Cy | I, = 1), forall j. This means that

E(Ry) = N{us+SE(Cy | I1 = D} (16)

In Section 3.2we saw thatE(C, | |, = 1) = E{P(X))}, and the same still
holds here, as conditioning on having one infected individual-atl thereis no
diagnostic uncertainty at= 1. Thus, we obtain

E(Ro) = N{us+ SE{P(X))}}. (17)

In particular, wherP(D) = D, we get

E(Ro) = N{us+d(us+ )} (18)

4. PROBABILITY FUNCTION FOR Ry

4.1. Motivation. Our mainobjective with the evaluation d®y and related func-
tions is to define criteria yielding clues as to the long-term disease establishment.
While the expected value gi¢ some clues, it is also important to evaluate how
likely the value ofRy is to spread around it. The traditional statistical approach
is to construct a confidence interval fBp, and cleck if the value contains those
leading to long-term disease establishment, in this case any value greater than, or
equal to, 1. In our problem, however, this is of limited us®; being a random
variable assuming only nonnegative integer valuges, @, . . ., all of these values
have positive probability mass and, thus, any confidence interval is likely to include
the valueR, = 1 a least. A more useful measurement seems to be the probability
that Ry > 1. While taking uncertainty into account, this is perhaps more useful: if,
under certain conditions, it is known that the probability tRat> 1 is ebout 20%,

then only 1 in 5 independent initial cases are likely to propagate the disease.

4.2. Retrospective study. In order to evaluate the uncertainty around the
Ro estimate, we must evaluate its probability distribution. We start with the
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retrospective study. We have:
PlRe=z}=P{lo=z| L =1}
=EP{l2=2[|C4} |11 =1
=EMC{1-C)N* |11 =1,

where we hag used thedct that, giverC,, I, has a binomial distribution, with,
representing the binomial coefficient equaNt/[z!(N — 2)!]. If we then condition
on the true health statyg;,}, we can write

N
1
E(CiA-CoMN I lh=1 =) E(CIA-C)" I mi=1 1=
j=1

= E{P(X)*L - PX )N 7).
In particular forz = 0,
P{Ry =0} = E{(1 - P(X/)"}. (19)

4.3. Prospective study. Using conditional probability properties, we can write

N

) = 1} : (20)

N
p{Ro_z}_P{Fz—uu-u-P{ZGJz—Z

=1

{Diz}]

where thefact that, given{D;,}, the random variable$G;,} are conditionally
independent ofi, = 1 is wsed. Since eacksi, is a binary random variable,
ZJN:l Gj2 = zoccurs whenever exactof the {G;,} are equal to 1. Defing, as a
set of exactlyz indices, ranging from 1 tdl. That is,J, is a subset of exactlyele-
ments of he discrete sdfl, 2, ..., N}. Note hat there exish, = N!/[z!(N — 2)!]
such subsets. Let these be represented,hy J, 2, ..., J.n,. Given{D;,}, the
conditional probability that only the variables within the subgeb,i € J;,} are
equal to 1 is equal to

[]‘[ P{Gj=1] Djz}} {1‘[ P{Gj2=0] Djz}i|

j€dzi j%\]z,i

— []‘[ Djz} {H{lojz}] (21)
i€z i ¢z

_E|:PiXN:Gj2_z

j=1
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When takng the conditional expectation gively, we use thedct that the{ D;,}
are conditionally independent and we get tte) (s

|:l_[ E(Djz | C]_):| |:l_[ E(l_ Dj2 | Cl):| s

j€dzi i #3zi

which means thatZ0) becomes
P{Ry = 2} = E[N,(1s+ 8C1)*(1 — pus — 8C)N7 | 11 = 1. (22)

Note that we have hereby shown that, given, Ry has conditional binomial dis-
tribution with meanN (us + §C;). Forz = 0 the rght-hand side of42) becomes
E[(1 — us — 8C)N | I3 = 1] and, given that only one individual is infected,
C, = P(X)) as before. Thus, we can write

P{Ry=0} = E{[1— pnus—sP(XDIN [ 11 =1} (23)

N
Sy N .
_gk!m—k)z( D*Ellus+3PXDI* [ 11 =1).  (24)
Now we use

§[1— P(X
us+SP(X)) =(Ms+3){1—[7(|)]},

ns+ 6
to re-expressad) as

N ' 1

k
N! k! kH gl k-l Loy
g; N — Rtk —ni D 8 (ks +OTEIL= PO T 1 =1).

Thus, we get

k|

ZZ N!(_l)k+|+m5|('us+5)kfl

(N ik = Dimid —myi PO (25)

N
P(Ro=0}=)_
k=0

1=0 m=0

4.4, Evaluatinguncertainty. The probability P{R, > 1} can be easily evaluated
from the formulae obtained i®ections 4.2and 4.3, sinceP{Ry > 1} = 1 —
P{Ry = 0}. Here we shall assume th&(D) = D for simplicity, and evaluate
this probability in both retrospective and prospective studies, along EtRy),
for a range of values gf,, 8, assumingN = 5. There is no need to evaluate the
functions for other values dfl as, from a theoretical viewpoinl\ is just a scale
factor. In practice, for larger values df the function defining the probability of
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(a) (b)

Expected R, Prob. R =1
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Figure 1. Functions for retrospective study (solid line) and prospective study (dashed line)
for several values of. (a) (left): expectedRy. (b) (right): probability thatRy > 1.

an infective contact given the sign&,(D), is likely to be other than the identity,
reflecting lower contact rates between individuals.

For the retrospective study, we compéR,) and P{R;, = 0} using (L4) and
(19), respectively, whilst for the prospective study we usg &nd 3). In Fig. 1(a)
we can seeE(Ry) as a function of in both kinds of study, assuming the variances
for both Xs, X, are fixed as equal to 0.0f,s = 0.1 andyw, varies from 0.13 to
0.83 by 0.1. First, we note that the expected value in the retrospective study is an
upper bound for the one in the prospective study. This suggests that the uncertainty
involved in the diagnostic process implies an underestimatida(é%).

We can also note fronfrig. 1(a) that the two quantities are similar for values of
8 = uy — usin the extremes of the range considered, differing more for interme-
diate values. This was expected: first, when— 1, us+38u, tends tqus+68 =
and, thusE (Rp) in the prospective studyi{) tends toNu,, which isE(Ry) in the
retrospective study1@). On the other hand, whea, — s, we also havé — 0
andus+ du; — ws, and hus in both studies we hae(Ry) — Nus.

Note, however, thatispte of the two expectancies converging to the same value
asd decreases, there isdsscordance region where one of them is above 1, while
the other is below.

In Fig. 1(b) we have the computed probabilities R§ being greater than zero,
as a function ofs, for thesame parameter values considered. Differently from the
expected values, the probabilities for one study type are not consistently greater
than those for the other study type. Perhaps the most important aspect highlighted
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by this figure is the fact tha®{R, > 1} may solveapparent discordances between
the expected values from different study types. Indeed, for the points within the
discordance region iRig. 1(a), the computed probabilities lie between 0.5 and 0.7
for both study types indicating that, while long-term disease establishment is not
entirely without doubt, the chance is far from negligible in both study types.

5. COMPARING WITH THE CLASSIC REED—FROST M ODEL

The dassic Reed—Frost model can be seen as a particular case of both Reed—Frost
models introduced irBection 2 Let usconsider the more general model for a
prospective study; the result follows for the retrospective study model.

Suppose thajts = 0 andu, = § = 1, so that the variances of,, Xs are
both equal to zero. This implies th&; = X, = u, for alli,t. Then, from
(10) P{Git = 1| D;} = 1 for an irfected individual, and 0 otherwise, with no
uncertainty, implying thad_, G, ; = |; in this case. Suppose also thdt= 1 in
(3), meaning thaB® ; = ¢; = P for all infected individuals, whils® ; = 0 for all
susceptible individuals, for all Then expressiordj becomes:

C=1-(1-P)X%=1-1-P)",

which is equation ().

6. LONG-TERM DISEASE ESTABLISHMENT

6.1. Theproposed model. Conditions under which the disease establishes itself
in the group can be obtained by determining conditions under wBidR,) is
greater than, or equal to, 1. Assume for simplidRyD) = D. In a rdrospec-
tive study, we use expressioh4) to say that the disease establishes itself in the
population whenever

1
Ms+6 > N

In a prospective study, we usigj to say that the disease establishes itself in the
population whenever

1
%@+D+ﬁzﬁ. (26)

In this context, it is also interesting to considefR, > 1} as a stochastic way of
evaluating how likely the disease is of establishing itself in the long term. For that,
we simplycompare the value obtained fB{ Ry > 1} to a pre-specified threshold;
when the probability is below the threshold, the disease may be said to be unlikely
to establish itself. This threshold may vary according to disease and context.
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6.2. The classic Reed—Frost model. We fall into the classic Reed—Frost model
whenus = 0andu; = § = 1 and, in this case, from2g) the epieemic establishes
itself whenever 1 1
ECiI11=1 > N or P> N
which imgies that, for largeN, any epidemic with nonnegligible probability of an
infectious contactP, establishes itself in the population. It is important to point
out, however, that this remark has a purely theoretical interest: in practice, when
N is large the homogeneous mixing assumption rarely holds.

7. APPLICATION TO INTERVENTION DESIGN

An important practical application of the models presented here is that to studies
aiming at intervention design. An intervention may involve simply a change in risk
behaviour, thus changing (D), or it may invdve administering treatment, which
might affect bothP(D) and infected individuals’ signals summary distribution.
The dgnals summary distribution for susceptible individuals, including the mean
s, isassumed to not be affected, as it represents the populational distribution
of the signals summary under study, due to causes other than the disease. For
simplicity, we assume th&® (D) = ¢D.

First, let us consider the impact of a risk-behaviour reducing intervention, which
can be represented by a change frBifD) to P*(D) = ¢*D, whereg* < ¢. Ina
retrospective study, the post-interventi® expected value is given bE(Rj) =
NE[P*(X|)] = N¢*u,, from (14). A desirable intervention yieldE(Rj) < 1,
which isguaranteed to hold #* < (Nu;)™L.

In a similar way, such an intervention can be designed to guarantee that

1-P{R; =0} < po, (27)

wherepyg is a pre-specified threshold. Indeed, usihg) (ve getthat 27) is saisfied
by designing the intervention so that

Zk,(N D @NEXD > 1-po

holds.

Similar conditions can be obtained to evaluatgriori the intervention impact in
a prosgctive study. Indeed, usind.7) we can conclude that the intervention will
generate an expected basic reproduction ratio smaller than 1 whenever

N-1

[1- ¢*E(XD)] < D¥(@**E(XZ >3(u —1)
" K'(N "N
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No analytical expressions are available for the roots of this polynomial*dior
generalN and, thus, in practice this condition can be used mainly to check whether
or not a specific value af* satisfies it.

The post-intervention probability of long-term disease establishment can be eval-
uated by replacind? (X,) by P*(X,) = ¢*X, in (25), in the same way as before.

In the same vein, the impact of treatment affecting only the signals distribu-
tion can be evaluated prior to introduction via replacsnigy §* in expressions for
E(Ry) and P{Ry, > 0}. For exanple, in a retrospective study such a treatment
generates on average less than 1 new infected cases for each first case whenever

5* !
< N_¢ — Us.
A treatment can also affect boshand P(D). Expressing the treatment impact in
the same way as before, the condition guaranteeing that on average less than 1 new
infected cases are generated for each first case is

* * 1
" (s +8%) < N
Thetreatment impact on the probability of long-term disease establishment, as well
as in the prospective study case, can be evaluated in the same way.
The impact of a treatment affecting both the signals summary distribution and
the probability of an infectious contact can be similarly evaluated, by combining
the ideas above.

8. EXTENSIONS

Several vaants of the proposed model can be obtained. Consider first the proba-
bility of an infectious contact, which is assumed to be a function of the signals.
This function can have any polynomial form, and as such can potentially include
any desired function: by assigning beta distributions to the individual signals, not
only a flexible distribution family is used, but also one for which all moments are
available, thus there is no limitation on the polynomial degree. The function of
the signals can also be extended to allow some of the signals to yield an increase,
and others a decrease, on the infection probability. Furthermore, it can be gener-
alized to take the probability of an infectious contact as a probabilistic, rather than
deterministic, function of the signals, or it can even consider frailty, or varying
susceptibility levels.

Here we considered signals mainly as being disease symptoms, but in general
these may include demographic variables, such as gender and age, as well as
behavioural patterns. These may help in estimating model parameters, such as
those involved in the signals distributions and in the classification process, as well
as in yielding a better understanding between signals and the probability of an
infectious contact.
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Other variants of the proposed model can be obtained by considering more sophi-
sticated classification procedures, which effectively suggests separating the clinical
signals effect on different aspects of the epidemic: the one on the classification
process may well be distinct from the one on the infectious contact probability.

In the above formulation it was assumed that the infectious period is of constant
duration across individuals. If infectious period duration varies across individuals,
but its duration can also be seen as a function of clinical signals, then different
lags may be used for different individuals. The probability of an infectious con-
tact is thus the product between the probability per time unit and the infectious
period duration. The same conditional probability properties can be used as above
to derive useful relations between the basic reproduction ratio and the signals’ dis-
tribution parameters.

Same diseases are known to have an infectious period starting before clinical
signals onset. This information, if known, can be used in the retrospective study
model to yield better estimates for the signals distributions parameters, as well as
for the probabilities of infectious contacts. In a prospective study context, however,
when decisions must be made with regards to treatment, this information is less
useful, as no signals exist to mark the infectious period onset.

9. DIsCcuUssION

The main idea éhind our model is to use information available on signals to
assess both the probability of an infectious contact and the diagnostic procedure.
The basic reproduction ratioRy, is seen as the number of secondary infections
caused over one generation, after the introduction of a single infected individual in
an entirely susceptible population. This definition is coherent with another, intro-
duced byDiekmannet al. (1990, based upon the next generation operator. We
believe it is interpretable and suitable for our purposes. Within the context of the
proposed model, it is a random variable and, as such, moments and a probability
distribution function are available.

There have ben several attempts to generalize the Reed—Frost model so as to
consider a nonhomogeneous group, either from the susceptibility or from the
infectivity viewpoint Maia, 1952 Scalia-Tomba1986 Lefevre and Picardl99Q
Picard and Ledvre 1991). In all these, the homogeneity assumption is relaxed by
dividing the main group into subgroups, and considering that there is homogeneous
mixing within each subgroup. Subgroups are closed and individuals remain within
the same subgroup for the entire duration of the epidemics, which means that an
individual's susceptibility and infectivity levels are taken as constant throughout
the epidemic course.

The Reed-Frost model proposed here handles varying infectivity levels by assu-
ming thatinfectivity is determined by observable and quantifiable clinical sig-
nals, effectively assigning a probability distribution to each individual’s infectious
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contact probability. We do not associate individuals with fixed sub-groups, as this
is of limited practical interest in small groups studies, our focus here. Moreover,
individual infectiousness may vary with time, a possibility not included in other
generalizations. Some of the possible applications involve disease spread within
classrooms, hospital wards and work groups.

Extensions to larger group studies may involve subdivision into subgroups to
ensure that homogeneous mixing within subgroups still holds, while allowing for
infectiousness heterogeneity within subgroups as proposed here.

The inclusion of heterogeneity in individual susceptibility to infections gives a
number of qualitative differences compared to ordinary methods. At present practi-
cal applications are not yet available, but the heterogeneity in frailty explains some
unexpected results. For instance,Gautinhoet al. (1999 it is shownthat large
heterogeneity in individual susceptibility to infection results in a decreasing pop-
ulational force of infection with age. This is due to the fact that the population is
subject to a heavy selection of highly susceptible individuals, the remaining being
less and less susceptible with age.

Disease studies to which the proposed model can be applied include all fast-
propagating infectious diseases, in the sense that the disease propagates at a faster
rate than its diagnostic and control can be performed. Examples of such diseases
are the influenza-types, such as SARS, and meningitis. Applications also include
several kinds of confinement, such as the forced confinement of hospital wards,
and the weather-imposed confinement of classrooms at winter time. The minimum
required degree of confinement is such that, apart from the initial cases, all infec-
tions are acquired within the group. Thus, applications to diseases propagating
within a classroom, for example, could only account for new cases within the same
classroom.

Finally, we should make clear that our approach does not consist simply of gen-
eralizing the classical Reed—Frost model formulation. The inclusion of signals
not only yields a more flexible model with heterogeneous susceptibilities, but also
leads to conditions for effective intervention designs. Moreover, it incorporates
naturally existing differences among individuals in order to make it applicable
to real epidemic scenarios. For, on the one hand, there are several infections,
like influenza, which, besides being transmitted among small groups of individ-
uals, produce highly heterogeneous clinical pictures. On the other hand, the huge
amount of genetic information provided by the emerging field of genomics (and
proteomics) generates clinical information which may sharply distinguish individ-
uals. These tailor-made diagnostic techniques make obvious the necessity of new
tools to deal with heterogeneities.
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APPENDIX

Beta distribution. For any random variabl¥ with beta distribution with parame-
ters(a, B), its probability density function is

_Te+p) s

f —
X = r@re

(1—x)F1, 0<x<1la>0p>0,
wherel" (x) is the gamma function, defined as

rx) = / u*te VU du, X > 0.
0

NotethatI'(x) = xI'(x — 1), for all x > 1. The expected value ofk, for any
k > 0, integer, is

k—1
Exy = L @Fh Ttk Uno@*™ - p g
F(a+B+Kk) () ola + B+ m)
In particular,
(07
E(X) = m,

By =2t D

(a+pB)a+B+1)
var(X) = op

(@+pB2(a+B+1
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