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Chlamydia is an important pathogen which possesses a unique developmental
cycle. We used real-time PCR technology to measure gene transcript levels in
Chlamydia trachomatis strain L2. By measuring 16S rRNA transcript levels, and
developing a mathematical model of the chlamydial developmental cycle fitting the
data, we predict an average generationtime of approximately2.6 h. Additionally,
potentially this modelling also provides the foundation for the application of
emerging micro-array technology in which identification of the gene signals that
trigger a chlamydial body to start replicating or transform to its infectious form
can be made possible.

c© 2003 Society for Mathematical Biology. Published by Elsevier Ltd. All rights
reserved.

1. INTRODUCTION

Infection with Chlamydia is common around the world where human chlamy-
dial infections are predominantly caused byChlamydia trachomatis andChlamy-
dia pneumonia. C. trachomatis infection leads to trachoma, the highest cause
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Figure 1. Schematic representation of the developmental cycle ofChlamydia. Thedifferent
stages of chlamydial development are illustrated commencing when the EB attaches to the
host cell (I) and is endocytosed within the first 2 h PI and remains withinthe inclusion (II).
From 2–8 h PI the EB commences transformation via an IB (III) to become a RB (IV).
The RBs multiply within the inclusion (V) before some RBs convert to EBs and some RBs
continue to divide after 12 h PI (IV). RBs that have committed to become EBs are classified
asIBs. Late development (VII) is identified when RB multiplication has slowed down and
RB to EB conversion is at the highest rate (24–48 h PI).

of preventable blindness, and is also the most common human sexually trans-
mitted disease.C. pneumoniae causes a broad spectrum of respiratory disease,
including pneumonia and is associated as an etiological agent for atherosclerosis.
Although chlamydial infections can be effectively treated with antibiotics, many
infections are asymptomatic resulting in worsening disease when left undiagnosed
and untreated.

Chlamydiae are obligate intracellular parasites with a unique developmental
cycle characterised by the inter-conversion between morphologically different
forms (seeFig. 1). Development commences when the infectious and metaboli-
cally inert chlamydial cell, termed the elementary body (EB), attaches and enters
a susceptible host cell where it remains in the host-derived vacuole known as the
inclusion. The EB reorganises its outer membrane and DNA structure during the
first 6–8 h post-infection (PI) prior to developing into a replicative reticulate body
(RB). The metamorphosis of EB to RB includes passage via an intermediate body
(IB), and although this form of chlamydiae is not part of the classic developmental
cycle it is relevant to our investigations. The RBs subsequently divide by binary
fission until approximately 12–18 h PI when chlamydial development becomes
asynchronous with some RBs converting to EBs and others still replicating. The
re-organisation of RB to EB involves an IB that cannot be classified as either
EB or RB. As development continues into the late phase of the cycle more RBs



Intracellular Chlamydial Development 525

are committed to becoming EBs and the proportion of EBs in the inclusion
increases. The end of the developmental cycle is characterised by the release of
infectious EBs from the host cell, the whole process taking approximately 40–72 h
for C. trachomatis.

Current estimates for RB doubling times range from 2 h (McClarty, 1994) to
3 h (Mathewset al., 1999). Additionally, the rate of RB commitment to EBs is
not known apart from the relatively simple modelling by Mathewset al. based on
two general term sequences although this lacks a firm biological basis. Because
chlamydial development is asynchronous it is difficult to determine the number
of chlamydial bodies and progression of infection. Here, mathematical modelling
can be utilised to track and predict the population of each type of chlamydial body
throughout the developmental cycle. We use recently developed quantitative real-
time polymerase chain reaction (PCR) technology to measure gene transcript levels
(RNA) of the chlamydial 16S rRNA gene. PCR increases the number of compli-
mentary DNA (cDNA) copies generated from the RNA. We obtain more real-time
PCR data than has been obtained previously and we develop a mathematical model
to fit the data in order to obtain a better approximation for the RB doubling time,
and the rate of RB to EB commitment. We predict, based on our data, that for
C. trachomatis L2 the doubling time is between 2.56 and 2.63 h (95% confidence)
with a best fitting doubling time of 2.59 h.

2. PCR EXPERIMENT MATERIALS AND METHODS

Despite the importance of chlamydial disease, the developmental expression of
relatively few genes has been determined. The major difficulties in quantitative
analysis of chlamydial gene expression are the inability to cultureChlamydia in a
host-free environment, the asynchronous nature of chlamydial development, mea-
suring the low level transcripts within the host cell background and difficulty in
standardising for the number of chlamydiae within an inclusion. Although many
studies have been significant in reporting quantitative gene expression, most have
not been standardised for the number of chlamydial particles to provide a mea-
surement of gene expression. Consequently, the presence of increased mRNA or
protein levels may be associated with increased chlamydiae per host cell. Never-
theless, the relative developmental expression profiles of several genes have been
determined witheuo being described as an early gene (Zhanget al., 1998), omcB,
hctA and hctB as late genes (Koehleret al., 1990; Hackstadtet al., 1991; Perara
et al., 1992) and many genes expressed constitutively, including the 16S rRNA
gene (Engel and Ganem, 1987) and the groESL operon (Lundemoseet al., 1990).
More recent investigations have increased the repertoire of known developmental-
stage-specific expression using quantitative RT-PCR (Shawet al., 2000) and micro-
arrays (Nicholsonet al., 2003). The first global stage-specific gene expression anal-
ysis of C. trachomatis using microarray analysis divided the chlamydial genome
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into seven differential expression profiles (Nicholsonet al., 2003). The presence of
constitutively expressed genes allows them to be used to standardise for the number
of chlamydial particles during normal development.

The emergence of real-time PCR technology has allowed the development of an
assay to accurately determine the level of relative gene transcripts (RNA) during
chlamydial development (Mathewset al., 1999). Since the number of chlamydial
particles increases per host cell during development and the 16S rRNA gene is
constitutive, the 16S rRNA was chosen as a reference to standardise for the number
of chlamydial particles. The study involved generating cDNA of the 16S rRNA by
random priming and confirmed that random priming of total RNA (isolated from
C. trachomatis infected HEp-2 cells) generated cDNA representative of the RNA
levels. In the same study, Mathewset al. determined the relative mRNA level of
the late-stage-specificomcB gene and the three RNA polymeraseσ factor genes.
The details of the experimental setup, method of data collection, and data used in
the model are given in the Appendix.

3. MATHEMATICAL MODEL

3.1. Observed data. cDNA is a DNA copy of RNA and its amount has been
shown to be a good approximation to the amount of RNA in the culture. The ratio
of RNA to DNA differs between EBs and RBs. Every chlamydial particle has one
copy of DNA. RBs have a RNA to DNA ratio of approximately 4 : 1 and EBs have
a ratio of approximately 1 : 1. We assume that on average, IBs have a RNA to DNA
ratio of 5 : 2. TheomcB transcript levels reflect the number of RBs committed to
become EBs because this gene product is only found in the outer membrane of EBs
and thus indicates the number of IBs. The previous data of Mathewset al. shows
the levels ofomcB cDNA and DNA over the developmental cycle. Since the data
does not directly give the number of EBs, IBs and RBs we assume that in terms of
EBs, IBs andRBs, the total DNA at timet is given by

DNA(t) = k1(EB(t)+ IB(t)+ RB(t)), (1)

the total cDNA at timet is given by

cDNA(t) = k2(2EB(t)+ 5IB(t)+ 8RB(t)), (2)

and the totalomcB at timet is given by

omcB(t) = k3IB(t), (3)

wherek1, k2 andk3 are unknown constants.
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3.2. Theoretical simulation. Previous mathematical modelling of the biology of
the chlamydial developmental cycle has involved equations for the different stages
of the cycle (Wilson et al., 2003). However, the triggers within the inclusion that
cause the end of one stage and the commencement of another stage are unknown.
For example, it is not known how RBs that are purely dividing are prompted to
commit to transform back to EBs. We postulate that the transition between different
stages are continuous and are nutrient dependent since chlamydiae require access to
the nutrient-rich cytoplasm of a host cell in order to construct the macromolecules
[protein, DNA, RNA, lipids, lipopolysaccaride (LPS) and murein] that make up
a chlamydial particle. Although RBs are purely dividing initially and the rate of
commitment to IBs is zero, we assume that there is an increasing, yet small rate
of transformation. Thus, we model the dynamics of all chlamydial bodies over the
entire developmental cycle. We assume that nutrients are consumed by chlamydial
particles. We letN(t) be the concentration of nutrients at timet . Theparametert
is a time parameter over one developmental cycle. We letI1(t), R(t), I2(t), E(t)
represent the concentration at timet of chlamydial bodies at the different stages,
namely, IBs transforming from EBs to RBs, RBs, IBs transforming from RBs to
EBs, and EBs respectively. Assuming that nutrient consumption is governed by a
mass-action law, we obtain

d N

dt
= −[c1I1(t)+ c2R(t)+ c3I2(t)+ c4E(t)]N(t), (4)

wherec1, c2, c3 andc4 are rate parameters representing the level of nutrient con-
sumption by each type of chlamydial body. Here, since we are modelling anin vitro
experiment we do not include a source of nutrients. A model of thein vivo devel-
opmental cycle would include a nutrient source. We assume that the chlamydial
concentrations are changing according to the following model system equations:

d I1

dt
= −kT I1(t), (5)

d R

dt
= kT I1(t)+ ln 2

dt
R(t)− k

(
N0 − N(t)

N0 + N(t)

)n

R(t), (6)

d I2

dt
= k

(
N0 − N(t)

N0 + N(t)

)n

R(t)− kT I2(t), (7)

d E

dt
= kT I2(t). (8)

Here,kT is the average rate of transformation of an IB as it progresses from an
EB to a RB,dt is the average doubling time of RBs,k is a rate parameter for RBs
committing to IBs to become EBs, andN0 is the initial nutrient level. We assume
that the average time for an EB to transform to a RB is the same as the average time
for a RB to transform to an EB, represented by the parameterkT in equations (5)
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and (8). The loss term in equation (6) represents the rate of RBs committing to EBs
and is governed by nutrient deprivation (Timms and Mathews, 2002). Initially, the
rate is very small but as the supply of nutrients decreases the rate of commitment
increases to a maximal commitment rate. The parameter,n, is a shape factor. There
is no data available to estimate the nutrient consumption of each chlamydial type
and is an area for future investigation. However, nutrient uptake is most certainly
higher for RBs than EBs because RBs are metabolically active while EBs are not.
Additionally, RBs are seen in electron microscopy to be close to the inclusion
membrane where they can gain access to host cell nutrients but EBs are mostly
seen in the lumen of the inclusion where host cell nutrients are not as accessible
(Rockeyand Matsumoto, 1999). Then, to investigate nutrient depletion we look at
three cases: (i) only RBs deplete host cell nutrients(c1 = c3 = c4 = 0); (ii) RBs
deplete host cell nutrients twice as readily as IBs do (c1 = c3 = 1/2c2, c4 = 0);
(iii) all chlamydial particles contribute equally to the depletion of host cell nutrients
(c1 = c2 = c3 = c4). We suspect that case (ii) is most realistic, although the exact
contribution of nutrient depletion by each chlamydial body is unknown.

Wenondimensionalise the system by introducing the variables

N̂ (t) = N(t)

N0
, T̂ (t) = I1(t)

T0
, R̂(t) = R(t)

T0
,

Î (t) = I2(t)

T0
, Ê(t) = E(t)

T0
, t̂ = c2t,

α1 = kT

c2
, α2 = ln 2

c2dt
, α3 = k

c2
,

whereT0 is the concentration of IBs at timet = 0. We obtain

dT

dt
= −α1T (t), (9)

d R

dt
= α1T (t)+ α2R(t)− α3

(
1 − N(t)

1 + N(t)

)n

R(t), (10)

d I

dt
= α3

(
1 − N(t)

1 + N(t)

)n

R(t)− α1I (t), (11)

d E

dt
= α1I (t), (12)

d N

dt
=




−R(t)N(t), case (i)
−[1/2T (t)+ R(t)+ 1/2I (t)]N(t), case (ii)
−[T (t)+ R(t)+ I (t)+ E(t)]N(t), case (iii)

(13)

where we have dropped thehat notation for convenience. The initial conditions are
N(0) = 1, T (0) = 1, R(0) = 0, I (0) = 0, E(0) = 0.
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4. A SIMPLIFIED MODEL

Preliminary study with the full model led to the conclusion thatn needed to
be large to fit experimental data irrespective of the assumptions used for nutrient
depletion. We know that biologically there is an intracellular trigger causing the
commencement of RB commitment to become EBs, thus it is plausible thatn is
large in equation (10), effectively causing the rate of commitment to be expressed
mathematically as a Heaviside function. Furthermore, the rate of RB commitment,

α3

(
1−N(r)
1+N(r)

)n
, can be expressed as

α3

(
1 − N(r)

1 + N(r)

)n

= α3 exp[n ln(1 − N)− n ln(1 + N)], (14)

but since ln(1 − N) = −N + O(N2) and ln(1 + N) = N + O(N2),

α3

(
1 − N(r)

1 + N(r)

)n

≈ α3 exp(−2nN), (15)

and thus the rate of commitment becomes significant only ifN ≈ 1
n . Consequently,

wereduce our model equations to the study of early dynamics and late dynamics of
the developmental cycle, before and after the switching on of the RB commitment
term. In addition, ifn is large, the choice of parametersc1, c2, c3 andc4, cases (i),
(ii) and (iii), and indeed any other choice also leads to similar predictions because,
prior to the rate of commitment term becoming significant, the only variable with
significant dynamics isR(t). This follows since in the first part of the developmen-
tal cycle RBs are replicating by binary fission and this is the only significant event
occurring.

4.1. Case 1: Early dynamics. The intracellular dynamics prior to the commit-
ment of RBs to become IBs can be expressed by the following approximate system:

dT

dt
= −α1T (t), (16)

d R

dt
= α1T (t)+ α2R(t), (17)

with solution T (t) = e−α1t and R(t) = α1
α1+α2

(eα2t − e−α1t ). In nondimensional-
ising the simple model, we have putt̄ = t/t∗ where the bar has been dropped for
convenience andt∗ is the time for one developmental cycle.

4.2. Case 2: Late dynamics. The intracellular dynamics following the trigger
for RBs to become IBs can be approximated by the following system:

d R

dt
= −(α3 − α2)R(t) (18)
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d I

dt
= α3R(t)− α1I (t) (19)

d E

dt
= α1I (t). (20)

Here, we assume that the population of IBs converting to RBs is negligible because
this process has already occurred. Assuming that the transition from early to late
dynamics occurs quickly and that the trigger is at timet = t0, the solution to the
late dynamics model equations is given by

R(t)= α1

α1 + α2
(eα2t0 − e−α1t0)e−(α3−α2)(t−t0) (21)

I (t)= α1α3(eα2t0 − e−α1t0)(e−(α3−α2)(t−t0) − e−α1(t−t0))

(α1 + α2 − α3)(α1 + α2)
(22)

E(t)= α1α3(eα2t0 − e−α1t0)

(α1 + α2)(α3 − α2)

×
(

1 − (α3 − α2)exp(−α1(t − t0))− α1 exp(−(α3 − α2)(t − t0))

α3 − α2 − α1

)
.

(23)

Our simplified model also has four parameters to be determined but has the advan-
tage that simple closed form solutions are available and the dependence of RB loss
on nutrient availability is removed. Thus, the assumptions of cases (i)–(iii) in the
full model of the contribution each chlamydial body makes to nutrient consump-
tion is eliminated. It could be suggested that the simplified model supports the
hypothesis of chlamydial development due to a developmental time clock (Ward,
2003). That is, a specific point in time during the cycle triggers the activation of
the next stage in development.

5. SOLUTION AND RESULTS

We fit our mathematical model to the cDNA data and from equation (2) take the
parameter,k2, to be

k2 = cDNA(0)

2EB(0)+ 5IB(0)+ 8RB(0)
= 0.2 cDNA(0) = 2.759× 106. (24)

There are various methods that may be employed to fit parameters to the model
equations. Additionally, an appropriate choice for the error function to be min-
imised must be made of which various choices can be made. Once estimates are
made for the parameters, the uncertainty of these estimates is also important, and it
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would be ideal if a probabilistic density function for each quantity that is being esti-
mated is computed. When carrying out parameter estimation of non-linear models,
a least squares or total least squares algorithm is very likely to give biased results in
that the approach assumes independent, normally distributed (IND) forecast errors
and nonlinear models will not yield IND errors even if the noise is IND (McSharry
and Smith, 1999). A maximum likelihood approach would be adequate. However,
since experiments have been performed in triplicate, we have some degree of con-
fidence in the accuracy of our data and we use the sample variances as weights in
non-linear weighted least squares and then employ a quasi-likelihood estimation
technique to determine a profile likelihood for each of our estimated parameters.
The best fitting set of parameters to the weighted least squares algorithm is consis-
tent with the solution determined by a maximum likelihood algorithm if cDNA(t)
is of the exponential family of distributions. Finally, we establish a 95% confidence
interval for each estimated parameter.

A numerical algorithm minimized the weighted sum of squared residuals gener-
ated by

g(α) =
∑

t=experiment time pts.

[
cDNA(t)− ĉDNA(α, t)

var(cDNA(t))

]2

, (25)

whereα is a vector containing the set of parameters to be determined (α1, α2, α3

andn for the full system andα1, α2, α3 and t0 for the simplified system). In the
error function, cDNA(t) is the experimental level of cDNA data, var(cDNA(t)) is
the sample variance, and̂cDNA is the predicted cDNA level from our mathemati-
cal model. A fourth-order Runge–Kutta method was used to solve the full model
system of coupled first-order initial value equations, and the closed form solutions
was used in fitting for the simplified model. A steepest decent algorithm was used
to obtain a search direction in parameter space for a better sequence of parameters
until appropriate convergence of parameters was achieved. Various high, low and
intermediate values were chosen as initial values for each parameter in order to
obtain confidence that the final best fitting set of parameters gave rise to not just a
local, but the global minimum of the error functiong.

Our data fitting algorithm for the full model system was performed using a range
of values ofn whilst ensuring physically realistic results arise. Throughout each
data fitting proceduren is kept fixed and optimal values for other parameters were
determined. It was determined numerically that the integer parametern, must be
large(O(103)) for a reasonable fit to the experimental data. The parameter,n, is
large reflecting the triggering that occurs biologically as RBs commit to transform.
Thus, it seems reasonable to use the simplified model.

As stated earlier, there are various ways of fitting the model to the data. Other
methods, such as a relative least squares technique, provides a fit that appears to
be a better fit. However, we do not have as much confidence in this fit because the
mean experimental data is not reliable enough. We note that the sample variance
tends to increase with time over the developmental cycle. Then, we do not have
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Figure 2. The cDNA data from our real-time PCR experiments, with standard error bars,
and thebest fitting curve for the simplified model. The plot shows log(cDNA) versus time.

as much confidence in predictions of late dynamics. However, the variance is rela-
tively small over early dynamics and it is over this period we may have increased
assurance of our predictions. The cDNA data and curve fitting using the best fit-
ting parameter set for the simplified model are illustrated inFig. 2. The simplified
model yields profiles for each chlamydial population and cDNA levels that are
in good agreement with simulations of the full model (full model simulation not
shown). Apart from the obvious advantage of obtaining a closed form solution to
the model system of equation, the simplified equations also provides considerable
computational advantage when finding the best fitting parameter set.

5.1. Confidence intervals for parameter estimates. The confidence intervals are
based on the ideas of profile likelihood [see, for example,Cox andHinkley(1974)].
Here, we assume for a given choice of a single (scalar) parameter,φ, with the
remainder given by (vector)ψ , that the likelihood is given byL(φ,ψ). For fixed
φ we maximiseL(φ,ψ) giving ψ̂(φ) as the solution forψ . The profile likelihood
method gives a 95% confidence interval as those values ofφ satisfying

− 2l(φ, ψ̂(φ)) ≤ −2l(φ̂, ψ̂(φ))+ K , (26)

with l(φ,ψ) = log L(φ,ψ) and K the upper 5% ofχ2
1 . To provide an estimated

95% confidence interval for each parameter value we plotg(α1, α̂2, α̂3, t̂0) versus
α1 where thehat denotes the converged parameter value. Then, the two solutions
of g(α1, α̂2, α̂3, t̂0) = gmin + K , give the bounds on the 95% confidence interval.
We apply a similar technique for each parameter. The results obtained using this
technique are given below for an extended model.
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However, the statistical model fitted is not adequate to explain all the lack of fit.
From Fig. 2 it is obvious there is additional error to that from the replication of
the experimental points for each value oft . As anaside, if the experiments were
repeated in triplicate and the model were ‘true’ then one would expect, for each
of the 3 sets of points, for givent , each point randomly lying above or below the
mean. Instead, for eacht , the three values all lie below or above the mean (fitted
curve) except fort = 1.0. We need to extend the model to take account of this
extra level of error and the implied extra uncertainty. For eacht we assume the
experimental cDNA(t) values (average of 3) measure a value of the mean cDNA
level at timet , µ(t), without bias. However, theseµ(t) are distributed about the
true (model) valuesm(t) with error with standard deviationσ . Writing s(t) for
the (estimated) standard deviation of experimental values (average of 3) for each
t and m(t) is given by cDNA(α, t), we extend the criterion (25) to include the
parameterσ 2. The quantity is given by−2 loglikelihood for this extended model
assuming normal errors at each level and we take

g(α, σ ) =
∑

t

[
cDNA(t)− ĉDNA(α, t)

s(t)2 + σ 2

]2

+
∑

t

log(s(t)2 + σ 2). (27)

The previous profile likelihood procedure is followed by extending the set of
parameters to includeσ . It will make the confidence intervals wider. Also, as it
stands, thet = 0.2 point is fitted too precisely because var(cDNA(t = 0.2)) ∼ 0.
This new statistical model will allow for more error att = 0.2 and might give a
better overall fit.

When we incorporate the additional parameter,σ , to account for the error in
the model, and use the error function given in equation (27) the best fitting set of
parameters areα1 = 2.06,α2 = 12.80,α3 = 13.45, t0 = 0.49 andσ = 2.68×107.
The mean RB doubling time,dt , is evaluated as

dt = ln(2)t∗

α2
= 2.59, approximately. (28)

We apply the technique described above, and illustrated inFig. 3, to obtain 95%
confidence intervals ofα1 ∈ (1.89,2.23), α2 ∈ (12.63,12.97), α3 ∈ (12.04,
15.49), t0 ∈ (0.48,0.51), anddt ∈ (2.56,2.63).

6. SUMMARY AND CONCLUSIONS

Chlamydia is a very difficult organism to propagate and determining the gene
expression per chlamydial particle has been elusive until recently. We have used
real-time PCR methodology to quantitatively measure gene transcript levels in
C. trachomatis L2, obtaining 16S rRNA cDNA levels (a measure of the RNA)
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Figure 3. (a) g(α1, α̂2, α̂3, t̂0, σ̂ ) versus α1; (b) g(α̂1, α2, α̂3, t̂0, σ̂ ) versus α2;
(c) g(α̂1, α̂2, α3, t̂0, σ̂ ) versusα3; (d) g(α̂1, α̂2, α̂3, t0, σ̂ ) versust0. Here, the hat denotes
the converged parameter value. The line segments denote the bounds on 95% confidence
intervals.

for more developmental time-points than previously reported. 16S rRNA is an
essential component of the protein synthesis in bacterial cells and the levels are a
good measure of the number of chlamydial particles. We have developed a math-
ematical model of chlamydial intracellular replication and fitted it to the cDNA
data. The model more naturally represents the processes within a chlamydial host
cell inclusion than previous models of chlamydial development. We employed a
numerical algorithm to obtain parameters of best fit. As a result, the cDNA data
we obtained gives rise to our prediction of a mean RB doubling time of 2.59 with
95% confidence interval (2.56, 2.63). Our mathematical model allows the def-
inition of specific stages of chlamydial development, monitoring progression of
disease in a more precise manner than classical developmental cycle descriptions.
Consequently, our modelling of the number of each type of chlamydial particle
in the inclusion during development will also assist the understanding of immune
response since chlamydial peptides presented to the cellular arm of the immune
system depends on the number of chlamydial particles within each inclusion. In
addition, an understanding of the population of chlamydial particles within the
inclusion may allow development of more specific chemotherapeutic agents.

Potentially, our modelling can be extended to identify triggers causing EBs to
commit to IBs converting to RBs as well as the reverse process. This modelling
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would be an application to the emerging micro-array technology which has the
potential to provide developmental expression for every chlamydial gene. The
modelling of development will allow us to determine what genes are expressed
at each specific stage of development, including the intermediate phases. We could
potentially answer questions like ‘expression of what gene signals the committ-
mentof an RB to become an EB?’ which would reveal clearly defined targets for
microbiologists in drug and vaccine development.

APPENDIX: EXPERIMENTAL SETUP AND METHOD OF

DATA COLLECTION

The real-time PCR data used for this modelling was obtained using cDNA gen-
erated fromC. trachomatis L2/434/Bu grown in HEp-2 cell monolayer cultures
(as described inMathewset al., 1999) consisting of 2.5 × 107 cells. Monolayer
cultures were infected withC. trachomatis and triplicate samples (5× 106 cells)
harvested at 0, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32 and 48 h PI by replacement
of growth medium with 5 ml of Tri Reagent (Sigma) to allow for RNA isolation
(according to the manufacturer’s instructions). Genomic DNA was removed from
the RNA by treatment with 20 U RNase-free DNase (Roche) and precipitation
using 0.1 volume of 7.5 M ammonium-acetate and 2.5 volumes of 100% ethanol
precipitation before three 75% ethanol washes. cDNA was generated using the
‘Expand Reverse Transcriptase’ kit (Roche) and 2µg of random hexamers with
50 µg of total RNA (denatured at 75◦C for 10 min and quenced on ice), 1 U
RNase inhibitor (Roche) and 1 U reverse transcriptase in a 12µL reaction incu-
bated at 42◦C for 1 h. RNA was removed from the cDNA with the addition of 1 U
DNase-free RNase I (Roche) in 0.1 volume 0.2 M EDTA before precipitation with
0.1 volume 3.5 M sodium acetate and precipitated with three volumes of 100%
ethanol prior to suspension in 100µL of Tris-Buffer (pH 7).

The 16S rRNA PCR primers (ct16s-F and ct16sR) and DNA standards used for
the real-time PCR are previously described (Mathewset al., 1999). The real-time
PCR assays were done in triplicate for each developmental time-point using 50 ng
of cDNA (or 108, 106, 104 and 102 copies of the 16S DNA standard), 1×Perkin-
Elmer SYBR Green Mastermix (PE Biosystems) in a 15µL reaction volume con-
taining 1µM of each primer. Amplification was done with the Rotorgene 2000
(Corbett Research, Sydney, Australia) using cycling parameters of: 1 cycle 95◦C
for 3 min 45 cycles of 94◦C for 10 s/52◦C for 10 s/72◦C for 10 s with fluorescent
acquisition at 74◦C. Melt curve parameters and data acquisition was set to range
from 55◦C to 90◦C with a ramp rate of 10◦C/5 s. Quantitation and melt curve
data analysis was performed on Rotorgene 2000 (Revision 4.4) software using melt
curve analysis to verify correct target amplification. The copy number for each
gene was compared to the copy number of 16S rRNA for the equivalent sample
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and a relative level of transcripts to chlamydial particles calculated. The real-time
PCR cDNA data is shown inTable A1.

Table A1. Experimental real-time PCR cDNA data forChlamydia trachomatis L2.

Time cDNA Sample Time cDNA Sample
(h PI) level var (h PI) level var

0 1.38× 107 1.35× 1012 14 1.80× 108 3.18× 1014

2 2.64× 107 3.88× 1013 16 1.51× 108 3.24× 1014

4 2.52× 107 1.44× 1012 20 5.78× 108 6.55× 1015

6 1.50× 107 1.54× 1011 24 2.01× 109 1.43× 1016

8 2.21× 107 1.08× 1013 28 2.31× 109 5.76× 1016

10 5.69× 107 1.60× 1011 32 6.15× 109 3.73× 1017

12 5.72× 107 3.10× 1012 48 5.98× 109 3.63× 1018
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