Skip to main content
Log in

Evolutionary morphology and Evo-devo: Hierarchy and novelty

  • Special Papers: From Evolutionary Morphology to the Modern Synthesis and “Evo-Devo”
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

Although the role of morphology in evolutionary theory remains a subject of debate, assessing the contributions of morphological investigation to evolutionary developmental biology (Evo-devo) is a more circumscribed issue of direct relevance to ongoing research. Historical studies of morphologically oriented researchers and the formation of the Modern Synthesis in the Anglo-American context identify a recurring theme: the synthetic theory of evolution did not capture multiple levels of biological organization. When this feature is incorporated into a philosophical framework for explaining the origin of evolutionary innovations and novelties (a core domain of inquiry in Evo-devo) two specific roles for morphology can be described: (1) the conceptualization and operational identification of the targets of explanation; and (2) the elucidation of causal interactions at higher levels of organization during ontogeny and through evolutionary time. These roles are critical components of any adequate explanation of innovation and novelty though not exhaustive of the parts played by morphology in evolutionary investigation. They also invite reflection on what counts as an evolutionary cause in contemporary evolutionary biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, R.M., 1989. Dynamics of Dinosaurs & Other Extinct Giants. Columbia University Press, New York.

    Google Scholar 

  • Alexander, R.M., 2003. Achievements and Limitations in the Mechanics of Extinct Animals. In: Bels, V.L., Gasc, J.-P., Casinos, A. (Eds.), Vertebrate Biomechanics and Evolution. BIOS Scientific Publishers Ltd, Oxford, pp. 11–21.

    Google Scholar 

  • Amundson, R., 2005. The Changing Role of the Embryo in Evolutionary Thought: Structure and Synthesis. Cambridge University Press, New York.

    Google Scholar 

  • Arthur, W., 1997. The Origin of Animal Body Plans: A Study in Evolutionary Developmental Biology. Cambridge University Press, New York.

    Google Scholar 

  • Bar-Yam, Y., 1997. Dynamics of Complex Systems. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Berrill, N.J., 1971. Developmental Biology. McGraw-Hill Book Company, New York.

    Google Scholar 

  • Block, B.A., 1991. Evolutionary novelties: how fish have built a heater out of muscle. Am. Zool. 31, 726–742.

    Google Scholar 

  • Brandon, R., 1996. Reductionism Versus Holism Versus Mechanism. In: Brandon, R. (Ed.), Concepts and Methods in Evolutionary Biology. Cambridge University Press, Cambridge, pp. 179–204.

    Google Scholar 

  • Budd, G.E., 2001. Why are arthropods segmented? Evol. Dev. 3, 332–342.

    Article  PubMed  CAS  Google Scholar 

  • Budd, G.E., 2006. On the origin and evolution of complex characters. Biol. Rev., in press.

  • Carroll, S.B., Grenier, J.K., Weatherbee, S.D., 2001. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. Blackwell Science, Inc., Malden, MA.

    Google Scholar 

  • Coleman, W., 1980. Morphology in the evolutionary synthesis. In: Mayr, E., Provine, W.B. (Eds.), The Evolutionary Synthesis: Perspectives on the Unification of Biology. Harvard University Press, Cambridge, MA, pp. 174–180.

    Google Scholar 

  • Craver, C.F., 2001. Role functions, mechanisms, and hierarchy. Philos. Sci. 68, 53–74.

    Article  Google Scholar 

  • Darwin, C., 1964 [1859]. On the Origin of Species: A Facsimile of the First Edition. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Davidson, E.H., 2001. Genomic Regulatory Systems: Development and Evolution. Academic Press, San Diego.

    Google Scholar 

  • Davis, D.D., 1949. Comparative anatomy and the evolution of vertebrates. In: Jepsen, G.L., Mayr, E., Simpson, G.G. (Eds.), Genetics, Paleontology, and Evolution. Princeton University Press, Princeton, NJ, pp. 64–89.

    Google Scholar 

  • Davis, D.D., 1960. The Proper Goal of Comparative Anatomy. In: Purchon, R.D. (Ed.), Proceedings of the Centenary and Bicentenary Congress of Biology, Singapore, December 2–9, 1958. University of Malaya Press, Singapore, pp. 44–50.

    Google Scholar 

  • Davis, D.D., 1964. The Giant Panda: A Morphological Study of Evolutionary Mechanisms. Chicago Natural History Museum, Chicago.

    Google Scholar 

  • Dullemeijer, P., 1974. Concepts and Approaches in Animal Morphology. Van Gorcum & Comp. B.V., Assen, The Netherlands.

    Google Scholar 

  • Dullemeijer, P., 1981. Functional morphology and evolutionary biology. Acta Biotheor. 29, 151–250.

    Article  Google Scholar 

  • Endler, J.A., 1986. Natural Selection in the Wild. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Eriksson, B.J., Larson, E.T., Thörnqvist, P.-O., Tait, N.N., Budd, G.E., 2005. Expression of engrailed in the Developing Brain and Appendages of the Onychophoran Euperipatoides kanangrensis (Reid). J. Exp. Zool. (Mol. Dev. Evol.) 304B, 220–228.

    Article  CAS  Google Scholar 

  • Galis, F., 1996. The application of functional morphology to evolutionary studies. Trends Ecol. Evol. 11, 124–129.

    Article  Google Scholar 

  • Gans, C., 1985. Vertebrate morphology: tale of a phoenix. Am. Zool. 25, 689–694.

    Google Scholar 

  • Gerhart, J., Kirschner, M., 1997. Cells, Embryos, and Evolution: Towards a Cellular and Developmental Understanding of Phenotypic Variation and Evolutionary Adaptability. Blackwell Science, Inc., Malden, MA.

    Google Scholar 

  • Ghiselin, M.T., 1980. The failure of morphology to assimilate Darwinism. In: Mayr, E., Provine, W.B. (Eds.), The Evolutionary Synthesis: Perspectives on the Unification of Biology. Harvard University Press, Cambridge, MA, pp. 180–193.

    Google Scholar 

  • Ghiselin, M.T., 1997. Metaphysics and the Origin of Species. SUNY Press, Albany.

    Google Scholar 

  • Gillis, G.B., Biewener, A.A., 2003. The importance of functional plasticity in the design and control of the vertebrate musculoskeletal system. In: Bels, V.L., Gasc, J.-P., Casinos, A. (Eds.), Vertebrate Biomechanics and Evolution. BIOS Scientific Publishers Ltd, Oxford, pp. 57–72.

    Google Scholar 

  • Gompel, N., Prud'homme, B., Wittkopp, P.J., Kassner, V.A., Carroll, S.B., 2005. Chance caught on the wing: Cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature 433, 481–487.

    Article  PubMed  CAS  Google Scholar 

  • Grene, M., 1987. Hierarchies in biology. Am. Sci. 75, 504–510.

    Google Scholar 

  • Hall, B.K., 1999. Evolutionary Developmental Biology. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Hanken, J., 1984. Miniaturization and its effects on cranial morphology in plethodontid salamanders, Genus Thorius (Amphibia: Plethodontidae): 1. Osteological variation. Biol. J. Linn. Soc. 23, 55–76.

    Article  Google Scholar 

  • Hanken, J., 1985. Morphological novelty in the limb skeleton accompanies miniaturization in salamanders. Science 229, 871–874.

    Article  PubMed  CAS  Google Scholar 

  • Hanken, J., 1993. Model systems versus outgroups: alternative approaches to the study of head development and evolution. Am. Zool. 33, 448–456.

    Google Scholar 

  • Hanken, J., Wake, M.H., 1991. Introduction to the symposium: experimental approaches to the analysis of form and function. Am. Zool. 31, 603–604.

    Google Scholar 

  • Hanken, J., Wake, D.B., 1993. Miniaturization of body size: organismal consequences and evolutionary significance. Annu. Rev. Ecol. Syst. 24, 501–519.

    Article  Google Scholar 

  • Hinman, V.F., Nguyen, A.T., Cameron, R.A., Davidson, E.H., 2003. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. Proc. Natl. Acad. Sci. USA 100, 13356–13361.

    Article  PubMed  CAS  Google Scholar 

  • Kauffman, S.A., 1993. The Origins of Order: Self-Organisation and Selection in Evolution. Oxford University Press, New York.

    Google Scholar 

  • Korn, R.W., 1999. Biological organization—a new look at an old problem. BioScience 49, 51–57.

    Article  Google Scholar 

  • Korn, R.W., 2002. Biological hierarchies, their birth, death and evolution by natural selection. Biol. Philos. 17, 199–221.

    Article  Google Scholar 

  • Lauder, G.V., 1981. Form and function: structural analysis in evolutionary morphology. Paleobiology 7, (4), 430–442.

    Google Scholar 

  • Lauder, G.V., 1982. Historical biology and the problem of design. J. Theor. Biol. 97, 57–67.

    Article  PubMed  CAS  Google Scholar 

  • Lauder, G.V., 1990. Functional morphology: studying functional patterns in an historical context. Annu. Rev. Ecol. Syst. 21, 317–340.

    Article  Google Scholar 

  • Lauder, G.V., 1991. Biomechanics and evolution: integrating physical and historical biology in the study of complex systems. In: Rayner, J.M.V., Wooton, R.J. (Eds.), Biomechanics in Evolution. Cambridge University Press, Cambridge, pp. 1–19.

    Google Scholar 

  • Lauder, G.V., 1995. On the inference of function from structure. In: Thomason, J.J. (Ed.), Functional Morphology in Vertebrate Paleontology. Cambridge University Press, Cambridge, pp. 1–18.

    Google Scholar 

  • Lauder, G.V., Huey, R.B., Monson, R.K., Jensen, R.J., 1995. Systematics and the study of organismal form and function. BioScience 45, 696–704.

    Article  Google Scholar 

  • Lewontin, R., 1970. The units of selection. Annu. Rev. Ecol. Syst. 1, 1–14.

    Article  Google Scholar 

  • Liem, K.F., Wake, D.B., 1985. Morphology: current approaches and concepts. In: Hildebrand, M., Bramble, D.M., Liem, K.F., Wake, D.B. (Eds.), Functional Vertebrate Morphology. The Belknap Press of Harvard University Press, Cambridge, MA, pp. 366–377.

    Google Scholar 

  • Love, A.C., 2003. Evolutionary morphology, innovation, and the synthesis of evolutionary and developmental biology. Biol. Philos. 18, 309–345.

    Article  Google Scholar 

  • Love, A.C., 2005. Explaining evolutionary innovation and novelty: a historical and philosophical study of biological concepts. Ph.D. Thesis, Department of History and Philosophy of Science, University of Pittsburgh, p. 598.

  • Love, A.C., 2006. Morphological and paleontological perspectives for a history of Evo-devo. In: Maienschein, J., Laubichler, M. (Eds.), From Embryology to Evo-devo, MIT Press, Cambridge, MA in press.

    Google Scholar 

  • Love, A.C., Raff, R.A., 2003. Knowing your ancestors: themes in the history of Evo-devo. Evol. Dev. 5, 327–330.

    Article  PubMed  Google Scholar 

  • Love, A.C., Raff, R.A., 2006. Larval ectoderm, organizational homology, and the origins of evolutionary novelty. J. Exp. Zool. (Mol. Dev. Evol.), in press.

  • McShea, D.W., 1996. Perspective: complexity and evolution: is there a trend? Evolution 50, 477–492.

    Article  Google Scholar 

  • McShea, D.W., 2000. Functional complexity in organisms: parts as proxies. Biol. Philos. 15, 641–668.

    Article  Google Scholar 

  • McShea, D.W., 2001. Parts and integration: consequences of hierarchy. In: Jackson, J.B.C., Lidgard, S., McKinney, F.K. (Eds.), Evolutionary Patterns: Growth, Form, and Tempo in the Fossil Record. University of Chicago Press, Chicago, London, pp. 27–60.

    Google Scholar 

  • Metscher, B.D., Ahlberg, P.E., 1999. Zebrafish in context: uses of a laboratory model in comparative studies. Dev. Biol. 210, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Moss, L., 2003. What Genes Can't Do. MIT Press, A Bradford Book, Cambridge, MA.

    Google Scholar 

  • Müller, G.B., Newman, S.A., 2003. Origination of organismal form: the forgotten cause in evolutionary theory. In: Müller, G.B., Newman, S.A. (Eds.), Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology. A Bradford Book, The MIT Press, Cambridge, MA, pp. 3–10.

    Google Scholar 

  • Müller, G.B., Wagner, G.P., 1991. Novelty in evolution: restructuring the concept. Annu. Rev. Ecol. Syst. 22, 229–256.

    Article  Google Scholar 

  • Müller, G.B., Wagner, G.P., 2003. Innovation. In: Hall, B.K., Olson, W.M. (Eds.), Keywords and Concepts in Evolutionary Developmental Biology. Harvard University Press, Cambridge, MA, pp. 218–227.

    Google Scholar 

  • Newman, S.A., 2003. Hierarchy. In: Hall, B.K., Olson, W.M. (Eds.), Keywords and Concepts in Evolutionary Developmental Biology. Harvard University Press, Cambridge, MA, pp. 169–174.

    Google Scholar 

  • Olson, E.C., 1960. Morphology, paleontology, and evolution. In: Tax, S. (Ed.), Evolution After Darwin, vol. 1: The Evolution of Life, Its Origin, History and Future. University of Chicago Press, Chicago, pp. 523–545.

    Google Scholar 

  • Olson, E.C., 1965. Summary and comment. Syst. Zool. 14, 337–342.

    Article  Google Scholar 

  • Olsson, L., Hall, B.K., 1999. Introduction to the symposium: developmental and evolutionary perspectives on major transformations in body organization. Am. Zool. 39, 612–616.

    Google Scholar 

  • Pass, G., 2000. Accessory pulsatile organs: evolutionary innovations in insects. Annu. Rev. Entomol. 45, 495–518.

    Article  PubMed  CAS  Google Scholar 

  • Plotnick, R.E., Baumiller, T.K., 2000. Invention by evolution: functional analysis in paleobiology. In: Erwin, D.H., Wing, S.L. (Eds.), Deep Time: Paleobiology's Perspective. Allen Press, The Paleontological Society, Lawrence, KS, pp. 305–323.

    Google Scholar 

  • Raff, R.A., 1996. The Shape of Life: Genes, Development and the Evolution of Animal Form. University of Chicago Press, Chicago.

    Google Scholar 

  • Raff, R.A., 2000. Evo-devo: the evolution of a new discipline. Nat. Rev. Genet. 1, 74–79.

    Article  PubMed  CAS  Google Scholar 

  • Reilly, S.M., 1994. The ecologocial morphology of metamorphosis: heterochrony and the evolution of feeding mechanisms in salamanders. In: Wainwright, P.C., Reilly, S.M. (Eds.), Ecological Morphology: Integrative Organismal Biology. University of Chicago Press, Chicago, pp. 319–338.

    Google Scholar 

  • Richardson, M.K., Wright, G.M., 2003. Developmental transfromtions in a normal series of embryos of the sea lamprey Petromyzon marinus (Linnaeus). J. Morphol. 257, 348–363.

    Article  PubMed  Google Scholar 

  • Robert, J.S., 2004. Embryology, Epigenesis, and Evolution: Taking Development Seriously. Cambridge University Press, New York.

    Google Scholar 

  • Roth, G., Wake, D.B., 1989. Conservatism and Innovation in the Evolution of Feeding in Vertebrates. In: Wake, D.B., Roth, G. (Eds.), Complex Organismal Functions: Integration and Evolution in Vertebrates. Wiley, New York, pp. 7–21.

    Google Scholar 

  • Salthe, S.N., 1985. Evolving Hierarchical Systems: Their Structure and Representation. Columbia University Press, New York.

    Google Scholar 

  • Salthe, S.N., 1993. Development and Evolution: Complexity and Change in Biology. A Bradford Book, The MIT Press, Cambridge, MA.

    Google Scholar 

  • Schaefer, S.A., Lauder, G.V., 1986. Historical transformation of functional design: evolutionary morphology of feeding mechanisms in loricarioid catfishes. Syst. Zool. 35, 489–508.

    Article  Google Scholar 

  • Schwenk, K., 2001. Functional units and their evolution. In: Wagner, G.P. (Ed.), The Character Concept in Evolutionary Biology. Academic Press, San Diego, pp. 167–200.

    Google Scholar 

  • Schwenk, K., Wagner, G.P., 2001. Function and the evolution of phenotypic stability: connecting pattern and process. Am. Zool. 41, 552–563.

    Article  Google Scholar 

  • Schwenk, K., Wake, D.B., 1993. Prey processing in Leurognathus marmoratus and the evolution of form and function in desmognathine salamanders (Plethodontidae). Biol. J. Linn. Soc. 49, 141–162.

    Google Scholar 

  • Shubin, N.H., Marshall, C.R., 2000. Fossils, genes, and the origin of novelty. In: Erwin, D.H., Wing, S.L. (Eds.), Deep Time: Paleobiology's Perspective. Allen Press, The Paleontological Society, Lawrence, KS, pp. 324–340.

    Google Scholar 

  • Shubin, N., Wake, D.B., 1996. Phylogeny, variation, and morphological integration. Am. Zool. 36, 51–60.

    Google Scholar 

  • Shubin, N., Wake, D.B., Crawford, A.J., 1995. Morphological variation in the limbs of Taricha granulosa (Caudata: Salamandridae): evolutionary and phylogenetic implications. Evolution 49, 874–884.

    Article  Google Scholar 

  • Simon, H.A., 1977 [1973]. The organization of complex systems. In: Models of Discovery, and Other Topics in the Methods of Science. D. Reidel Publishing Company, Dordrecht, pp. 245–261.

    Google Scholar 

  • Stern, D.L., 2000. Perspective: evolutionary developmental biology and the problem of variation. Evolution 54, 1079–1091.

    PubMed  CAS  Google Scholar 

  • Thomson, K.S., 1988. Morphogenesis and Evolution. Oxford University Press, New York.

    Google Scholar 

  • Thomson, K.S., 1992. Macroevolution: the morphological problem. Am. Zool. 32, 106–112.

    Google Scholar 

  • Valentine, J.W., May, C.L., 1996. Hierarchies in biology and paleontology. Paleobiology 22, 23–33.

    Google Scholar 

  • Wagner, G.P., 2000. What is the promise of developmental evolution? Part I: why is developmental biology necessary to explain evolutionary innovations?. J. Exp. Zool. (Mol. Dev. Evol.) 288, 95–98.

    Article  CAS  Google Scholar 

  • Wagner, G.P. (Ed.), 2001a. The Character Concept in Evolutionary Biology. Academic Press, San Diego.

    Google Scholar 

  • Wagner, G.P., 2001b. What is the promise of developmental evolution? Part II: a causal explanation of evolutionary innovations may be impossible. J. Exp. Zool. (Mol. Dev. Evol.) 291, 305–309.

    Article  CAS  Google Scholar 

  • Wagner, G.P., Misof, B.Y., 1993. How can a character be developmentally constrained despite variation in developmental pathways? J. Evol. Biol. 6, 449–455.

    Article  Google Scholar 

  • Wagner, G.P., Larsson, H.C.E., 2003. What is the promise of developmental evolution? III. the crucible of developmental evolution. J. Exp. Zool. (Mol. Dev. Evol.) 300B, 1–4.

    Article  Google Scholar 

  • Wagner, G.P., Laubichler, M.D., 2001. Character identification: the role of the organism. In: Wagner, G.P. (Ed.), The Character Concept in Evolutionary Biology. Academic Press, San Diego, pp. 141–163.

    Google Scholar 

  • Wagner, G.P., Chiu, C.-H., Laubichler, M., 2000. Developmental evolution as a mechanistic science: the inference from developmental mechanisms to evolutionary processes. Am. Zool. 40, 819–831.

    Article  Google Scholar 

  • Waisbren, S.J., 1988. The importance of morphology in the evolutionary synthesis as demonstrated by the contributions of the Oxford group: Goodrich, Huxley, and De Beer. J. Hist. Biol. 21, 291–330.

    Article  Google Scholar 

  • Wake, D.B., 1982. Functional and evolutionary morphology. Perspect. Biol. Med. 25, 603–620.

    PubMed  CAS  Google Scholar 

  • Wake, M.H., 1991. The impact of functional morphology and biomechanics on studies of evolutionary biology. In: Dudley, E.C. (Ed.), The Unity of Evolutionary Biology: Proceedings of the Fourth International Congress of Systematic and Evolutionary Biology, vol. 1. Dioscorides Press, Portland, OR, pp. 555–557.

    Google Scholar 

  • Wake, M.H., 1992. Morphology, the study of form and function, in modern evolutionary biology. In: Futuyma, D., Antonovics, J. (Eds.), Oxford Surveys in Evolutionary Biology, vol. 8. Oxford University Press, New York, pp. 289–346.

    Google Scholar 

  • Wake, D.B., Hanken, J., 1996. Direct development in the lungless salamanders: what are the consequences for developmental biology, evolution and phylogenesis?. Int. J. Dev. Biol. 40, 859–869.

    PubMed  CAS  Google Scholar 

  • Wake, D.B., Larson, A., 1987. Multidimensional analyses of an evolving lineage. Science 238, 42–48.

    Article  PubMed  Google Scholar 

  • West-Eberhard, M.J., 2003. Developmental Plasticity and Evolution. Oxford University Press, New York.

    Google Scholar 

  • Wilga, C.D., Hueter, R.E., Wainwright, P.C., Motta, P.J., 2001. Evolution of upper jaw protrusion mechanisms in elasmobranchs. Am. Zool. 41, 1248–1257.

    Article  Google Scholar 

  • Wimsatt, W.C., 1976a. Complexity and organization. In: Grene, M., Mendelsohn, E. (Eds.), Topics in Philosophy of Biology. D. Reidel, Dordrecht, pp. 174–193.

    Google Scholar 

  • Wimsatt, W.C., 1976b. Reductive explanation: a functional account. In: Cohen, R.S. (Ed.), Proceedings of the Philosophy of Science Association, 1974, D. Reidel Publishing Company, Dordrecht, Holland, pp. 671–710.

    Google Scholar 

  • Wimsatt, W.C., 1986. Forms of aggregativity. In: Donagan, A., Perovich, Jr., A.N., Wedin, M.V. (Eds.), Human Nature and Natural Knowledge. D. Reidel Publishing Company, Dordrecht, pp. 259–291.

    Google Scholar 

  • Wimsatt, W.C., 1997. Aggregativity: reductive heuristics for finding emergence. Philos. Sci. 64, S372-S384.

    Article  Google Scholar 

  • Witmer, L.M., Sampson, S.D., Solounias, N., 1999. The proboscis of tapirs (Mammalia: Perissodactyla): a case study in novel narial anatomy. J. Zool. 249, 249–267.

    Article  Google Scholar 

  • Wray, G.A., 1999. Evolutionary dissociations between homologous genes and homologous structures. In: Bock, G.R., Gardew, G. (Eds.), Homology, Wiley, Chichester, pp. 189–206.

    Google Scholar 

  • Wright, S., 1964. Biology and the Philosophy of Science. Monist 48, 265–290.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan C. Love.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Love, A.C. Evolutionary morphology and Evo-devo: Hierarchy and novelty. Theory Biosci. 124, 317–333 (2006). https://doi.org/10.1016/j.thbio.2005.11.006

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.thbio.2005.11.006

Keywords

Navigation