Case Study

Study the optical properties of drinking water supply by KUKL and KVWSIP in Kathmandu Valley

Bhishma Karki¹ · Saddam Husain Dhobi^{2,4,5} · Indra Dhobi³ · Digvijay Pandey⁶ · Binay Kumar Pandey⁷

Received: 20 August 2021 / Accepted: 27 September 2021 Published online: 11 October 2021 © The Author(s) 2021 OPEN

Abstract

The optical properties of two water supply samples Kathmandu Upatyaka Khanepani Limited (KUKL) and Kathmandu Valley Water Supply Improvement Project (KVWSIP) in the Kupondole Area, Lalitpur, Nepal show that the transmittance of light is higher for KVWSIP sample water than for KUKL. A large amount of work has been done to test the purities of KUKL and KVWSIP water supplies (chemically), but even their optical properties have not been studied. This method has no hazardous side effects or requires chemical method testing. In comparing the optical properties, the authors recommended that the public take KVWSIP water for good health and wealth rather than KUKL if they have an option. This is because KUKL is more contaminated and has more total dissolved solids (TDS) particles, while KVWSIP has fewer TDS particles. Therefore, if people take KVWSIP water in their daily life, they obtain relief from different types of water-related diseases.

Keywords Transmittance · Absorbance · Disease · Chemical method testing · Total dissolved solids

1 Introduction

Water is a special type of liquid used for different purposes and makes life possible on our planet. Pollution of water takes place when harmful substances (chemicals/microorganisms) are mixed with different sources of water like rivers, lakes, oceans, aquifers, or other bodies of water. The pollution of water harms aquatic life and ecosystems, as well as other living creatures who intake it [1]. Therefore, study is important. Water is utilized for a variety of functions, including drinking, food preparation, personal hygiene, etc. [2], and it must meet biochemical, microbiological, and physical quality criteria. Contamination of water and polluted water causes the transmission of communicable diseases, and according to WHO, about 2.5 billion people were affected by diarrheal disease in 2008. Similarly, a report from 58 countries shows about 589, 854 cholera (water related disease) cases in 2011, an increase of 85% from 2010 [3].

All around the world, about 663 million people are not able to access quality drinking water and about 1.8 billion people around the world take poor quality drinking water. The United Nations Sustainable Development Goals 6 state that by 2030, all people on the planet will have access to safe drinking water. A report also shows that the total water

Bhishma Karki, magnum.photon@gmail.com; Digvijay Pandey, digit11011989@gmail.com | ¹Department of Physics, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu 44600, Nepal. ²Department of Physics, Patan Multiple Campus, Tribhuvan University, Lalitpur 44700, Nepal. ³Department of Physics, Birendra Multiple Campus, Tribhuvan University, Chitwan 44200, Nepal. ⁴Robotics Academy of Nepal, Lalitpur 44700, Nepal. ⁵Innovative Ghar Nepal, Lalitpur 44700, Nepal. ⁶Department of Technical Education, IET, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India. ⁷Department of Information Technology, College of Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, U.K, India.

supply needed in the Kathmandu valley is approximately 415.5 million liters per day (MLD), but the running project KVWSIP should provide up to 540.3 MLD by 2021, and this may fulfill the demand of the increasing valley population [4].

1.1 Contaminated and constituent in Kathmandu Valley supply water

Arsenic, chloride, fluoride, zinc, iron, manganese, hazardous substances like organic, inorganic and heavy metals are among the principal constituents of polluted water. Bacteria, fungus, algae, protozoa, plants, animals, and viruses are among the pathogenic species present in surface water. Microbiological agents are extremely essential in terms of public health, and they may also play a role in changing the physical and chemical properties of water. As previously stated, the various contaminated constituents and micro-bacterial present in the Kathmandu valley supply water are mentioned by Grönwall and Danert [5].

1.2 The problem of water supply in Kathmandu Valley

Most people hardly receive drinking water for 1 h every fourth day as currently supplied by KUKL. The supply water pipeline by KUKL is not considered under maintenance from the initial date to now; therefore, the contamination is high in KUKL, but KVWSIP is the latest that is initiated to supply the water in 2020 to 2021; therefore, the contamination is less than that of the past water supply system. Therefore, studying the total dissolved solids (TDS) in these supply waters is our major object. In this TDS study, we studied the basis of transmittance and absorbance (optical property) of water. To date, no one has studied the transmittance and absorbance properties of KUKL and KVWSIP water, which is supplied daily to public homes. However, other properties, such as chemical and contaminated properties, etc. are studied by a large number of researchers. This testing method is cheaper and does not pose physical or chemical hazards during testing, but chemical testing has different hazards.

1.3 Beneficial of the study

This testing technique is cheaper and poses no serious hazard during testing. The transmittance shows the TDS quantity present in water; a higher transmittance corresponds to a lower TDS, and a lower TDS corresponds to the water containing fewer chemical compounds or elements in the water. From an absorbance point of view, the lower the absorbance, the higher the transmittance, which implies the purity of water. If absorbance is high or transmittance is low, this means a higher TDS, which contains a large amount of contamination.

1.4 Research area and development

The water supply situation in KUKL facilitates drinking water to 2.8 million people in the Kathmandu Valley, with daily usage estimated to be at 415MLD. KUKL's water supply is fed by 35 surface water sources and 96 deep tube wells. KVW-SIP, also known as Melamchi Subproject-II, was developed by the Nepalese government with financial support from the Asian Development Bank (ADB). Since 2001, the project has been working to meet the present and future demand for water in the Kathmandu Valley.

KVWSIP was approved by the Asian Development Bank on September 16, 2011, and the project began on February 7, 2012, with a budget of \$130 million. The goal is to increase the availability of water about 80%. According to 2011 population growth rate, the valley's population will reach 4 million by 2025 [6]. Water scarcity has developed in Nepal's Kathmandu Valley as a result of rapid population increase, unplanned urbanization, and the drying up of traditional water resources. The growing problem of water scarcity has been worsened by the influence of climate change [7].

1.5 Statement of the problem

Water consumption has been noted as a serious concern for the fast rising urban population, which has expanded from 1 million (6.5%) in 1981 to 4.52 million (17%) in 2011. The Kathmandu Valley's population is expected to expand by 4.63% every year, as reported by the Kathmandu Valley development authority in 2015. According to KUKL, water demand increased from 320 to 360 MLD while enhanced work increased from 111 to 124 MLD.In its initial stage, the KVWSIP is a new drinking water project for the valley, with a capacity of 170 MLD. The entire capacity of 600 MLD, which includes existing in-valley sources, is expected to supply forecast demand for a population of around 3 million people up to 2030.

2 Review

2.1 TDS and transmittance of light

TDS concentrations of natural water sources were observed to range from 30 mg/l to 6000 mg/l as reported by WHO/ UNEP/GEMS in 1989. In a report, it showsthat levels in the Great Lakes ranged from 65 to 227 mg/l, whereas in 36 of 41 rivers studied in Canada, levels were below 500 mg/l. The components of TDS are chlorides, sulphates, magnesium, calcium, and carbonates. This causes corrosion in water distribution systems. The level of TDS in different pies used to supply drinking water has a high level (> 500 mg/l) as reported by Tihansky in 1974. Early epidemiological research suggests that even modest levels of TDS in drinking water may have favorable impacts, despite the fact that two small studies have found negative consequences. Consumers generally tolerate water with TDS values below 1000 mg/l, though this varies depending on the conditions reported by WHO/SDE/WSH in 1996.Among the different sources of water supply in the Kathmandu valley, groundwater is one of the most important, accounting for around half of the city's total water consumption. Water demand is expected to be around 540.3 MLD by 2021, with a significant imbalance between supply and demand.The basic requirement for water for a human is about 50 L per capita per day, which may be fulfilled by KVWSIP [8].

A report shows 100 samples of water taken from different places in the Kathmandu valley from different sources, like wells, public water sources, surface water, ground water, and so on. The report shows total coliform and Escherichia coli bacteria were the most troublesome pathogens, found in 94% and 72% of all water samples, respectively. The Kathmandu Valley gets almost half of its water from groundwater sources [9]. The pH value of the taken sample ranges from acidic (> 6 pH), neutral, and alkaline (> 7 pH), and such pH rages in drinking water have a negative impact on public health. Among the enteric bacteria isolated from groundwater samples is [10]. According to the WHO, about 80% of all sickness and diseases are caused by poor sanitation, pollution, or a lack of water. About 884 million people around the world consume poor quality drinking water, and about 2 million children die per year from diarrhea. Every year, nearly 10,500 children in Nepal eventually die due to the poor quality of their drinking water.

2.2 Optical properties of water

Appropriate interpretation and measurement of the optical properties of drinking water is essential because this method is based on photon source and chemical free testing. According to the literature, absorbance is measured at various temperatures ranging from 2.5 °C to 40.5 °C, and the results show that absorbance is reduced by 300–550 nm but distinct by 700 nm [11]. In the near-infrared region, the photons are absorbed by the dissolved impurities present in the sample, which also determine the transmittance of light through the sample. The absorption of light by dissolved materials can have a 10–50% impact on light scattering measures [12]. A composite index assesses how far numerous water quality parameters depart from normal. Since no universal indicators/technology have been developed to study the water quality composite index, some countries are using aggregated water quality data to construct water quality indices (Table 1).

The aim of the government of Nepal is to provide universal, safely managed, water and sanitation access to all Nepalese people by 2030. In Nepal due to unsafe, poor sanitation and unhygienic behaviors shows that about 15.3% mortality is due to diarrheal disease and 24.8% mortality is due to acute respiratory illness in Nepali children between 1 and 59 months [13, 14]. The Kathmandu valley has a poor water management system for both surface and groundwater sources. Bhandari et al. tested 52 water samples from well and tap. They found chloride, total hardness (TH), copper, nitrate, sulfate, turbidity, and so on. Similarly, we also studied microorganisms like *Escherichia coli* about 21.5%, *Citrobacter* spp. about 20.9%, *Klebsiella* spp. about 19.8%, *Proteus* spp. about 13.9%, *Enterobacter* spp. about 8.72%, *Salmonella* spp. about 5.8%, *Shigella* spp. about 5.2%, and *Pseudomonas* about 4.1% and so on [10].

Koju et al. took about 969 samples from different water sources and analyzed them for physical, chemical, and microbiological reasons. They found that the concentration of nitrate is within the WHO standards but other physical, chemical, and microbiological parameters are exceeded by 0.1–86% [15]. Most South Asian cities, like New Delhi, Karachi, and Kathmandu, have poor drinking water management systems. But due to the demand and development, the improvement was reported in different literature [16].

https://doi.org/10.1007/s43832-021-00006-2

Table 1Transmittance of purewater observed by Jerlov in1968

S. No.	Wavelength (nm)	Transmit- tance (%)
1	400	95.8
2	450	98.1
3	500	96.5
4	550	93.3
5	600	83.3
6	650	75.0
7	700	60.7
8	750	9.0

3 Materials and methods

In this work, our major focus is to develop a technique to study the optical properties of the KUKL water supply and KVWSIP, which is new work related to water research in the Kathmandu Valley water supply system. This technique has a benefit over the chemical testing method because the testing chemical is not easily available and may be harmful during testing. To study the optical properties of theKUKL and KVWSIP drinking water supplies, we used ThereminoSpectrometers v2.7. The phenomena responsible for studying the OP of drinking water considered in our research are discussed below in Fig. 1. The pH value was tested using a digital pH meter and found to be 8 for theKUKL water supply and 8.5 for theKVWSIP water supply; the experiment was performed on a daily basis at $24 \pm 1^{\circ}$ C.

3.1 Sample collection

The sample was collected from the Kupondole area from two supply pipelines (KUKL and KVWSIP), which is located in Lalitpur District, Nepal, which is one of the cities in Kathmandu Valley among three.

3.2 Beer-Lambert law for transmittance and absorbance

Beer and Lamber studied that when light passes from dissolved materials, a certain amount of light is absorbed and some light is transmitted from the sample. The transmittance and absorbance also depend upon the solution concentration and path traveled through the solution or sample. A spectrophotometer is a device that measures the intensity, or the amount of energy carried by radiation per unit area per unit time, of light entering and leaving a sample solution. Let it represent the intensity of light as it passes through a transparent medium, and let it represent the intensity of light after it has passed through the substance. Then, the transmittance is defined as Transmittance = $\frac{I_t}{I_0}$, and in percentage, it is defined as $T(\%) = \frac{I_t}{I_0} \times 100\%$. Additionally, absorbance (A) is the quantity of light absorbed by a solution and calculated from the transmittance percentage as $A = 2 - \log_{10}(T(\%))$. It is also known as optical density. For example, 10% of the transmittance is equal to 1 Au (absorbance unit), and 1% of the transmittance is equal to 2 Au.

Fig. 1 Block diagram of the experiment to study the transmittance and absorbance of samples

3.3 Phenomena of measuring transmittance

A sketch of the measured transmittance is shown in Fig. 1. below. When the photon of a visible photon passes through the prepared sample, the sample is absorbed and transmitted photons. In our cases, we use a visible photon because we select the sample that transmits the visible photon.For this experiment, 5 ml of KUKL and KVWSIP drinking water is put in a borosilicate tube. Then calibration of the Theremino spectrometer was made and the sample was put in the path between the source and the Theremino spectrometer. The data is observed for KUKL and KVWSIP, listed in the Appendix section.

3.4 Phenomena of photon

When visible photons pass through the sample, some photons are absorbed in the sample while others pass through the sample. For our study, the same material sample is used at a different temperature to study the transmittance of a photon through the sample. Moreover, visible photons are used to study the transmittance of the samples. To study the absorbance and transmittance, we used visible-wavelength photons from 420 to 720 nm. The results show that absorbance increases with wavelength, implying that the photon is absorbed by the impurities in the sample, and the opposite phenomenon was observed for transmittance. Therefore, high absorbance indicates the larger interaction of molecules (impurities) with photons, and low absorbance shows less interaction of molecules (impurities) with photons.

4 Results and discussion

4.1 Optical properties of the KUKL water supply in Kupondole Area, Lalitpur Nepal

The transmittance for visible photons decreases with an increase in the wavelength of the photon, as shown in Fig. 2 of the KUKL water supply in the Kupondole area, Lalitpur Nepal. On the other hand, one can say that absorption increases with an increased wavelength of photons for the sample. Theredifferent deep points at wavelengths for both absorbance and transmittance. The deep points are due to the interaction of molecules (impurities [11]: constituent, chemical, elements) with photons.

Finally, the transmittance decreases with an increase in the wavelength of photons. This shows that the TDS particles present in water are increasingly smaller than the visible photon wavelength, which is the optical property of the KUKL water supply in the Kupondole area, Lalitpur Nepal.

4.2 Optical properties of the KVWSIP water supply in Kupondole Area, Lalitpur Nepal

The transmittance coefficient for visible photons decreases with an increase in the wavelength of a photon of the KVWSIP water supply in the Kupondole Area, Lalitpur, Nepalis shown in Fig. 3. A similar nature of the graph is observed for the

(2021) 1:6

Fig. 3 Optical properties of the KVWSIP water supply in Kupondole Area, Lalitpur, Nepal

KUKL water supply in the considered area. KVWSIP also has different deep points at wavelengths for both absorbance and transmittance. The deep points are due to the interaction of molecules (impurities [11]: constituent, chemical, elements) with photons as in KUKL drinking water. This interaction shows the size of the particles present in it.

The optical properties and transmittance of KVWSIP water are different than the transmittance of the KUKL drinking water supply, in general. Finally, the transmittance decreases with an increase in the wavelength of photons, as shown in Fig. 3 above the KVWISP water supply of the research area.

4.3 Comparison optical properties of KUKL and KVWSIP supply water

A comparative study of the optical properties of these two samples, KUKL and KVWSIP, is shown in Fig. 4 below. The study shows that the transmittance properties at 3 deep points for the same wavelengths of 452.5 nm, 585.8 nm, and 642.6 nm have different transmittances, as shown in Fig. 4 below. In general, we can say that the transmittance of a photon through the KVWSIP sample is high, while KUKL is low. This means that the TDS particle size present in the KUKL sample is higher than that in the KVWSIP sample because the KUKL water supply system is old and has different contamination in the sample. The transmittance of KVWSIP is higher because it is the latest and contains the least amount of TDS with its new supply.

The transmittance of KVWSIP is higher, which means that the TDS is less, which implies that the high transmittance sample has more purities than the low transmittance sample; more details are provided in the Appendix section.

Figure 5 below represents the optical absorbance properties of the KUKL and KVWSIP water supplies in the Kupondole Area, Lalitpur, Nepal. This shows that the absorbance of KUKL supply water is higher, which means that the contamination and TDS particles present in the particle are higher.

Additionally, for KVWSIP, there is less water supply, which means that there is less contamination and fewer TDS particles present in the particles. Therefore, based on optical properties or density, one can also represent or identify the purities of

Fig. 5 Comparison of the absorbance properties of the KUKL and KVWSIP water supplies in Kupondole Area, Lalitpur, Nepal

drinking water. Based on optical density, this article is the first article to study the optical properties of the KUKL and KVW-SIP supply water systems in Kathmandu Valley. This method is simple and harmless and more beneficial than the chemical method.

5 Conclusion

From the experiment, the optical density of the KUKL and KVWSIP water supplies were studied, and it was found that the transmittance of the KVWSIP water supply is higher than the KUKL water supply, and the absorbance of the KUKL water supply is higher than the KUKL water supply, and the absorbance of the KUKL water supply is higher than the KVWSIP water supply. This is because of the presence of contaminated and TDS particles in the water supply system (pipe). A higher transmittance means a lower presence of contaminated and TDS particles, while a lower transmittance means a higher presence of contaminated and TDS particles in the sample. Therefore, this optical property comparative study recommended that the public take KVWSIP water for different purposes rather than KUKL, if they have an option between these two water supply systems. Since TDS and contamination are the best parameters to check the quality of water, it depends upon the maintenance and/or replacement of pipes, sources of water, leakage in pipes, and many more. But here the authors consider the maintenance of pipe lines (old pipes) as a major problem because it is an old water supply system in the valley and from its initial installment of pipe lines, it has not been replaced or maintained until now. If maintenance is not done at the proper time, the water becomes more contaminated and causes different diseases related to water.

Acknowledgements Special thanks to Tri-Chandra Multiple Campus, Tribhuvan University.

Author's contributions All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Bhishma Karki, Sadam Hussain Dhobi,Indra Dhobi,Binay Kumar Pandey and Digvijay Pandey. The first draft of the manuscript was written by Bhishma Karki and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding No funding.

Data availability All data generated or analysed during this study are included in this published article.

Declarations

Competing interests The authors declare no competing interests

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in

the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

KUKL			KUWISP		
Wavelength (nm)	Transmittance (%)	Absorbance (Au)	Transmittance (%)	Absorbance (Au)	
417	99.8	0.000869	99.9	0.000434512	
418.4	99.6	0.001741	99.7	0.001304842	
419.8	99.4	0.002614	99.7	0.001304842	
421.3	99.2	0.003488	99.5	0.002176919	
422.7	99	0.004365	99.4	0.002613616	
424.1	98.7	0.005683	99.1	0.003926346	
425.5	98.6	0.006123	99	0.004364805	
426.9	98.3	0.007446	98.8	0.005243055	
428.4	98.1	0.008331	98.7	0.005682847	
429.8	97.8	0.009661	98.4	0.007004902	
431.2	97.5	0.010995	98.2	0.007888512	
432.6	97.2	0.012334	98	0.008773924	
434	97	0.013228	97.8	0.009661145	
435.5	96.6	0.015023	97.5	0.010995384	
436.9	96.4	0.015923	97.4	0.011441043	
438.3	96.1	0.017277	97.2	0.012333735	
439.7	95.8	0.018634	97.1	0.01278077	
441.1	95.4	0.020452	96.9	0.013676223	
442.5	95.1	0.021819	96.7	0.014573526	
444	94.5	0.024568	96.3	0.016373713	
445.4	94.1	0.02641	96.1	0.017276612	
446.8	93.6	0.028724	95.9	0.018181393	
448.2	93.4	0.029653	95.8	0.018634491	
449.6	93.2	0.030584	95.7	0.019088062	
451.1	93.2	0.030584	95.8	0.018634491	
452.5	93	0.031517	95.7	0.019088062	
453.9	93.1	0.03105	95.8	0.018634491	
455.3	93.1	0.03105	95.8	0.018634491	
456.7	93.3	0.030118	96	0.017728767	
458.1	93.4	0.029653	96.1	0.017276612	
459.6	93.7	0.02826	96.3	0.016373713	
461	93.9	0.027334	96.4	0.015922966	
462.4	94.1	0.02641	96.6	0.015022874	
463.8	94.2	0.025949	96.7	0.014573526	
465.2	94.4	0.025028	96.9	0.013676223	
466.7	94.2	0.025949	96.9	0.013676223	
468.1	94.2	0.025949	97	0.013228266	
469.5	94.2	0.025949	97.1	0.01278077	
470.9	94.4	0.025028	97.4	0.011441043	
472.3	94.4	0.025028	97.8	0.009661145	
473.8	94.7	0.02365	98.2	0.007888512	
475.2	94.5	0.024568	98.3	0.007446482	
476.6	94.6	0.024109	98.6	0.006123085	

KUKL			KUWISP		
Wavelength (nm)	Transmittance (%)	Absorbance (Au)	Transmittance (%)	Absorbance (Au)	
478	94.4	0.025028	98.7	0.005682847	
479.4	94.5	0.024568	98.8	0.005243055	
480.8	94.5	0.024568	98.8	0.005243055	
482.3	94.4	0.025028	98.8	0.005243055	
483.7	93.9	0.027334	98.6	0.006123085	
485.1	93.5	0.029188	98.4	0.007004902	
486.5	92.8	0.032452	98.1	0.008330993	
487.9	92.6	0.033389	98.1	0.008330993	
489.4	92	0.036212	98	0.008773924	
490.8	91.6	0.038105	97.9	0.009217308	
492.2	91.4	0.039054	97.9	0.009217308	
493.6	91.3	0.039529	97.9	0.009217308	
495	90.9	0.041436	97.8	0.009661145	
496.5	90.9	0.041436	97.7	0.010105436	
497.9	90.8	0.041914	97.5	0.010995384	
499.3	90.6	0.042872	97.4	0.011441043	
500.7	90.1	0.045275	97.1	0.01278077	
502.1	89.6	0.047692	96.7	0.014573526	
503.5	89.3	0.049149	96.5	0.015472687	
505	89.1	0.050122	96.4	0.015922966	
506.4	88.6	0.052566	96	0.017728767	
507.8	88.6	0.052566	95.9	0.018181393	
509.2	88.3	0.054039	95.5	0.019996628	
510.6	87.9	0.056011	95.2	0.021363052	
512.1	86.8	0.06148	94.2	0.025949097	
513.5	86	0.065502	93.6	0.028724151	
514.9	85.3	0.069051	93.1	0.031050319	
516.3	84.9	0.071092	92.8	0.032452024	
517.7	84.1	0.075204	92.2	0.035269079	
519.2	83.4	0.078834	91.6	0.038104526	
520.6	82.5	0.083546	90.9	0.041436117	
522	81.9	0.086716	90.4	0.04383157	
523.4	81	0.091515	89.7	0.047207557	
524.8	80.5	0.094204	89.2	0.049635146	
526.2	79.9	0.097453	88.7	0.05207638	
527.7	79	0.102373	88.1	0.055024092	
529.1	77.9	0.108463	87.3	0.058985756	
530.5	77.2	0.112383	86.7	0.061980903	
531.9	76.1	0.118615	86	0.065501549	
533.3	75.4	0.122629	85.7	0.067019178	
534.8	74.2	0.129596	84.7	0.07211659	
536.2	73.5	0.133713	83.9	0.076238039	
537.6	72.9	0.137272	83.3	0.079354999	
539	72.4	0.140261	83.1	0.080398976	
540.4	71.6	0.145087	82.6	0.083019953	
541.9	71.2	0.14752	82.2	0.085128182	
543.3	70.5	0.151811	81.6	0.088309841	
544.7	70.1	0.154282	81.3	0.089909454	
546.1	70.2	0.153663	81.5	0.088842391	
547.5	70.4	0.152427	81.6	0.088309841	

(2021) 1:6

KUKL			KUWISP		
Wavelength (nm)	Transmittance (%)	Absorbance (Au)	Transmittance (%)	Absorbance (Au)	
548.9	70.4	0.152427	81.7	0.087777943	
550.4	70.7	0.150581	81.9	0.086716098	
551.8	70.6	0.151195	81.8	0.087246696	
553.2	70.1	0.154282	81.4	0.089375595	
554.6	69.9	0.155523	81.3	0.089909454	
556	69.8	0.156145	81.2	0.090443971	
557.5	69.4	0.158641	80.9	0.092051478	
558.9	69.3	0.159267	80.7	0.093126465	
560.3	69.1	0.160522	80.6	0.093664958	
561.7	68.8	0.162412	80.4	0.094743951	
563.1	67.9	0.16813	79.5	0.099632871	
564.6	67.5	0.170696	79	0.102372909	
566	67.4	0.17134	79	0.102372909	
567.4	66.8	0.175224	78.6	0.104577454	
568.8	65.9	0.181115	77.9	0.108462542	
570.2	65.7	0.182435	77.9	0.108462542	
571.6	65.3	0.185087	77.3	0.111820506	
573.1	64.4	0.191114	76.4	0.116906641	
574.5	63.2	0.199283	75.4	0.122628654	
575.9	62.3	0.205512	74.6	0.127261173	
577.3	61.5	0.211125	73.9	0.131355562	
578.7	60.9	0.215383	73.5	0.133712661	
580.2	60.1	0.221126	72.8	0.137868621	
581.6	59.9	0.222573	72.4	0.140261434	
583	59.6	0.224754	72.3	0.140861703	
584.4	59.4	0.226214	72.1	0.142064735	
585.8	59.1	0.228413	71.9	0.14327111	
587.3	59.3	0.226945	72.2	0.141462802	
588.7	59.5	0.225483	72.5	0.139661993	
590.1	60	0.221849	73	0.13667714	
591.5	60.4	0.218963	73.3	0.134896025	
592.9	61	0.21467	73.7	0.132532512	
594.3	61.4	0.211832	74	0.13076828	
595.8	62	0.207608	74.6	0.127261173	
597.2	62.3	0.205512	75	0.124938737	
598.6	62.6	0.203426	75.3	0.123205024	
600	62.9	0.201349	75.5	0.122053048	
601.4	63.3	0.198596	75.9	0.119758224	
602.9	63.4	0.197911	75.8	0.120330794	
604.3	63.3	0.198596	75.7	0.12090412	
605.7	63.1	0.199971	75.4	0.122628654	
607.1	62.9	0.201349	75.3	0.123205024	
608.5	62.6	0.203426	75	0.124938737	
610	61.7	0.209715	74.2	0.129596095	
611.4	60.7	0.216811	73.2	0.135488919	
612.8	60.4	0.218963	72.9	0.137272472	
614.2	59.9	0.222573	72.4	0.140261434	
615.6	59.2	0.227678	71.7	0.144480844	
617	57.6	0.239578	70.3	0.153044675	
618.5	56.3	0.249492	68.8	0.162411562	

KUKL			KUWISP		
Wavelength (nm)	Transmittance (%)	Absorbance (Au)	Transmittance (%)	Absorbance (Au)	
619.9	55	0.259637	67.5	0.170696227	
621.3	53.9	0.268411	66.6	0.176525771	
622.7	52.5	0.279841	64.9	0.187755303	
624.1	51.5	0.288193	63.8	0.195179321	
625.6	50.3	0.298432	62.4	0.20481541	
627	49.5	0.305395	61.6	0.210419288	
628.4	48.6	0.313364	60.6	0.217527376	
629.8	47.7	0.321482	59.6	0.22475374	
631.2	46.6	0.331614	58.4	0.233587153	
632.7	45.8	0.339135	57.5	0.240332155	
634.1	45	0.346787	56.7	0.246416941	
635.5	44.4	0.352617	56.1	0.251037139	
636.9	43.8	0.358526	55.5	0.255707017	
638.3	43.5	0.361511	55.3	0.257274869	
639.7	43.2	0.364516	54.9	0.260427656	
641.2	43.1	0.365523	54.9	0.260427656	
642.6	42.9	0.367543	54.7	0.262012674	
644	43.1	0.365523	55	0.259637311	
645.4	43.3	0.363512	55.1	0.258848401	
646.8	43.2	0.364516	55.1	0.258848401	
648.3	42.9	0.367543	54.9	0.260427656	
649.7	43.1	0.365523	55.1	0.258848401	
651.1	43.1	0.365523	55.1	0.258848401	
652.5	43.7	0.359519	55.7	0.254144805	
653.9	44.2	0.354578	56.3	0.249491605	
655.4	44.3	0.353596	56.4	0.248720896	
656.8	43.9	0.357535	56	0.251811973	
658.2	43.3	0.363512	55.5	0.255707017	
659.6	43.4	0.36251	55.7	0.254144805	
661	44.1	0.355561	56.5	0.247951552	
662.4	44.4	0.352617	56.7	0.246416941	
663.9	44.7	0.349692	57.2	0.242603971	
665.3	44.9	0.347754	57.5	0.240332155	
666.7	45.2	0 344862	57.8	0.238072162	
668 1	45.3	0 343902	58	0.236572006	
669.5	45.4	0 342944	58 2	0.235077015	
671	45.4	0 342944	58.2	0.235077015	
672.4	45.6	0.341035	58.6	0.232102384	
673.8	45.6	0 341035	58.5	0 232844134	
675.2	45 5	0 341989	58.6	0.232102384	
676.6	45.3	0.343902	58.4	0.232587153	
678.1	45.2	0.343902	58.4	0.233587153	
679.5	44.9	0.347754	58	0.236572006	
680.9	44.6	0.350665	57.9	0.237321436	
682.3	44.2	0.354578	57.5	0.2207321450	
683.7	43.9	0.357535	57.1	0.243363802	
685.1	43 <i>A</i>	0.357,555	56.5	0.2705052	
686.6	י י.כד געד	0.30231	56.2	0.277753604	
688	د ب ۸۵ ۲	0.304510	55.6	0.230203084	
680 /	42.7	0.303372	55.0	0.234723200	
600.9	42.J	0.37300	54.5	0.230000922	
0.00.0	41./	0.379004	54.5	0.203003498	

(2021) 1:6

KUKL			KUWISP	
Wavelength (nm)	Transmittance (%)	Absorbance (Au)	Transmittance (%)	Absorbance (Au)
692.2	41.4	0.383	54.1	0.266802735
693.7	41	0.387216	53.7	0.270025714
695.1	40.9	0.388277	53.7	0.270025714
696.5	40.8	0.38934	53.5	0.271646218
697.9	40.7	0.390406	53.5	0.271646218
699.3	40.5	0.392545	53.2	0.274088368
700.8	40.6	0.391474	53.3	0.273272791
702.2	40.6	0.391474	53.4	0.272458743
703.6	40.6	0.391474	53.3	0.273272791
705	40.5	0.392545	53.2	0.274088368
706.4	40.2	0.395774	52.9	0.276544328
707.8	39.7	0.401209	52.4	0.280668713
709.3	39.5	0.403403	52.2	0.282329497
710.7	39.1	0.407823	51.8	0.28567024
712.1	39.1	0.407823	51.8	0.28567024
713.5	39.1	0.407823	51.9	0.284832642
714.9	39.3	0.405607	52.1	0.283162277
716.4	39.3	0.405607	52	0.283996656
717.8	39.5	0.403403	52.2	0.282329497
719.2	39.4	0.404504	52.1	0.283162277
720.6	39.4	0.404504	52.1	0.283162277
722	39.2	0.406714	52	0.283996656
723.5	39.2	0.406714	51.9	0.284832642
724.9	39.1	0.407823	51.9	0.284832642
726.3	38.9	0.41005	51.7	0.286509457

References

- 1. Bhattarai R, Dahal KR. Review of water pollution with special focus on Nepal. J Emerg Technol Innovat Res. 2020;7(5):100–1.
- 2. Bos R, Alves D, Latorre C, Macleod N, Payen G, Roaf V, Rouse M. Manual on the human rights to safe drinking water and sanitation for practitioners. UK: IWA Publishing; 2016.
- 3. WHO. Water Quality and Health Strategy 2013–2020, 2020;1–17.
- 4. Udmale P, Ishidaira H, Thapa BR, Shakya NM. The status of domestic water demand: supply deficit in the Kathmandu Valley, Nepal. Water. 2016;8(196):1-9. https://doi.org/10.3390/w8050196.
- 5. Grönwall J, Danert J. Regarding groundwater and drinking water access through a human rights lens: self-supply as a norm. Water. 2020;12(419);1-21, https://doi.org/10.3390/w12020419.
- 6. KUKL. Land Acquisition and Involuntary Resettlement Due Diligence Report, 2019. https://www.adb.org/sites/default/files/project-docum ents/34304/34304-043-sddr-en_0.pdfAcessed 15th Sept 2021.
- 7. Shrestha RP, Mahajan KL. Traditional water resource use and adaptation efforts in Nepal. J Int Dev Cooperat. 2016;22(1&2):47–58. https://core. ac.uk/download/pdf/197304029.pdf.
- Thapa BR, Ishidaira H, Pandey VP, Bhandari TM, Shakya NM. Evaluation of water security in Kathmandu Valley before and after water transfer 8. from another basin. Water. 2018:10(224):1–5. https://doi.org/10.3390/w10020224.
- Warner NR, Levy J, Harpp K, Farruggia F. Drinking water quality in Nepal's Kathmandu Valley: a surveyand assessment of selected controlling site characteristics. Hydrogeol J. 2008;16:321-34.
- 10. Bhandari P, Banjara MR, Singh A, Kandel S, Rawal DS, Pant BR. Water quality status of groundwater and municipal water supply (tap water) from Bagmati river basin in Kathmandu valley, Nepal. J Water Sanitat Hygiene Dev. 2021;11(1):102–11. https://doi.org/10.2166/washdev.2020. 190.
- 11. Buiteveld H, Hakvoort JHM, Donze M. Optical properties of pure water. SPIE Proc. 2016;2258:1–10. https://doi.org/10.1117/12.190060.
- 12. Downing J. Effects of light absorbance and scattering in water samples on OBS measurements. Campbell Scientific, Inc.;2008.
- 13. USAID-Nepal. Water and development country plan, 2020:1–2.
- 14. WHO. Safer water, Better Health. Geneva; 2019.
- 15. Ravi M, Snigdha K. COVID-19 and its impact on air pollution. Int J Res Appl Sci Eng Technol (JJRASET). 2020;08(11):344–6. https://doi.org/10. 22214/ijraset.2020.32139.

16. Shrestha KB, Kamei T, Shrestha S, Aihara Y, Bhattarai AP, Bista N, Thapa BR, Kazama F, Shindo J. Socioeconomic impacts of LCD-treated drinking water distribution in an urban community of the Kathmandu Valley, Nepal. Water. 2019;11(1323):1–12. https://doi.org/10.3390/w11071323.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.