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Abstract 

The increasing level of air pollutants (e.g. particulates, noise and gases) within the atmosphere are impacting mental 
wellbeing. In this paper, we define the term ‘DigitalExposome’ as a conceptual framework that takes us closer towards 
understanding the relationship between environment, personal characteristics, behaviour and wellbeing using 
multimodal mobile sensing technology. Specifically, we simultaneously collected (for the first time) multi-sensor data 
including urban environmental factors (e.g. air pollution including: Particulate Matter (PM1), (PM2.5), (PM10), Oxidised, 
Reduced, Ammonia (NH3) and Noise, People Count in the vicinity), body reaction (physiological reactions including: 
EDA, HR, HRV, Body Temperature, BVP and movement) and individuals’ perceived responses (e.g. self-reported valence) 
in urban settings. Our users followed a pre-specified urban path and collected the data using a comprehensive 
sensing edge device. The data is instantly fused, time-stamped and geo-tagged at the point of collection. A range of 
multivariate statistical analysis techniques have been applied including Principle Component Analysis, Regression and 
Spatial Visualisations to unravel the relationship between the variables. Results showed that Electrodermal Activity 
(EDA) and Heart Rate Variability (HRV) are noticeably impacted by the level of Particulate Matter in the environment. 
Furthermore, we adopted Convolutional Neural Network (CNN) to classify self-reported wellbeing from the multi-
modal dataset which achieved an f1-score of 0.76.
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1 Introduction
The long-term exposure to urban environment stress-
ors such as particulate matter, gases and noise have been 
found to significantly impact an individual’s behaviour 
and psychological health (Guite et al., 2006). The World 
Health Organisation (WHO) found that 91% of people 
are living in places where the air quality guidelines are 
not met and the use of non-clean fuels and household 
emissions in the atmosphere are causing over 4.2 million 
deaths each year (Ji,  2022). In addition, those living in 

some locations in the UK have a higher risk of developing 
serious health conditions such as higher heart rate (Kanjo 
et  al.,  2018), asthma and cardio-cerebrovascular disease 
where a lifetime of exposure to high-levels of pollution 
can result in reduced life expectancy (Air & Plan, 2021).

Recent developments in urban sensing and Internet of 
Things (IoT) has created the possibility to utilise environ-
mental and on-body sensing tools to monitor the envi-
ronment and its impact on individuals (Stamatelopoulou 
et  al.,  2018). Sensor-based technologies are becoming 
increasingly popular due to their availability to collect 
data in real-time, affordability and small size (Ueberham 
& Schlink,  2018). These advances continue to enable 
more opportunities for capturing environmental signa-
ture in urban setting by providing the mechanisms to col-
lect and analyse objective data physiological changes and 
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behaviour markers of mental wellbeing (Woodward 
et al., 2019) in real-time. In addition, the major advances 
and recent developments within data science have cre-
ated greater opportunities to understand large multi-
modal datasets through machine learning, deep learning 
and spatial visualisations (Johnson et al., 2020).

Literature on the Exposome is lacking in terms of men-
tal wellbeing centric investigation. For example, ExpoApp 
have modeled the short term health impact of high air 
pollution (Donaire-Gonzalez et  al.,  2019). A ‘Project 
Helix’ studied the environmental impact on individu-
als living in urban environments considering evidence of 
blood pressure, asthma, allergy related illnesses (Maitre 
et al., 2018). It has evidence that polluted environments 
around us have shown increased risk of developing seri-
ous health conditions like asthma and cardio-cerebrovas-
cular diseases (Loh et  al.,  2017). Early studies including 
our previous work is demonstrating the impact of envi-
ronmental factors on mental wellbeing (Johnson & 
Kanjo,  2021). However, existing research on Exposome 
was majorly focusing on physical illness and related 
issues lacking mental health centric investigation (Siroux 
et al., 2016). It also can be challenging to fully understand 
and address exposome because of its diversity, volume 
and quality of the data produced.

In this context, we present ‘DigitalExposome’ as the 
quantification step in understanding the relationship 
between the environment and mental health along with 
the perceived environmental responses which could 
potentially help in designing our cities focusing on 
mental wellbeing in mind. The following main research 
question has been addressed in this paper: How can we 
monitor, fuse, model and understand the person-environ-
ment interaction to help determine what makes an urban 
environment mentally healthy”. To answer this question , 
a prototype product, hardware and software is designed 
and developed for collecting and analysing mental health 
data in urban environment. Table  1, depicts the multi-
sensor fusion data obtained from participants.

The sensing kit built for this project comprises a sens-
ing edge (Enviro-Edge) with ten (10) embedded air qual-
ity sensors. The kit links to a custom-built smart phone 
app (EnvBodySens2) that collects accelerometer data, 
Bluetooth Low Energy (BLE) signal for people count, 
self-report labels, Noise, Date/Time and GPS traces. 
On-body data was collected using E4 Empatica. The 
data is instantly fused, time-stamped and geo-tagged 
at the point of collection. By collecting the data “in the 
wild” and out of the lab, paves the way for more realistic 
approach that can generalise to urban real-life environ-
ment. To the best of our knowledge this study developed 
a next generation sensing hardware prototype for unique 
combinatorial data collection and analysis including a 

comprehensive list of on-body, contextual and environ-
mental sensors along with the user responses which has 
not been attempted before. Major contributions of the 
paper are listed as follows: 

1. A real-world study with participants was organised 
for data collection. The correlation between environ-
mental and physiological variables indicate that par-
ticulate matter and certain gases can be related to a 
decrease in heart-rate variability (HRV) and Electro-
dermal Activity (EDA).

2. A range of multivariate statistical analysis tech-
niques have been applied including Principle Com-
ponent Analysis, Regression and spatial visualisations 
(including heat maps and geometrical tessellation) to 
explore correlated patterns in the data and unravel 
the association between the attributes which might 
suggest a causal relationship.

3. Visualizations of the spatiality of wellbeing on three 
different levels, including: (i) Individual-the wellbeing 
of one individual in same environment - (temporal), 
(ii)Accumulated-the wellbeing of one individual in 
many environments (spatial), and (iii)Collective well-
being- the wellbeing of group of individuals in many 
environments.

4. Predictive models applied to the heterogeneous 
multivariate attributes including, K-Nearest Neigh-
bor, Decision Trees and Support Vector Machines, 
and Deep neural networks-based techniques such 
as Convolutional Neural Network (CNN) to extract 

Table 1 DigitalExposome dataset variables and units

Urban 
Environmental 
Attributes

Body Physiological 
Reactions

Individuals’ perceived 
responses

Particulate Matter 1.0 
( µg/m3)

Heart Rate (BPM) Self-reported valence in 
the form of Emojis

Particulate Matter 2.5 
( µg/m3)

Heart-Rate Variability 
(ms)

Particulate Matter 10 
( µg/m3)

ElectroDermal Activity 
( µS)

Noise (dB) Accelerometer (m/s2)

Reducing Gases ( µ
g/m3)

Blood Volume Pulse 
(millivolts)

Oxidising Gases ( µ
g/m3)

Body Temperature 
( ◦C)

Ammonia ( µmol/L)

Carbon Dioxide (ppm)

Volatile Organic Com-
pound (ppm)

People count via 
wireless proximity 
detection
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features from the multimodal data feed which then 
fed in to the machine learning algorithms. The per-
formance of the on-body modality and environment 
modality is compared to infer affect quality (mental 
wellbeing) from the data.

2  Related work
Repeated and continuous human exposure to the envi-
ronment and high-concentrated air pollutants have been 
found to increase the risk of developing serious condi-
tions such as respiratory and cardiovascular diseases or 
even death (Laville,  2020). Research recently has began 
focusing towards how the environment can impact 
physical health but it also is necessary to explore how 
the environment can impact mental wellbeing. Pollution 
within the urban environment is a continual problem 
contributing to rising health and mental wellbeing chal-
lenges. The ability to monitor air pollutants, physiology 
and mental wellbeing will help unravel the relationship 
between the variables.

ExpoApp used a sensor fusion approach (environmen-
tal and on-body) to model the short term health impact 
of high air pollution. Their analysis showed those who 
didn’t have access to green spaces inhaled a higher rate 
of air pollution. A similar study monitored the environ-
mental impact to an individual, indicating a positive cor-
relation between the environment, body temperature, 
ElectroDermal Activity (EDA), motion and Heart Rate 
(HR) (Donaire-Gonzalez et al., 2019). In addition ‘Project 
Helix’ studied the environmental impact on individuals 
living in urban environments. Increased levels of blood 
pressure, asthma, allergy related illnesses and behaviour 
issues were found for those living in urban environments 
(Maitre et al., 2018).

Mobile technology in previous research coupled with 
sensors have aimed to provide a deeper understanding 
into the impact of exposure to an individual in a particu-
lar location. This highlights the potential of recent tech-
nological advances, whereby an individual’s exposure to 
the environment can be accurately assessed and calcu-
lated (Stamatelopoulou et  al.,  2018). Furthermore, par-
ticular areas have been found to have an increased risk 
of individuals developing serious health conditions such 
as higher heart rate, asthma and cardio-cerebrovascular 
disease (Kanjo et al., 2018). A study in 2018 used mobile 
technologies to develop the methods of assessing expo-
sure to an individual. This involved using an activity and 
GPS sensor to predict an individual’s location. Overall 
the investigation demonstrated the capability of using 
sensors to accurately assess an individual’s exposure.

Personal sensors to measure individual exposure such 
as air pollution, noise, outdoor temperature, physical 

activity and blood pressure have been a positive way 
forward in monitoring due to their ability to collect 
data continually and in real-time helping to reveal 
early health conditions (Nieuwenhuijsen et  al.,  2014). 
By combining these sensor data streams together and 
the possibility for an individual to continuously wear 
sensors, the data can show the exposures an individual 
encounters as well as predict early health conditions 
(DeBord et al., 2016).

Developed in 2005, the exposome concept encom-
passes each exposure that is subjected to a human from 
birth to death (Wild, 2012). In recent years, the concept 
is now actively being used in research communities as 
an alternative method to measuring the impact of the 
environment. Literature has already shown the impact 
of high polluted environments which have increased 
risk of developing conditions like asthma and cardio-
cerebrovascular diseases (Loh et  al.,  2017; Maitre 
et  al.,  2018). Figure  1 presents the exposome concept 
in its simplest stage and highlights the large amount 
of data (e.g. Climate, Urban environment, Social, Diet, 
Physical Activity, Genetics) that is required in order to 
calculate exposure impact across an individual lifetime.

There are three stages associated with the exposome; 
internal, general exposome and specific external (Vrij-
heid,  2014). The first stage of calculating the exposome 
is, ‘internal’ that measures the body’s biological response 
to exposures; such as ageing and stress. The second 
stage, ‘general exposome’ considers the wider impact on 
our lives and influences on the individual such as their 
education background and financial situation. Finally, 
the ‘specific external’ which examines effects out-side of 
the body such as air pollution, radiation and diet. Several 
experimental studies on this concept have stated that 
once all three stages have been measured, the exposome 
can be exactly calculated (Wild, 2015).

3  DigitalExposome
We introduce the term ‘DigitalExposome’ as a framework 
to quantify an individual’s exposure to the environment 
by utilising a range of technological, mobile-sensing and 
digital devices, as shown in Fig. 2. This concept aims to 
measure multiple environmental factors using mobile 
technologies and then quantify them in real-life settings. 
Combining multiple data collection methods helps to 
support DigitalExposome and gain a better understand-
ing into how exposures to the environment can impact 
mental wellbeing.

This concept, further promotes to the use of the expo-
some concept by digitally providing a better understand-
ing into the impact of exposure directly to an individual. 
Through DigitalExposome, we aim to explore the oppor-
tunities that we for-see with this concept in exploring the 
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link between pollution and wellbeing. To support this work, 
we have developed a range of sensing devices and applica-
tions. This involved a custom-build environmental moni-
toring system using a range off the shelf low-cost sensors, 
capable of sensing: Particulate Matter, Oxidising and Reduc-
ing Gases, Ammonia and Noise every 20 seconds with 
Internet-of-Things technology on-board. Readily available 
systems with these sensors built in are often very large, in 
fixed sensing stations and are not practical for ‘in-the-wild’ 
experiments.

DigitalExposome is primarily made up of two parts: 
data collection and data analysis. Both aspects make use 
of technological advances in order to calculate the expo-
some. In order to quantify the process, we propose the 
utilisation of data from sensors that show how an individ-
ual has been exposed to pollutants. We see this as being 
a key part of the exposome concept, where both terms 
are clearly connected through their vision of being able 
to capture the true exposure that an individual has been 
exposed to. Data generated through the use of technol-
ogy, such as sensors offers new opportunities to link the 
exposure more directly to health.

4  Methodology
4.1  System architecture
Figure  3 presents the conceptual system architecture of 
DigitalExposome with four key layers. Firstly, the con-
ceptual layer explains the four main areas that can impact 

mental wellbeing include environmental, biological, 
social and cultural factors (Liang et al., 2019). The sens-
ing layer contains the physical devices (e.g. smartphone 
and wristband) and physiological systems to monitor HR, 
EDA and body temperature along with the environmen-
tal factors such as air quality. The computing layer lists 
several key core data science techniques that enables 
processing and analysis of the data including: Machine 
Learning, Deep Learning, Statistical Analysis and Data 
Visualisation. Finally, the application layer presents 
potential application scenarios of DigitalExposome for 
mental wellbeing. This can include the use of monitoring 
through the equipment described in Section 3; the use of 
green spaces in supporting prevention and treatment to 
result in a positive mental wellbeing.

4.2  Experimental setup
Following ethical approval from Nottingham Trent Uni-
versity’s Ethics Committee, we recruited a total of 40 
participants (25 Males and 15 females, aged between 18 
and 50) who were all screened prior to the study, result-
ing in the total number of samples, after cleaning were 
41,037. Previous literature has used a similar number of 
participants to carry out studies in the same area (Aspi-
nall, 2015; Kinnunen et al., 2020). Participants’ were each 
provided with three devices; an environmental monitor-
ing device (Enviro-Edge), Empatica E4 wristband and 
Samsung phone ready with the EnvoBodySends app. 
Each participant walked around a pre-specified route 

Fig. 1 The three stages of the Exposome concept depicting how each plays a part in calculating the health assessment risk for an individual
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Fig. 2 Data Collection methods to support DigitalExposome

Fig. 3 The conceptual and system architecture of DigitalExposome for calculating the impact to mental Wellbeing
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within an urban environment around Nottingham Trent 
University (Clifton Campus). Whilst walking, the three 
devices continually collected sensor data on environ-
mental pollutants and physiological changes. In addition, 
participants self-reported their wellbeing continuously 
during the walk. The information acquired from each 
device is shown in Fig. 4.

The route was pre-specified, by selecting a mixture 
of urban environments from several green to busy and 
polluted spaces which would help to demonstrate the 
impact of different levels of exposure to air pollutants. 
Additionally, the journey taken by all participants took 
around 40 minutes to complete. This was decided due 
to previous user experience whereby they found it dif-
ficult to walk for longer. In addition, we did not want 
to exhaust participants which could have an impact 
on their body responses. Furthermore, studies with 
similar length of experiment time have found it dif-
ficult to motivate participants to walk further (Alajmi 
et al., 2013; Al-barrak et al., 2017; Kanjo et al., 2018).

The experiment data collection tools are depicted 
in Fig. 5 that include the Enviro-IoT, E4 Empatica and 
smartphone application. The Enviro-IoT edge device 
equipped with a Raspberry Pi 4 records environmen-
tal data continually once every 20 seconds. While the 
E4 Empatica sensors’ data is sampled at different rates 
with HR at 1Hz and EDA, BVP, HRV and body temp at 
64Hz.

Each participant used the custom built pre-installed 
“EnvBodySens” smartphone app to record their perceived 

wellbeing. We have adopted the ‘Personal Wellbeing 
Index for adults’ which asks the user how they are feeling 
with their life as a whole (Cummins & Ps, 2013). This has 
been adapted in the form of a five-point Likert SAM scale 
(Bradley & Lang, 1994) to provide a proven method for 
self-reporting subjective wellbeing. In our pre-installed 
mobile app the user is met with five well-know emojis, 
displayed on buttons from 1=negative/low to 5=posi-
tive/high . The idea is that the participant will be con-
stantly prompted by the researcher to ascertain how they 
are feeling. Several studies such as Kanjo et  al. (2018) 
and NeuroPlace (Al-barrak et al., 2017 have shown how 
momentary wellbeing labels can change quickly as mov-
ing through environments.

4.3  Pre‑processing
Following the data collection, the data was cleaned 
and pre-processed. Due to the varying sample rates, 
the physiological data collected (EDA, BVP, HRV and 
body temperature) were down-sampled to a rate of 
1Hz to match the sample rate of collected HR by the 
device. In addition, the collected environmental sensor 
data had to be up-sampled to match the sampled rate 
of the physiological data at 1Hz. This was due to the 
low sample rate produced by the environmental device. 
Finally, the labelled data from the mobile smartphone 
was extracted and up-sampled to the same rate as the 
environmental and physiological data to 1Hz to remain 
consistent with the other data. To sample the data we 
have used linear interpolation (Needham, 1959). If the 

Fig. 4 List of the fused variables collected by each device
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two known points are given by the coordinates  (x1 ,  y1) 
and  (x2 ,  y2). The linear interpolant is the straight line 
between these points. For a value x in the interval  (x2 , 
 x1), the value y along the straight line is given from the 
equation of slopes as shown below:

Following this, all signals were then normalised to 
bring all variables within the same range for both the 
data analysis and machine learning. Finally, all the 
sampled sensor data was fused together. Whilst clean-
ing the data, there were two variables excluded from 
the experiment; Carbon Dioxide and Volatile Organic 
Compound because of issues with logging the data 
resulting in no change in value during the experiment.

4.4  Deep learning classification
To further explore the relationship of variables impact, 
machine learning and deep learning networks have been 
incorporated to classify the five self-reported states of 
wellbeing using the environmental pollution and physi-
ological data from the 40 participants who successfully 
labelled their wellbeing. There were 3 participants whose 
data was removed prior to the classification due to issues 
around the self-recorded label and sampling of the envi-
ronmental variables.

Deep learning presents many opportunities to extract 
features and classify raw sensor data. To enable the clas-
sification of the fused environmental, physiological and 
labelled data we employ a one dimensional Convolutional 

(1)y = y1 + (x − x1)
y2 − y1

(x2 − x1)

Neural Network (CNN) (Bai et  al.,  2018). Previous stud-
ies have shown how effective CNNs can infer mental well-
being, particularly using physiological data (Woodward 
et  al.,  2020). Supervised CNNs are constructed by using 
numerous layers. These include the input, output and hid-
den layer which includes a convolutional layer that make 
use of a set of learnable filters, pooling layers, fully con-
nected and normalisation layers (Yamashita et al., 2018).

In this work a one-dimensional CNN to classify the 
data, a CNN has also been used to extract features which 
were then used to train a number of machine learning 
classifiers. The extracted features from the CNN were 
used to train Random Forest, Support Vector Machine 
(SVM), Decision Tree, Gaussian Naive Bayes, Logistic 
Regression and Gradient Boosted supervised machine 
learning models to classify the five self-reported states 
of wellbeing using the pollution (PM1, PM2.5, PM10, 
Oxidised, Reduced, NH3 and Noise) and physiological 
(BVP, EDA, HR, HRV and body temperature) data. These 
machine learning models were selected due to their 
high popularity (Lisetti & Nasoz, 2004), trained over 20 
epochs with a batch size of 128 and tested using 10-fold 
cross validation. The network architecture consists of 2 
1-dimensional convolutional layers (64 and 32 neurons 
respectively) followed by a dropout layer with a rate of 
0.5 to prevent over fitting before the ‘softmax’ activation 
function. Batch normalisation has been utilised within 
the network to normalise the inputs of each layer fol-
lowed finally by a fully connection layer. The learning 
rate has been set at 0.001. Finally, the loss function used 
is Adam.

Fig. 5 (left) Screenshot of smartphone application, (middle) E4 Empatica, (right) Environment monitoring kit
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5  Results
5.1  Statistical factorial analysis and variable importance
We have employed mathematical and statistical 
approaches for the exploratory analysis stage including 
variable Correlations, PCA factor maps, variable impor-
tance and Pearson’s R Correlation Coefficient to measure 
the association between two categorical variables. Table 2 
depicts a parameter value-based description showing val-
ues in this section.

A correlation matrix has been depicted at Fig. 6 to fur-
ther understand the relationship between the different 
variables. From the matrix, it is clear to see that some 
variables are highly correlated together. Analysing the 
individual cells shows HRV correlates well with PM10 
and NH3. In addition, EDA significantly correlates with 
PM10, Oxidised and Reduced gases and NH3.

PCA Factor Maps are an effective method for large 
datasets, to help understand the relational impact 
between different variables, with reducing information 
loss (Jollife & Cadima,  2016). Also, using PCA maps 
provides a visual method of presenting data and observ-
ing correlations between different variables (Kanjo 
et al., 2018). PCA factor maps give a view of all the vari-
ables projected on to a plane, spanned by the first two 
principle components. This method demonstrates the 
structural relationship between the different variables. 
We have demonstrated two PCA factor map plots based 
on variable importance of the many variables collected.

Figure  7 (A, B), presents the captured environmental 
and physiological variables depicted on a PCA map. It is 
worth noting, that most of the body attributes EDA, HR 
and HRV are all at the top of the figure, while, the envi-
ronmental variables PM1, PM2.5, PM10 and Reducing 
gases are located in the middle. From the diagram (A), 
there is Dim1 25.9% and Dim2 19.2%, resulting in 45.1% 
in total variance across the environmental and physiolog-
ical variables. It is worth noting that the most important, 
(or, contributing) variables are highlighted using the col-
our gradient (i.e. darker colours indicate higher contrib-
uting factor).

At the second PCA diagram (B), depicts the most 
important variables as identified at diagram (A) includ-
ing PM1,PM10, PM2.5, HR and IBI with the least con-
tribution variables discounted. With this PCA diagram 

Table 2 Parameter Value-Based Description of Sensor Units

Parameter Value Description

dB Decibels

ms milliseconds

µg/m3 one-millionth of 
a gram per cubic 
meter air

µS Microsiemens

ppm parts per million

Fig. 6 Correlation Matrix of the Environmental and Physiological Variables
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we notice that the total variance increases to 80% made 
up from Dim1 49.8 and Dim2 30.2%. Higher increased 
of variance in other studies has shown the stronger 
association between variables (Rosenthal,  2012), as 
evident in PCA diagram (B). The close grouping and 
proximity of the independent variables suggests that 
HRV, HR and PM10 are correlated and that HRV, HR, 
PM2.5 can also be correlated. Analysing these early 
findings indicates that lower the HRV and higher HR 
is correlated to a higher level of air pollution within the 
environment.

Furthermore, Fig.  8 demonstrates the impact of well-
being against levels of PM2.5 within the environment. 
The bars on the chart are associated with how many 
times a particular user would label how they were feel-
ing (reported wellbeing) whilst walking around the envi-
ronment. The results of this indicate that high levels of 
PM2.5 are associated with a negative wellbeing, shown by 
participants choosing ‘1’ on the device. Whereas where 
participants labelled ‘5’ (very positive wellbeing), the lev-
els of PM2.5 were much lower. This early analysis on the 
collected sensor data helps to understand the impact of 
pollution on mental wellbeing.

5.2  Multi‑variant regression analysis
Using a PCA analysis and covariance matrix enables the 
exploration of the relationship between the obtained 
variables. We continue this process by using multi-vari-
ant regression to understand the importance each vari-
able has on the other. In the case of this work, we explore 
each of the dependent variables (physiological data) to 

compare against the independent variables (environmen-
tal data).

Multiple Regression Model for EDA: Firstly, a multi-
ple linear regression module for EDA has been used to 
understand the impact of this physiological on-body sen-
sor to the other independent environmental variables 
including NH3, Noise, PM1, PM2.5, PM10 and Reduced. 
Table 3, shows the multiple regression results for EDA.

At Table 3, the coefficients demonstrate that the envi-
ronmental variables (NH3, Noise, PM10 and PM2.5) 
involves an increase in EDA. A negative coefficient 
shows that as EDA increases the remaining environ-
mental variables decrease showing that there is a less 
of association between them. In addition, a negative 
(-) t-stat value for each environmental variable depicts 
a negative impact on the variable of EDA. Whereas a 
positive value indicates an association between the 
environmental variable and EDA. The data in Table  3 
was then evaluated using a regression curve shown in 
Fig.  9. This shows the relationship between the calcu-
lated residual values verses the fitted values shown at 
(A) and (B) respectively.

Figure 9 depicts the graphs of Residuals VS Fitted (A) 
and a normal Q-Q plot (B) for EDA by using bi-modal 
data. The aim of a Residual VS Fitted graph is to ascer-
tain whether linearity holds which is normally indicated 
by the mean of the residual values being close to 0. In 
the case of (A), this is shown by the red dotted line being 
close to 0. On the other hand, the Q-Q plot (B) is used 
to in order to fit a linear regression model. In many Q-Q 
plots, the data on the graph takes the shape of a twist like 

Fig. 7 PCA Analysis - A Variance between the different variables, B Variance between the different variables without EDA
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seen in this plot (Kanjo et al., 2018; Scott, 2015). This plot 
is presenting a symmetric distribution with ‘fat-tails’, oth-
erwise known where the ends of the line curve. The lower 
part of the plot is almost linear, suggesting a normal dis-
tribution in relation to one mode of data distribution. In 
addition, the upper part of the Q-Q plot again suggests 
linear, showing an approximate distribution. The steep 
line between the upper and lower curve is steeper than 
the line y = x which suggests the distribution plotted on 
the vertical axis is more dispersed than the distribution 
plotted on the horizontal axis. The implication to this is 
that the data points are normally distributed.

Fig. 8 Depicts the relationship between the self-reported Participant’s wellbeing (Label) and PM2.5

Table 3 Multiple Regression Analysis between EDA and 
Environmental variables

Coefficients Standard Error t Stat P‑value

Intercept -0.02381894 0.02225209 -1.07041 0.284452

nh3 0.000291595 1.14608E− 05 25.44285 1.5E− 139

noise 0.004050864 0.000221511 18.2874 7.92E− 74

oxidised -0.00590754 0.000143065 -41.2928 0

pm1 -0.00768185 0.00081832 -9.38735 7.11E− 21

pm10 0.000939923 0.000285371 3.29369 0.000991

pm25 0.003698711 0.000800215 4.622149 3.83E− 06

reduced -0.00058528 4.59985E− 05 -12.7239 7.06E− 37

Fig. 9 EDA Regression: Residuals VS Fitted values curve (A) and Q-Q Plot (B)
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Multiple Regression Model for HR Below pre-
sents the multiple linear regression model for HR using 
the other independent variables (environmental). This 
includes: NH3, Noise, PM1, PM2.5, PM10 and Reduced. 
Table 4, shows the multiple regression results for HR:

The findings in Table 3 are in agreement with previous 
research that shows as PM1.0 and PM10 increase result 
in an increase in Heart Rate due to the highest positive 
coefficient reading (Rumchev,  2018). In addition, NH3 
shows a very small positive coefficient showing impact 
towards HR. Finally, research has shown how differ-
ing levels of irregular environmental noise can impact a 
regular heart-beat. In particular, recent studies explor-
ing this find that noise levels between 55 and 75 Decibels 
(dB) are linked to a higher risk of developing heart related 
diseases (Münzel et al., 2014).

Figure 10 depicts the Residual VS fitted values and nor-
mal Q-Q Plot as shown at A and B respectively. Similar 
to the EDA Q-Q plot, the HR Q-Q plot demonstrates a 
twist at either end of the plot. In addition the data shows 
a clear bi-modal distribution. The lower part of the plot 
is almost linear suggesting an approximate normal dis-
tribution. The line in the middle of the upper and lower 
parts follows a more linear (y=x) line, meaning that the 
distribution is less dispersed. It is worth noting that there 
were three outliers for HR distribution due to erroneous 
sensor readings.

5.3  Spatial visualisations
To summarise the dynamic sensing patterns and act 
upon the findings using visualisation, the geographi-
cal study area needs to be divided in smaller areas. 
One common way of looking at patterns is to use heat 
maps to visualise the sensor data. Mapping of sen-
sor data in this way has in other studies been a proven 
method in visualising dynamic data (Mashima,  2012). 
For example, Fig.  11 presents six heat maps plotting 
environmental and physiological sensor data, showing 
the changes whilst the participant travelling along the 
route. In particular, observations on the (upper right 
of the maps) show that each participant was subjected 
to an increase of PM2.5 and Noise and was met with 
an increase of HRV and EDA. This approach further 
demonstrates the impact of the environment on mental 
wellbeing states.

Figure 11, depicts the sensor data hot-spots which are 
scattered along the path with varying levels of intensity. 

Table 4 Multiple Regression Analysis between HR and 
Environmental variables

Coefficients Standard Error t Stat P‑value

Intercept 128.842080 1.7214547 74.844883 0

nh3 0.00732292 0.0008866 8.259339 1.598E− 16

noise -0.08328681 0.0171364 -4.8602191 1.185E− 06

Oxidised -0.05183384 0.0110676 -4.6833448 2.849E− 06

pm1 0.11853817 0.0633064 1.8724500 0.06116

pm10 0.11218463 0.0220767 5.0815832 3.792E− 07

pm25 -0.23280472 0.0619057 -3.7606292 0.000170

reduced -0.07204261 0.0035585 -20.245134 8.125E− 90

Fig. 10 HR Regression: Residuals VS Fitted values curve (A) and Q-Q Plot (B)
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Results from this visualisation further demonstrate that 
when participants are met with high levels of pollution, 
particularly PM2.5 (A), Noise (C), Reducing (D) and 
EDA (F), directly impacts HRV (B) and EDA (F). While 
the heat maps show the level of intensity based on GPS 
traces coordinates, the sensor data on these heat maps 

indicate the real distribution of sensor data. One option 
is to divide the study area into grid cells (Kanjo, 2010) 
however, it is difficult to allocate a cell to each sensor 
reading, moreover, it is not possible to decide on the cell 
size, since the density of the sensor mobility traces can 
be of different density distribution.

Fig. 11 Several heatmaps (A, B, C, D, E, F) indicating the changing of environmental and physiological sensor data as participants move between 
environments
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To address these issues, we utilise combinatorial compu-
tational geometry algorithm called “Voronoi”, which is a dia-
gram partitioning of a plane into regions based on distance 
to points in a specific subset of the plane (Dobrin,  2015). 
The method of Voronoi visualisations is a computational 
geometry algorithm which allows the visualisation of large 
data sets (Dobrin, 2015). The concept works by defining a 
set of polygon regions called cells, whereby the cells give an 
indication of the overall density of an object area of the size 
of the object itself (Pokojski & Pokojska, 2018).

Voronoi Diagram divides the space into a set of regions 
called Voronoi cells, including the space that is closest to the 
object (route location, in our case). The size of these cells 
gives an indication of the density of the area a certain object 
is in or the size of an object (Pokojski & Pokojska, 2018). The 
cell structure also shows the Delaunay triangulation, which 
easily allows calculating an object’s immediate set of neigh-
bours. The definition of a Voronoi cell is given by the follow-
ing equation, where x is a planar metric space; p is the set of 
generator points in the metric space; and d is the distance 
between all points in x and a specific generator point (where 
the distance can be defined using any distance definition 
such as Euclidean, Manhattan, or road-network distance):

Thus, the Voronoi diagram is composed of a collection 
of tessellations (i.e. polygons) defined as Vor, where:

The creation of a Voronoi tessellations is a dynamic 
procedure till all the points are represented in adjacent 
polygons. If sufficient number of particles did not sat-
isfy Equation (1) then Voronoi gets partially filled. In this 
case, the data is then redistributed. By giving each poly-
gon a class value Ci that corresponds to the sensor value 
collected in a particular GPS coordinate, it is then possi-
ble to divide the space into adjacent polygons with differ-
ent sensor reading which are represented in colours.

Figure  12, presents the self-reported wellbeing data 
using the app on the specified route for this experiment. 
The color of the polygons represents the wellbeing data 
from low negative to high positive. The visualisation 
demonstrates that poor wellbeing (lighter colour; i.e. 
cream and yellow) was most reported along the main 
road where high levels of pollution were also experienced 
whereas more positive states of wellbeing was recorded 
in less polluted areas such as fields and open spaces (dark 
colours; i.e. blue ). On the right of the Voronoi, demon-
strates the labelled data from a participant while walk-
ing along the route. As an example, the arrow shows that 
when participants are met with a change in the environ-
ment, they label as being unhappy.

(2)Vori =
{

x | d(x, pi) ≤ d(x, pj), j �= i}

(3)Vori = {Vor1,Vor2...Vorn}

5.4  Classification results
Figure 13 presents the f-score for each of the classifica-
tion models trained using standard statistical features. 
The Random Forest classifier was the best performing 
model achieving an f-score of 0.76, outperforming the 
other statistical models by 0.09 and the CNN which is 
frequently used for wellbeing classification by 0.13. To 
further explore the environmental impact on mental 
wellbeing, the best performing classifier (Random For-
est) was trained using the environmental and physiologi-
cal data separately which achieved an f-score of 0.67 and 
0.61 respectively, as shown in Fig. 14.

Analysing the results further in terms of precision and 
recall across the six different models for classification the 
scores were very similar in values. In particular, Logis-
tic Regression and Support Vector Machine scored very 
low on precision and recall (0.44 and 0.33 respectively), 
struggling at predicting the middle of labels (3 and 4). At 
the two highest achieving models (Decision Trees and 
Random Forest) both were similar resulting in higher 
precision and recall values (0.70 and 0.74 respectively), 
with slightly lower scores of 0.33 when predicting label 2.

The results from Fig.  14 indicates that wellbeing can 
be inferred using environmental data alone, achieving an 
f-score of 0.67 while wellbeing can be inferred from the 
physiological data with an f-score 0.61. As previous stud-
ies have shown, it is expected that the physiological data 
would accurately classify wellbeing due to its high corre-
lation with the sympathetic nervous system (Sharma & 
Gedeon,  2012). However, it is interesting that pollution 
data combined with physiological data outperformed the 
model trained using pollution data alone, demonstrat-
ing the benefits of pollution data. Furthermore, the CNN 
trained using only pollution data outperformed the CNN 
trained using physiological data, suggesting pollutants 
have a considerable impact on wellbeing.

6  Discussion and limitations
Continually collecting and fusing real-world environmen-
tal and physiological sensor data helped us learn about our 
surroundings and how we interact and behave in different 
environmental conditions. This has gone beyond previous 
work in this area which typically only observes how noise 
can impact wellbeing (Kanjo, 2010) and does not consider 
other environmental pollutants. A PCA analysis suggests 
that when all collected variables are combined together 
they can describe the variability of the data as a whole. 
In particular, on the PCA map, the physiological sensors 
(EDA, HR and HRV) point towards a different location 
to the environmental variables. From our analysis we can 
conclude that a range of environmental factors PM1.0, 
PM2.5, PM10 impact physiological changes HRV, HR. The 
Multi-Variant Regression analysis has further unravelled 
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the relationship the environment and physiological vari-
ables, in particular focused on HR and EDA.

Voronoi visualisations have given an indication of how 
changes within the environment can have an impact on 

mental wellbeing. Typically, it was found that where air 
pollution such as PM1, 2.5, 10 and noise was increasing, 
participants labelled their wellbeing as very negative. This 
demonstrates consistent results with previous studies in 

Fig. 12 (left) Voronoi overlay from one participant data. Each polygon represents one location trace tagged with a wellbeing label while collecting 
the data in specified route (the map layer from Microsoft Bing), (right collected label data from start to end)

Fig. 13 Comparison of classification models trained using statistical features and raw data from a CNN
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this area (Kanjo, 2010; Johnson et al., 2020). This form of 
spatial analysis, greatly helps in understanding the degree 
to which a place is similar to other nearby places.

The ability to classify the collected data presents many 
possibilities for the real-world inference of wellbeing 
using pollution data. The results show that using fea-
tures extracted from a CNN successfully improved the 
accuracy in which wellbeing can be inferred. Combining 
physiological with environmental pollution data achieved 
an f-score of 0.76 compared with an f-score of 0.61 when 
trained using only physiological and 0.67 when trained 
using only environmental pollution data. The ability for 
pollution data to increase overall f-score demonstrates its 
impact on wellbeing and shows pollution should continue 
to be considered as a factor that influences changes in 
wellbeing. Furthermore, the best performing model was 
a Random Forest trained using features extracted from 
a CNN. The ability for machine learning models such as 
the Random Forest Classifier to outperform a CNN dem-
onstrates the benefits of using a CNN to extract features 
and train using a separate classifier.

During this study some limitations were encoun-
tered. Early analysis on the collected sensor data found 
that the Empatica E4 was not reliably collecting partici-
pants’ EDA. While the EDA sensor worked successfully 
for some, for other participants no variation in EDA was 
recorded throughout the experiment. At the point of fus-
ing the collected sensor data, both CO2 and VOC were 
found to have collected data for some participants but 
not all, resulting in its dismissal. As this study was con-
ducted during the COVID-19 pandemic, collecting data 
in a participant heavy experiment was challenging task. 

In the future, we aim to recruit more participants to fur-
ther investigate and generalise the relational impact of 
the environment on mental wellbeing.

7  Conclusion
In this paper, we proposed the new concept ‘DigitalEx-
posome’ that demonstrated the potential of employing a 
multi-model mobile sensing approach to further under-
stand the relationship between the environment and its 
impact on mental wellbeing. To achieve this, a real-world 
experiment was conducted where participants walked 
around a specified route reporting their responses and 
collecting environmental, behavioural and on-body sen-
sor data. Several statistical analysis techniques were used 
including PCA, Multi variant Linear Regression, Voro-
noi and data spatial visualisations were implemented to 
explore the variation in data and the factor importance. 
In this study, we found that physiological (on-body) sen-
sor data is directly correlated with high levels of pollution 
(particulate matter in particular) within the environment. 
In addition, CNNs have helped successfully classify five 
states of wellbeing achieving an f-score of 0.76 using the 
fused physiological and pollution data. Sensing technol-
ogy can shed the light on how people breath, feel and 
interact with their environment in different surround-
ings. This can help in offering a better security for city 
dwellers and creating a bond with their environments. In 
the future, we hope to consider additional environmental 
sensors to observe greater changes that may improve our 
sense of places and characterize the relationship between 
people and spatial settings, which in turns might influ-
ence the future design of urban spaces.

Fig. 14 Comparison of Random Forest combined with CNN when trained using only the environmental or physiological data
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