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How the built environment affects 
the spatiotemporal pattern of urban vitality: 
A comparison among different urban functional 
areas
Shuwei Tang1,2,3 and Na Ta1,2,3*    

Abstract 

Urban vitality is an essential indicator of an area’s capacity to promote lively social and economic activities. Urban 
functional areas can play different roles throughout the day, and urban vitality may exhibit significant intraday tem-
poral dynamics. However, few studies have evaluated the dynamic vitality throughout the day among various urban 
functional areas or explored how the built environment influences this attribute. To bridge this gap, we assessed the 
vitality dynamics in intensity, variability, and night ratio. We then examined the influencing factors of urban vitality in 
Central Shanghai using heatmap and point of interest (POI) data. We found significant differences in the intensity, vari-
ability, and night ratio of urban vitality among different urban functional areas. The difference in vitality intensity was 
more significant than the variability and night ratio between weekdays and weekends. The built environment signifi-
cantly affected urban vitality, but its role differed among the various urban functional areas. Overall, describing urban 
vitality from a dynamic perspective could improve our understanding of the differences in attracting and maintaining 
human activities among different urban functional areas.
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1  Introduction
Urban vitality refers to the capacity of a place to pro-
mote lively social and economic activities (Jacobs, 
1961). Increasingly, scholars and managers have aimed 
to enhance urban vitality through urban planning (Xia 
et al., 2022; Ye et al., 2018). Vibrant cities tend to attract 
more high-end talent, promote economic development, 
enhance the subjective well-being of residents, and 
increase urban competitiveness (Mouratidis & Poortinga, 
2020; Woodworth & Wallace, 2017; Zeng et al., 2018).

The emergence of big data provides new opportuni-
ties to analyze the quantitative characteristics of urban 
vitality (Jin et  al., 2017; Sulis et  al., 2018). Traditional 
data such as questionnaire data or case studies can 
often only analyze static characteristics of vitality at 
small spatial scales (Maas, 1984; Sung & Lee, 2015; J. 
Wu et  al., 2018a, 2018b), which limits our understand-
ing of the delicate spatial and temporal structures of the 
urban vitality. In recent years, with the development 
of information and communication technology (ICT), 
large-scale, high-precision, and multidimensional data 
have provided the latest support for the study of urban 
vitality (Batty, 2010). Over the past decade, based on 
mobile phone data (Yue et al., 2017), nighttime light data 
(Zheng et al., 2017), check-in data (Gan et al., 2021; He 
et al., 2018), etc., scholars have quantitively analyzed the 
spatial distribution characteristics of urban vitality at the 
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neighborhood, urban block, and kilometer grid scales 
(C. Wu et al., 2018a, 2018b; Ye et al., 2018; Zhang et al., 
2021).

Compared to spatial characteristics, the temporal 
dynamics of urban vitality have received less attention. 
Most studies have more notably focused on the variation 
in urban vitality between spatial units, while little atten-
tion has been given to the characteristics of human activ-
ities over time in each spatial unit (Liu et  al., 2019; Xia 
et al., 2022). For Jacobs, urban vitality meant that many 
people walked through neighborhoods at different times 
for various activity purposes (Jacobs, 1961). The spati-
otemporal stability of human activities at a given location 
has been considered a fundamental trait of vitality (Sulis 
et  al., 2018). Therefore, the intensity of urban vitality is 
essential, but the variation in vitality should also be con-
sidered. Currently, research on the temporal dimension of 
urban vitality mainly manifests in two aspects. One type 
entails the measurement of the intensity of urban vitality 
within different spaces considering the cumulative urban 
vitality value over time (Yue et al., 2017), which remains 
a spatial comparison. The other type involves the analysis 
of the spatiotemporal patterns of urban vitality through 
the construction of various indicators, such as the spati-
otemporal vitality (C. Wu et al., 2018a, 2018b), variability 
(Guo et  al., 2021; Sulis et  al., 2018), and daytime-night-
time vitality (Kim, 2020; Wu et al., 2022; Xia et al., 2022). 
These indicators can suitably capture urban activities that 
rise and decline in different time frames.

Urban vitality is a social performance indicator closely 
related to urban space; therefore, many scholars have 
explored the influence of the urban built environment on 
vitality. According to Jane Jacobs’ understanding of urban 
vitality, the five main conditions for a city to remain vital 
include mixed land use conditions, small-scale blocks, 
mixed elements, aged buildings, and high-density pedes-
trian volumes (Jacobs, 1961). In urban morphology the-
ory, it has also been suggested that suitable accessibility, 
appropriate building density and design, and sufficient 
functional mix are critical indicators for urban vitality 
enhancement (Montgomery, 1998). In empirical studies, 
accessibility, density, typology, and diversity have been 
highlighted as important spatial factors of urban vitality 
(Chen et al., 2021; Long & Huang, 2019; Wu et al., 2022; 
Ye et al., 2018; Yue et al., 2017; Zhang et al., 2021). How-
ever, most studies have focused on the influencing factors 
of general urban vitality or time-specific vitality (Guo 
et al., 2021; Xia et al., 2022), but few studies have inves-
tigated the effects of the built environment on temporal 
variations in urban vitality.

The importance of urban functions on urban vitality 
has received much attention among spatial factors. Jane 
Jacobs argued that a good mix of functions in urban areas 

could ensure the flow and density of people and activities 
(Jacobs, 1961). High-vitality places are often equipped 
with multiple functions (Liu et al., 2019; Yue et al., 2019), 
while different urban functional areas, such as residen-
tial, commercial, and public spaces, play varying roles 
throughout the day (Liu et  al., 2012), leading to various 
patterns of urban vitality. It is necessary to examine the 
characteristics of urban vitality among different types of 
functional areas and analyze its influencing factors.

Therefore, choosing Shanghai Central City as a case 
study, this paper examined the spatiotemporal character-
istics of urban vitality and its influencing factors among 
different types of urban functional areas. This paper 
intended to contribute to the literature in two ways. 
The first was to examine the differences in the intensity, 
hourly variation, and nighttime vitality level in urban 
vitality among the different urban functional areas. The 
second was to analyze the influencing factors of urban 
vitality variation among different urban functional areas.

2 � Data and methods
2.1 � Study area
The main research area in this paper is the central city 
of Shanghai, as shown in Fig.  1. Shanghai is one of the 
most advanced cities in China, attracting a large amount 
of economic activities and population in the last decades. 
In 2020, Shanghai harnessed a gross domestic product 
of 3.9 trillion RMB with a population of 27.1 million. In 
recent decades, the city has attracted many people from 
all over China seeking working and living opportunities. 
Urbanization and economic development have signifi-
cantly increased urban vitality, especially in the central 
city (Liu et  al., 2012; Yue et  al., 2019). According to the 
Shanghai Master Plan (1999–2020), the region within 
the Outer Ring Road is called the central city, covering a 
total area of 691.2 square kilometers (Li et al., 2018; Yue 
et al., 2019) (Fig. 1). Undergoing dramatic spatial recon-
struction, the central city of Shanghai has evolved into a 
livable area with high density and multifunctional land 
use (Li et al., 2018; Tian et al., 2017). Different land use 
types show significant spatial and temporal differences 
in attracting human activities. Thus, the central city of 
Shanghai could represent a suitable case to investigate 
the spatial and temporal patterns of urban vitality and its 
relationship to urban functional areas.

2.2 � Urban function measurement based on points 
of interest (POIs)

Drawing on literature (Hu & Han, 2019; Yuan et  al., 
2012), this paper measured urban functions based on 
Amap (http://​www.​amap.​com) POI data. With the help 
of our technical cooperators, we obtained 1,308,813 POI 
points of twenty categories in Shanghai using the API 

http://www.amap.com
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interface provided by Amap. Considering the needs of 
urban vitality research, we deleted records outside cen-
tral city area. Then, we reclassified the original twenty 
categories of POIs into five: administration and public 
service, commercial and business, industrial, residential, 
and transportation facilities.

The urban functional area identification process is 
shown in Fig.  2. We chose a 500-m grid as the funda-
mental analysis unit. After reclassification, the five types 
of POI data were overlaid with 500-m grid data in the 
central area, and the number of POIs in each grid was 
counted.

We constructed the POI category ratio index (Ci) 
to identify the main function in each grid based on the 
weighted sum of the different types of POIs (Hu & Han, 
2019). First, considering the differences in size and 
importance of the various POI types, the weighted sum 
(Si) of each type of POI was calculated. Then, Ci was cal-
culated as the proportion of Si to the total weighted sum 
of the various POIs, as follows:

where i was the POI category, and pix denoted the 
weighted sum of x subtypes of POIs under i categories.

The urban functional area could be determined based 
on the Ci index (Hu & Han, 2019). When the Ci value 
of one POI type in a grid exceeded 50%, this grid was 
labeled as a single functional area of POI type i. When 

(1)Weighted sum of POI type i : Si = pix

(2)

Category ratio index of POI type i : Ci =
Si

∑5
i=1 Si

all Ci values were less than 50%, this unit was considered 
a mixed functional area. The grid was regarded as a no-
data area when any POIs of these five categories were not 
included in a grid unit. Most of the non-data areas were 
around the Huangpu river.

Thus, Central City of Shanghai adopted the mixed 
functional area as its main functional form, with a pro-
portion of 49.38% (Fig.  3). Regarding single functional 
areas, commercial and business areas occupied the most 
significant proportion of 16.80%, followed by residential, 
administration and public service, industrial, and trans-
portation areas. In addition to typical commercial cent-
ers such as Lujiazui, Xujiahui, and People’s Square, small 
commercial areas near the outer ring area could be iden-
tified. Residential areas were mainly located in peripheral 
areas, with a larger proportion of industrial areas distrib-
uted in Pudong and a widespread distribution of admin-
istration and public service areas.

2.3 � Urban vitality measurement based on heatmap data
Baidu heatmaps are based on the geographic location 
data of cell phone users on this location-based services 
(LBS) platform. Considering billions of user data, we 
could suitably obtain the crowd concentration degree 
during different periods and determine the urban 
space usage. Hourly heatmap data from 2020.11.21 to 
2020.11.27 for Central City of Shanghai were obtained. 

(3)
Urban functional area ∶ F =

⎧
⎪
⎨
⎪
⎩

Functional area i, if Ci ≥ 0.5

Mixed functional area, if Ci < 0.5

Fig. 1  Research area
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Though long-term data is better for detecting more 
complex urban vitality variations, a one-week time 
frame is usually used to analyze human activities and 
daily urban vitality variations under a typical urban 
rhythm cycle (Ettema & van der Lippe, 2009; Guo et al., 
2021; Liu et al., 2012, 2019; Raux et al., 2016).

Then, three indexes were calculated to measure urban 
vitality’s spatial and temporal patterns, including the 
intensity, variability, and night ratio. To construct these 
indexes, heatmap density in the ith hour (HDi) in each 
grid was calculated as the average heat value per square 
kilometer for each hour.

First, the intensity was used to measure the mean 
heatmap density in each grid (Eq. 4).

where T is the total hours in a day and HDi is the 
heatmap density in the ith hour.

Second, the variability was defined as the difference 
in heatmap density among the different hours within 
each grid. This index was used to measure the tempo-
ral variation in human dynamics throughout the day: 
the higher the variability was, the higher the variation 

(4)Intensity : I = 1
T

∑T
i=1HDi,

over time. The variability could be calculated at the 
hourly level by comparing the standard deviation of 
the hourly heatmap density and the intensity of urban 
vitality (Eq. 5).

Third, the night ratio was employed to analyze the 
performance of the nighttime vitality. A higher night 
ratio value indicates that more human activities are 
conducted at night, which reflects the development of 
nighttime economics and social activities. The night 
ratio can be calculated as follows:

All the indicators were calculated for an aver-
age weekday and weekend, respectively. These three 
indexes could jointly reveal the differences in spatial 
and temporal patterns across the Central City of Shang-
hai. Areas exhibiting a higher intensity and lower varia-
tion could be considered places with a higher degree of 
vitality, attracting many people throughout the day.

(5)Variability : V =

√

1
T

∑T
i=1 (HDi−I)2

I

(6)Night ratio : NR =

∑24
22 HDi

∑24
22 HDi+

∑12
10 HDi

Fig. 2  Framework of the process
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2.4 � Built environment measurement
We employed a series of indicators capturing the built 
environment in each grid. The POI density and diversity 
reflect the number and mix, respectively, of urban facili-
ties. The average building height was calculated as the 
height per building in each grid. The road network den-
sity, the total road length per square kilometer in each 
grid, was used to characterize the urban design. The bus 
stop density reflected the public transit accessibility.

2.5 � Model specification
We applied a series of Ordinary Least Squares (OLS) 
models to evaluate the relationship between the built 
environment and urban vitality indicators. Due to the 
skewed distribution of urban vitality index variables, the 
Box-Cox transformation was employed to convert these 
variables to approximate normality. The formula for Box-
Cox transformation is shown in formula 7(Box & Cox, 
1964). The dependent variables were Box-Cox trans-
formed intensity, Box-Cox transformed variability, and 

Box-Cox transformed night ratio of urban vitality, named 
as Tran-I, Tran-V, and Tran-NR. The � values were 0.376, 
-0.914, and 1.354, respectively.

3 � Results
3.1 � Spatiotemporal distribution of the overall urban 

vitality
Figure 4 shows the status of the urban vitality intensity, 
variability, and night ratio on an average  weekday and 
weekend. On weekday, the average intensity reached 
363.2, the average variability was 0.53, and the average 
night ratio reached 0.35. The spatial differences in urban 
vitality were noticeable. The intensity of the urban vital-
ity was higher in the inner-city area centered on People’s 
Square and decreased from the center to the periphery. 
The intensity in Puxi was higher than that in Pudong. 
The variability of the urban vitality in most areas varied 

(7)Y (�) =

{
(

Y �
− 1

)

/�, � �= 0

lnY , � = 0

Fig. 3  Urban functional areas in Central City of Shanghai
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Fig. 4  Urban vitality on an average weekday and weekend
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between 0 and 1, and only a few places exhibited a vari-
ability above 1. Spatially, the variability was higher in 
the inner city and Pudong and lowered in the periph-
eral regions of Puxi. The night ratio of the urban vitality 
in most areas varied between 0 and 0.5, indicating that 
the nighttime vitality was lower than the daytime vitality. 
Areas with a high daytime vitality mainly occurred in the 
inner city and Pudong, while areas with a higher night-
time vitality were primarily located in the peripheral resi-
dential areas.

The urban vitality on an average weekend was slightly 
lower than that on the weekday, with an intensity of 
341.2. At the same time, the variability and night ratio 
were comparable to those on the weekday, with mean 
values of 0.52 and 0.35, respectively (Fig. 4). The spatial 
distribution of urban vitality during the weekend was 
similar to that on the weekday. However, there were 
fewer areas with high vitality, especially in Pudong. The 
variability decreased in the inner city but increased in 
peripheral areas during the weekend. Places with the 
lowest and highest night ratios decreased, while regions 
with average night ratios increased. This indicates that 
the diurnal difference in human activities declined during 
the weekend.

According to the above comparison, it could be found 
that there existed noticeable spatial and temporal differ-
ences in urban vitality. The areas with higher vitality and 
lower variability values remained the same between an 
average weekday and weekend, related to the distribution 
of functional areas in the Central City of Shanghai, where 
commercial and business areas and entertainment func-
tions are intertwined. Grids with lower vitality and higher 
variability values were mainly in peripheral regions.

3.2 � Urban vitality in the different urban functional areas
Significant differences existed in the intensity, variability, 
and night ratio of the urban vitality among the various 
urban functional areas (Table 1). This finding reflects the 
differences in attracting human activities among the dif-
ferent urban functional areas. Commercial and business 

areas and mixed functional areas attained higher inten-
sity levels, indicating their higher ability to attract human 
activities. At the same time, their urban vitality did not 
vary much throughout the day, and a certain level of 
human activities was maintained even at night. Residen-
tial areas exhibited the highest stability throughout the 
day and a higher level of vitality at night, which is consist-
ent with the rhythm of urban life. Although the vitality in 
administration and public service areas and transporta-
tion areas reached the medium level, these areas exhib-
ited higher variability and lower vitality values at night, 
which may be closely related to the service hours of these 
facilities. Industrial areas attained the lowest vitality val-
ues and exhibited more significant variability due to their 
production characteristics.

Table  1 and Fig.  5 show the spatial pattern of urban 
vitality between an average weekday and weekend. 
Regarding the intensity, in administration and public 
service areas, industrial areas, and mixed functional 
areas, the urban vitality intensity values on the weekday 
were statistically significantly higher than those during 
the weekend, while the intensity did not significantly 
differ among the other functional areas. Figure  5a also 
shows that more grids in these three functional areas 
exhibited a decreasing trend in the intensity value from 
weekday to weekend. In comparison, slightly more grids 
in business and commercial areas and residential areas 
showed an increasing trend. In terms of the variability, 
no statistically significant differences existed in the vari-
ability of the urban vitality between the weekday and 
weekend except for mixed functional areas. However, 
as shown in Fig.  5b, slightly more grids in administra-
tion and public service areas, industrial areas, mixed 
functional areas, and transportation areas exhibited a 
higher variability on the weekday than during the week-
end. For the night ratio, the values in residential areas 
significantly differed between the weekday and week-
end, indicating that the difference between the daytime 
and nighttime decreased during rest days. As shown in 
Fig.  5c, more grids in commercial and business areas, 

Table 1  Urban vitality indexes among the various urban functional areas

The statistical significance between an average weekday and weekend is indicated as follows: *** p < 0.01, ** p < 0.05, and * p < 0.1

Urban functional area Intensity Variability Night ratio

Weekday Weekend Weekday Weekend Weekday Weekend

Administration and public service area 231.22 188.13 ** 0.62 0.62 0.31 0.31

Commercial and business area 455.23 443.50 0.55 0.56 0.34 0.34

Residential area 295.79 298.13 0.48 0.48 0.40 0.38 ***

Industrial area 85.99 69.84 * 0.67 0.71 0.29 0.31

Transportation area 146.52 130.22 0.62 0.62 0.31 0.31

Mixed functional area 423.43 393.25 ** 0.50 0.48*** 0.36 0.37
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mixed functional areas, residential areas, and transpor-
tation areas exhibited higher night ratios on the week-
day than during the weekend. This suggests a day-to-day 
difference in the urban vitality in the various urban 
functional areas. This variation may be influenced by 
the built environment characteristics in the different 
functional areas.

Figure 6 shows the hourly dynamic pattern of urban 
vitality on an average weekday and weekend. On the 
weekday, all urban functional areas exhibited obvi-
ous daytime and nighttime differences, with the urban 
vitality gradually increasing from 6:00 and decreasing 
after 22:00. Commercial and business areas showed 
daytime-nighttime variations in urban vitality, with 

Fig. 5  Changes in the urban vitality between an average weekday and weekend
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vitality values generally above 500 during the daytime 
and the highest from 11:00–13:00 and 16:00–18:00. 
High vitality in commercial and business areas contin-
ued until after 22:00. Mixed functional areas exhibited 
a similar pattern, but their high vitality values were 
lower than those in commercial and business areas. 
The hourly urban vitality values in administration and 
public service areas significantly varied, but the high 
values were lower, mainly between 8:00 and 16:00. The 
variation in the vitality value in residential areas was 
comparable to that in administration and public service 
areas. The highest values occurred from 7:00–8:00 and 
17:00–18:00. Commercial and business areas, mixed 
functional areas, and residential areas showed higher 
vitality than other areas at night. The urban vitality was 
low during both the daytime and nighttime in indus-
trial and transportation areas.

The urban functional areas also revealed pronounced 
daytime and nighttime differences during the weekend 
(Fig.  6). Commercial and business areas continued to 
exhibit the highest variations in urban vitality; however, 
the high vitality values during the weekend were more 
notably concentrated in the afternoon compared to 
those on the weekday. The temporal vitality distribution 
in mixed functional areas did not differ much from that 
on the weekday, but the vitality values in these areas 
were generally lower. The vitality values in administra-
tion and public service areas were significantly lower 
during the daytime than on the weekday. The vital-
ity values in residential areas were higher and peaked 

around noon. Industrial and transportation areas 
exhibited similar patterns to those on the weekday.

3.3 � Relationship between the built environment 
and urban vitality

Table 2 summarizes the impact of the built environment 
on Box-Cox transformed urban vitality variables based 
on the ordinary least squares (OLS) regression method. 
The overall goodness of fit values indicated that the func-
tional area type and built environment provided good 
explanatory power for the transformed urban vitality 
intensity. In contrast, these factors provided relatively 
poor explanatory power for the transformed night ratio.

First, the built environment significantly impacted 
transformed urban vitality index (Table 2). The higher the 
POI density was, the higher the Tran-I, which is consist-
ent with the literature (Jacobs, 1961; Zhang et al., 2021), 
while the Tran-NR slightly decreased. The effects of POI 
diversity, average building height, and bus station density 
were similar. The higher the values of these indicators 
were, the higher the Tran-I, the lower the Tran-V, and 
the higher the Tran-NR. This indicates that improving 
the facility diversity, increasing the building height, and 
enhancing transit accessibility could promote stable soci-
oeconomic activities and nighttime vitality levels (Guo 
et al., 2021; Ye et al., 2018). A high road network density 
could help to increase Tran-I but negatively correlated 
with the Tran-NR, indicating a negative relationship with 
vitality proportion at night.

Fig. 6  Temporal pattern of the urban vitality on an average weekday and weekend
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The functional area type also determined the urban 
vitality pattern. After controlling built environment vari-
ables, commercial and business areas and residential 
areas showed higher Tran-I value, and industrial areas 
were less vibrant than mixed functional areas. All other 
functional types exhibited a higher Tran-V value than 
mixed functional areas except for residential areas, which 
is consistent with the literature indicating that functional 
use uniformity benefits vitality stability (Guo et al., 2021; 
Sulis et al., 2018). Only residential areas attained a more 
significant Tran-NR value than mixed functional areas. 
All other functional areas obtained a smaller Tran-NR, 
which confirms the importance of mixed functional areas 
in increasing nighttime vitality (Zhang et al., 2021; Zheng 
et al., 2017).

Figure 7 shows the built environment’s impact on trans-
formed urban vitality index among different urban func-
tional areas. Only variables with a significant level above 
95% are shown in the figure, with the red color indicat-
ing positive effects and the blue color indicating adverse 
effects. The impact of built environment variables on 
transformed urban vitality index varied among the dif-
ferent functional areas. Increasing the POI density was 
beneficial for enhancing the Tran-I in all functional areas 
except industrial areas. It was positively correlated with 
Tran-V in industrial areas and commercial and business 
areas but negatively associated with Tran-V in mixed 
functional areas. POI density negatively correlated with 
Tran-NR in commercial and business areas, residential 
areas, and industrial areas. POI diversity enhancement 

negatively correlated with Tran-V in all functional areas 
except for transportation and mixed functional areas. 
Increasing the POI diversity could facilitate an increase in 
Tran-NR in administrative and public service areas, resi-
dential areas, and commercial and business areas. How-
ever, increasing POI diversity was negatively correlated 
with Tran-NR in mixed functional areas. Raising the aver-
age building height enhanced the Tran-I in administration 
and public service, commercial and business, residential, 
and mixed functional areas. It negatively correlated with 
the Tran-V in administration and public service areas 
and residential areas. The building height increase was 
positively related to Tran-NR in administration and pub-
lic service areas, residential areas, transportation areas, 
and mixed functional areas. The effect of bus stop density 
on the Tran-I and Tran-V was similar to that of the POI 
diversity, except for Tran-V in industrial areas. It contrib-
uted to an increase in Tran-NR in commercial and busi-
ness areas, residential areas, and transportation areas. The 
road network density positively correlated with Tran-I in 
administration and public service areas, commercial and 
business areas, transportation areas, and mixed functional 
areas. But it did not relate to Tran-V in most functional 
areas. Increasing the road network density negatively 
impacted Tran-NR in mixed functional areas.

4 � Conclusions and discussions
Based on Baidu heatmap data, this paper quantitatively 
measured the dynamic urban vitality in the Central City 
of Shanghai in terms of intensity, variability, and night 

Table 2  Regression models of the impact of the built environment on Box-Cox transformed urban vitality

Dependent variables were box-cox transformed

Box-Cox transformed Intensity 
(Tran-I)

Box-Cox transformed 
Variability (Tran-V)

Box-Cox transformed 
Night ratio (Tran-NR)

Coef Sig Coef Sig Coef Sig

POI density 0.0411 0.000 0.0000 0.719 -0.0001 0.000

POI diversity 5.5105 0.000 -0.3000 0.000 0.0157 0.000

Average building height 0.4264 0.000 -0.0153 0.000 0.0023 0.000

Bus stop density 0.0455 0.000 -0.0008 0.011 0.0001 0.032

Road network density 0.0853 0.000 0.0016 0.095 -0.0005 0.000

Weekend -0.6297 0.000 -0.0577 0.000 -0.0014 0.481

Urban functional area (ref = mixed functional 
area)
Administration and public service area -0.1870 0.570 0.1119 0.000 -0.0180 0.000

Commercial and business area 1.0217 0.000 0.0374 0.055 -0.0105 0.001

Industrial area -2.5734 0.000 0.1401 0.000 -0.0242 0.000

Residential area 0.7672 0.002 -0.1550 0.000 0.0236 0.000

Transportation area -0.1421 0.752 0.1019 0.006 -0.0248 0.000

_cons 4.7926 0.000 -0.5205 0.000 -0.5868 0.000

Adjusted R2 0.5790 0.1590 0.0927
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ratio. It compared the differences in urban vitality among 
various urban functional areas and investigated the influ-
ence of the built environment on urban vitality. We found 
that (1) significant differences existed in the intensity, 
variability, and night ratio of urban vitality among vari-
ous urban functional areas, reflecting the differences in 
attracting and maintaining human activities among dif-
ferent urban functional areas. (2) The difference in inten-
sity was more significant than that in the variability and 
night ratio between an average weekday and weekend. 
Still, variation differences occurred among various urban 
functional areas. (3) The built environment significantly 
affected Box-Cox transformed urban vitality index, but 
its role varied among different urban functional areas.

In terms of methodology, this paper constructed three 
dimensions of urban vitality indicators: intensity, variabil-
ity, and night ratio. It examined the average urban vital-
ity status throughout the day, intraday variation in urban 
vitality, and diurnal variation in urban vitality. Most stud-
ies focus on static indicators of urban vitality, examining 
the overall characteristics of human activities through 
the cumulative or average intensity of the urban vitality 
(Chen et al., 2021; Ye et al., 2018; Yue et al., 2019). In con-
trast, our study analyzed the ability of urban neighbor-
hoods to attract and sustain human activities at different 
times using variability and night ratio indexes. We believe 
these indicators could better enhance our understanding 

of urban vitality and provide a way to quantitatively eval-
uate the dynamic characteristics of urban vitality assess-
ment from an integrated perspective.

In practice, we found differences in intensity, variability, 
and night ratio of urban vitality across urban functional 
areas. Commercial and business areas and mixed func-
tional areas exhibited higher vitality, moderate variability, 
and higher nighttime vitality. Administrative and pub-
lic service areas attained moderate vibrancy but higher 
variability and lower nighttime vitality values. Residen-
tial areas exhibited higher vibrancy levels but the lowest 
variability and high nighttime vitality values. Industrial 
and transportation areas demonstrated lower vibrancy, 
higher variability, and lower nighttime vitality. These 
findings indicated that the different types of functional 
areas significantly differed in attracting and maintain-
ing a stable presence of people and activities. However, 
the urban vitality in the various functional areas varied 
between an average weekday and weekend. The differ-
ences in intensity were more significant than the variabil-
ity and nighttime vitality. The intensity in administration 
and public service areas, industrial areas, and mixed 
functional areas were higher on a weekday. In contrast, 
the night vitality ratio in residential areas was higher dur-
ing the weekend.

Our study revealed the relationship between the 
built environment and Box-Cox transformed urban 

Fig. 7  Impact of the built environment on the transformed urban vitality among the various urban functional areas
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vitality index among different urban functional areas, 
which could help support urban planning. As shown in 
the models, increasing POI mix, building height, and 
bus stop density were beneficial for increasing trans-
formed urban vitality intensity and nighttime vitality 
while reducing transformed variability. Increasing POI 
density and road network density could promote trans-
formed vitality and variability yet reduce the transformed 
night vitality ratio. However, differences occurred in the 
impacts of the built environment among different urban 
functional areas, indicating that the effects of the built 
environment on different types of human activities var-
ied. Most of the built environment variables positively 
impacted transformed urban vitality in commercial and 
business areas, residential areas, and mixed functional 
areas. However, the built environment’s impact on the 
variation of urban vitality was different. For commercial 
and business areas and residential areas, the POI diver-
sity and bus stop density were beneficial for enhancing 
transformed vitality stability and nighttime vitality. In 
contrast, the POI density had a slightly negative impact. 
And residential areas with higher building height showed 
higher transformed vitality stability and nighttime vital-
ity. Taller building height promoted transformed night-
time vitality for mixed functional areas, while higher POI 
density and diversity could increase transformed vital-
ity variability or reduce transformed nighttime vitality. 
The POI density, diversity, building height, and transit 
accessibility positively impacted the transformed vitality 
intensity for administration and public service areas. And 
POI diversity and building height positively correlated 
with transformed vitality stability and nighttime vitality 
in these regions. The built environment less influenced 
industrial areas. Therefore, to enhance the urban vital-
ity status in different places, urban planning and design 
should consider different combinations of built environ-
ments, which could meet the needs of various activities 
at varying times.

There are limitations to this study. First, we used a 
500-m grid as the spatial unit, which is limited by our 
heatmap data. Although a 500-m grid could also reveal 
spatial patterns, an actual urban block should be used to 
examine the differences between parcels in the future. 
Second, we used one-week data to analyze the temporal 
variation in urban dynamics within a day, which could 
likely reflect the characteristics of urban dynamics due 
to the stability of human behavior. However, long-term 
data may provide more information about the complex 
temporal urban vitality variations. Future work should 
consider variation across seasons and years. Third, Due 
to the impact of the COVID-19 pandemic in early 2020, 
human activities and social-economic vitality may be 
lower than before. Fortunately, the focus of this study was 

the variation of urban vitality over the day and the dif-
ferences between different urban functional areas, not 
the absolute level of human activity. Changes in vitality 
level would not substantially influence our analysis unless 
such a change displayed an important geographic pat-
tern. Much more work focused on the long-term impact 
of COVID-19 and temporal variations of urban vitality 
can be done with heatmap data with a longer time frame. 
Fourth, we used regression models to analyze the effects 
of the built environment on the urban vitality in the dif-
ferent urban functional areas and mainly focused on den-
sity and mix indicators. Future work should assess the 
impact of more prosperous indicators, especially urban 
design elements.
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