Skip to main content

Advertisement

Log in

The association of rocuronium dosing and first-attempt intubation success in adult emergency department patients

  • Original Research
  • Published:
Canadian Journal of Emergency Medicine Aims and scope Submit manuscript

Abstract

Background

The recommended rocuronium dose for rapid sequence intubation is 1.0 mg/kg; however, the optimal dose for emergency airway management is not clear. We assessed the relationship between rocuronium dose and first-attempt success among emergency department (ED) patients undergoing rapid sequence intubation.

Methods

This is a secondary analysis of the National Emergency Airway Registry (NEAR), an observational 25-center registry of ED intubations. Ninety percent recording compliance was required from each site for data inclusion. We included all patients > 14 years of age who received rocuronium for rapid sequence intubation from 1 Jan 2016 to 31 Dec 2018. We compared first-attempt success between encounters using alternative rocuronium doses (< 1.0, 1.0–1.1, 1.2–1.3 and ≥1.4 mg/kg). We performed logistic regressions to control for predictors of difficult airways, indication, pre-intubation hemodynamics, operator, body habitus and device. We also performed subgroup analyses stratified by device (direct vs. video laryngoscopy). We calculated univariate descriptive statistics and odds ratios (OR) from multivariable logistic regressions with cluster-adjusted 95% confidence intervals (CI).

Results

19,071 encounters were recorded during the 3-year period. Of these, 8,034 utilized rocuronium for rapid sequence intubation. Overall, first attempt success was 88.4% for < 1.0 mg/kg, 88.1% for 1.0–1.1 mg/kg, 89.7% for 1.2–1.3 mg/kg, and 92.2% for ≥1.4 mg/kg. Logistic regression demonstrated that when direct laryngoscopy was used and when compared to the standard dosing range of 1.0–1.1 mg/kg, the adjusted odds of a first attempt success was significantly higher in ≥1.4 mg/kg group at 1.9 (95% CI 1.3–2.7) relative to the other dosing ranges, OR 0.9 (95% CI 0.7–1.2) for < 1.0 mg/kg and OR 1.2 (95% CI 0.9–1.7) for the 1.2–1.3 mg/kg group. First-attempt success was similar across all rocuronium doses among patients utilizing video laryngoscopy. Patients who were hypotensive (SBP < 100 mmHg) prior to intubation had higher first-attempt success 94.9% versus 88.6% when higher doses of rocuronium were used. The rates of all peri-intubation adverse events and desaturation were similar between dosing groups, laryngoscope type utilized and varying pre-intubation hemodynamics.

Conclusions

Rocuronium dosed ≥1.4 mg/kg was associated with higher first attempt success when using direct laryngoscopy and among patients with pre-intubation hypotension with no increase in adverse events. We recommend further prospective evaluation of the dosing of rocuronium prior to offering definitive clinical guidance.

Résumé

Contexte

La dose de rocuronium recommandée pour l'intubation à séquence rapide est de 1,0 mg / kg, mais la dose optimale pour la prise en charge des voies respiratoires d'urgence n'est pas claire. Nous avons évalué la relation entre la dose de rocuronium et la réussite de la première tentative chez les patients des services d'urgence soumis à une intubation à séquence rapide.

Méthodes

Il s'agit d'une analyse secondaire du National Emergency Airway Registry (NEAR), un registre d'observation des intubations aux urgences dans 25 centres. Pour que les données soient prises en compte, chaque site devait respecter 90 % des enregistrements. Nous avons inclus tous les patients âgés de plus de 14 ans qui ont reçu du rocuronium pour une intubation à séquence rapide du 1er janvier 2016 au 31 décembre 2018. Nous avons comparé le succès de la première tentative entre les rencontres utilisant des doses alternatives de rocuronium (<1,0 mg/kg, 1,0-1,1 mg/kg, 1,2-1,3 mg/kg et 1,4mg/kg). Nous avons effectué des régressions logistiques pour contrôler les facteurs prédictifs des voies aériennes difficiles, l'indication, l'hémodynamique pré-intubation, l'opérateur, l'habitus corporel et le dispositif. Nous avons également effectué des analyses de sous-groupes stratifiées par dispositif (laryngoscopie directe contre vidéo-laryngoscopie). Nous avons calculé des statistiques descriptives univariées et des rapports des cotes (RC) à partir de régressions logistiques multivariables avec des intervalles de confiance (IC) à 95 % ajustés par groupe

Résultats

19 071 consultations ont été enregistrées au cours de la période de trois ans. Parmi celles-ci, 8 034 ont utilisé du rocuronium pour une intubation à séquence rapide. Dans l’ensemble, le succès de la première tentative était de 88,4 % pour <1,0 mg/kg, 88,1 % pour 1,0 à 1,1 mg/kg, 89,7 % pour 1,2 à 1,3 mg/kg et 92,2 % pour ≥1,4 mg/kg. La régression logistique a démontré que lorsque la laryngoscopie directe était utilisée et comparée à la gamme de dosage standard de 1,0-1,1 mg/kg, la probabilité ajustée de réussite de la première tentative était significativement plus élevée dans le groupe ≥ 1,4mg/kg à 1,9 (IC 95 % 1,3-2,7) par rapport aux autres gammes de dosage, RC 0,9 (IC 95 % 0,7-1,2) pour < 1,0 mg/kg et RC 1,2 (IC 95 % 0,9-1,7) pour le groupe 1,2-1,3 mg/kg. La réussite de la première tentative était similaire pour toutes les doses de rocuronium chez les patients utilisant la vidéo-laryngoscopie. Les patients qui étaient hypotendus (SBP <100 mmHg) avant l'intubation avaient un taux de réussite de la première tentative plus élevé 94,9% contre 88,6% lorsque des doses plus élevées de rocuronium étaient utilisées. Les taux de tous les effets indésirables péri-intubation et de désaturation étaient similaires entre les groupes de dosage, le type de laryngoscope utilisé et les différentes hémodynamiques pré-intubation

Conclusions

Le rocuronium dosé à ≥1,4mg/kg a été associé à une meilleure réussite de la première tentative lors de l'utilisation de la laryngoscopie directe et chez les patients présentant une hypotension avant intubation, sans augmentation des effets indésirables. Nous recommandons une évaluation prospective plus poussée du dosage du rocuronium avant de proposer une orientation clinique définitive

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Walls RM, Brown CA, Bair AE, Pallin DJ. Emergency airway management: a multi-center report of 8937 emergency department intubations. J Emerg Med. 2011;41(4):347–54.

    Article  Google Scholar 

  2. April MD, Arana A, Pallin DJ, Schauer SG, Fantegrossi A, Fernandez J, et al. Emergency department intubation success with succinylcholine versus rocuronium: a national emergency airway registry study. Ann Emerg Med. 2018;72(6):645–53.

    Article  Google Scholar 

  3. Tran DT, Newton EK, Mount VA, Lee JS, Wells GA, Perry JJ. Rocuronium versus succinylcholine for rapid sequence induction intubation. Cochrane Database Syst Rev. 2015. https://doi.org/10.1002/14651858.CD002788.pub3/abstract.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Guihard B, Chollet-Xémard C, Lakhnati P, Vivien B, Broche C, Savary D, et al. Effect of rocuronium vs succinylcholine on endotracheal intubation success rate among patients undergoing out-of-hospital rapid sequence intubation: a randomized clinical trial. JAMA. 2019;322(23):2303–12.

    Article  CAS  Google Scholar 

  5. Heier T, Caldwell JE. Rapid tracheal intubation with large-dose rocuronium: a probability-based approach. Anesth Analg. 2000;90(1):175.

    Article  CAS  Google Scholar 

  6. Weiss JH, Gratz I, Goldberg ME, Afshar M, Insinga F, Larijani G. Double-blind comparison of two doses of rocuronium and succinylcholine for rapid-sequence intubation. J Clin Anesth. 1997;9(5):379–82.

    Article  CAS  Google Scholar 

  7. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. PLoS Med. 2007;4(10):e296.

    Article  Google Scholar 

  8. Lederer DJ, Bell SC, Branson RD, Chalmers JD, Marshall R, Maslove DM, et al. Control of confounding and reporting of results in causal inference studies. Guidance for authors from editors of respiratory, sleep, and critical care journals. Ann Am Thorac Soc. 2019;16(1):22–8.

    Article  Google Scholar 

  9. Brown CA, Bair AE, Pallin DJ, Walls RM. Techniques, success, and adverse events of emergency department adult intubations. Ann Emerg Med. 2015;65(4):363–70.

    Article  Google Scholar 

  10. Cormack RS, Lehane J. Difficult tracheal intubation in obstetrics. Anaesthesia. 1984;39(11):1105–11.

    Article  CAS  Google Scholar 

  11. Sakles JC, Javedani PP, Chase E, Garst-Orozco J, Guillen-Rodriguez JM, Stolz U. The use of a video laryngoscope by emergency medicine residents is associated with a reduction in esophageal intubations in the emergency department. Acad Emerg Med. 2015;22(6):700–7.

    Article  Google Scholar 

  12. Jiang J, Kang N, Li B, Wu A-S, Xue F-S. Comparison of adverse events between video and direct laryngoscopes for tracheal intubations in emergency department and ICU patients—a systematic review and meta-analysis. Scand J Trauma Resusc Emerg Med. 2020;28(1):10.

    Article  Google Scholar 

  13. Jiang J, Ma D, Li B, Yue Y, Xue F. Video laryngoscopy does not improve the intubation outcomes in emergency and critical patients—a systematic review and meta-analysis of randomized controlled trials. Crit Care. 2017;21(1):288.

    Article  Google Scholar 

  14. Brown CA, Kaji AH, Fantegrossi A, Carlson JN, April MD, Kilgo RW, et al. Video laryngoscopy compared to augmented direct laryngoscopy in adult emergency department tracheal intubations: a national emergency airway registry (NEAR) study. Acad Emerg Med. 2020;27(2):100–8.

    Article  Google Scholar 

  15. Bhattacharjee S, Maitra S, Baidya DK. A comparison between video laryngoscopy and direct laryngoscopy for endotracheal intubation in the emergency department: a meta-analysis of randomized controlled trials. J Clin Anesth. 2018;47:21–6.

    Article  Google Scholar 

  16. Brown CA, Bair AE, Pallin DJ, Laurin EG, Walls RM. National Emergency Airway Registry (NEAR) Investigators. Improved glottic exposure with the Video Macintosh Laryngoscope in adult emergency department tracheal intubations. Ann Emerg Med. 2010;56(2):83–8.

    Article  Google Scholar 

  17. Schwartz DE, Matthay MA, Cohen NH. Death and other complications of emergency airway management in critically ill adults. A prospective investigation of 297 tracheal intubations. Anesthesiology. 1995;82(2):367–76.

    Article  CAS  Google Scholar 

  18. Kuipers JA, Boer F, Olofsen E, Bovill JG, Burm AGL. Recirculatory pharmacokinetics and pharmacodynamics of rocuronium in patientsthe influence of cardiac output. Anesthesiology. 2001;94(1):47–55.

    Article  CAS  Google Scholar 

  19. TEVA Pharmaceutical Ind. Ltd. Rocuronium Bromide Injection, Package Insert [Internet]. Jerusalem, Israel: FDA Drug Information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/078717s000lbl.pdf

  20. Meckler, Garth D, Stapczynski, J. Stephan, Cline, David M, Tintinalli, Judith E, and Ma, O. John. Tintinalli’s emergency medicine: a comprehensive study guide. 8th edn. New York: McGraw-Hill; 2015.

  21. Brown CA, Sakles JC, Mick NW. The walls manual of emergency airway management. Philadelphia: Lippincott Williams & Wilkins; 2017. p. 895

  22. Butterworth IV JF, Mackey DC, Wasnick JD. Neuromuscular Blocking Agents. In: Morgan & Mikhail’s Clinical Anesthesiology [Internet]. 6th edn. New York: McGraw-Hill; 2018 (cited 6 Aug 2020). accessmedicine.mhmedical.com/content.aspx?aid=1161426824

  23. Schultz P, Ibsen M, Østergaard D, Skovgaard LT. Onset and duration of action of rocuronium—from tracheal intubation, through intense block to complete recovery. Acta Anaesthesiol Scand. 2001;45(5):612–7.

    Article  CAS  Google Scholar 

  24. Kirkegaard-Nielsen H, Caldwell J, Berry P. Rapid tracheal intubation with rocuronium: a probability approach to determining dose. Anesthesiology. 1999;91(1):131–6.

    Article  CAS  Google Scholar 

  25. Hasegawa K, Shigemitsu K, Hagiwara Y, Chiba T, Watase H, Brown CA, et al. Association between repeated intubation attempts and adverse events in emergency departments: an analysis of a multicenter prospective observational study. Ann Emerg Med. 2012;60(6):749-754.e2.

    Article  Google Scholar 

  26. Sakles JC, Chiu S, Mosier J, Walker C, Stolz U. The importance of first pass success when performing orotracheal intubation in the emergency department. Acad Emerg Med. 2013;20(1):71–8.

    Article  Google Scholar 

Download references

Funding

NL reports no conflict of interest.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

NL, MF, and CB conceived of the study. MF, MA, and CB supervised the study. AA provided statistical advice and analyzed the data. NL drafted the article, and all authors contributed substantially to its revision. RW is a senior NEAR investigator, founded the registry and contributed to manuscript development.

Corresponding author

Correspondence to Nicholas M. Levin.

Ethics declarations

Conflict of interest

None of the authors have significant conflicts of interest to disclose.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5900 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, N.M., Fix, M.L., April, M.D. et al. The association of rocuronium dosing and first-attempt intubation success in adult emergency department patients. Can J Emerg Med 23, 518–527 (2021). https://doi.org/10.1007/s43678-021-00119-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43678-021-00119-6

Keywords

Navigation