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Abstract
Inertial algorithms for minimizing nonsmooth and nonconvex functions as the inertial
proximal alternating linearized minimization algorithm (iPALM) have demonstrated
their superiority with respect to computation time over their non inertial variants. In
many problems in imaging andmachine learning, the objective functions have a special
form involving huge data which encourage the application of stochastic algorithms.
While algorithms based on stochastic gradient descent are still used in the majority
of applications, recently also stochastic algorithms for minimizing nonsmooth and
nonconvex functions were proposed. In this paper, we derive an inertial variant of a
stochastic PALMalgorithmwith variance-reduced gradient estimator, called iSPALM,
and prove linear convergence of the algorithm under certain assumptions. Our inertial
approach can be seen as generalization ofmomentummethodswidely used to speed up
and stabilize optimization algorithms, in particular in machine learning, to nonsmooth
problems. Numerical experiments for learning the weights of a so-called proximal
neural network and the parameters of Student-t mixture models show that our new
algorithm outperforms both stochastic PALM and its deterministic counterparts.

Keywords Stochastic PALM · Proximity operator · Variance reduction · Non-convex
optimization · Stochastic optimization

Mathematics Subject Classification 65K10 · 65C20 · 60H25 · 49N15 · 60H99

Communicated by Gerlind Plonka.

B Johannes Hertrich
j.hertrich@math.tu-berlin.de

Gabriele Steidl
steidl@math.tu-berlin.de

1 Institute of Mathematics, TU Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s43670-022-00021-x&domain=pdf
http://orcid.org/0000-0003-4433-8604


4 Page 2 of 33 J. Hertrich, G. Steidl

1 Introduction

Recently, duality concepts were successfully applied for minimizing nonsmooth and
nonconvex functions appearing in certain applications in image and data processing.
A frequently applied algorithm in this direction is the proximal alternating linearized
minimization algorithm (PALM) by Bolte et al. [4] based on results in [1, 2]. Pock
and Sabach [36] realized that the convergence speed of PALM can be considerably
improved by inserting some nonexpensive inertial steps and called the accelerated
algorithm iPALM. In many problems in imaging and machine learning, parts of the
objective function can be often written as sum of a huge number of functions sharing
the same structure. In general the computation of the gradient of these parts is too
time and storage consuming so that stochastic gradient approximations were applied,
see, e.g. [5] and the references therein. A combination of the simple stochastic gradi-
ent descent (SGD) estimator with PALM was first discussed by Xu and Yin in [46].
The authors refer to their method as block stochastic gradient iteration and do not
mention the connection to PALM. Under rather hard assumptions on the objective
function F , they proved that the sequence (xk)k produced by their algorithm is such
that E

(
dist(0, ∂F(xk)

)
converges to zero as k → ∞. Another idea for a stochastic

variant of PALM was proposed by Davis et al. [11]. The authors introduce an asyn-
chronous variant of PALMwith stochastic noise in the gradient and called it SAPALM.
Assuming an explicit bound of the variance of the noise, they proved certain conver-
gence results. Their approach requires an explicit bound on the noise, which is not
fulfilled for the gradient estimators considered in this paper. Further, we like to men-
tion that a stochastic variant of the primal-dual algorithm of Chambolle and Pock [9]
for solving convex problems was developed in [8].

Replacing the simple stochastic gradient descent estimators by more sophisticated
so-called variance-reduced gradient estimators, Driggs et al. [13] could weaken the
assumptions on the objective function in [46] and improve the estimates on the conver-
gence rate of a stochastic PALM algorithm. They called the corresponding algorithm
SPRING. However, the convergence analysis within [13] is based on the so-called
generalized gradient G Fτ1,τ2 . Within the first versions of the paper [13], when the
preprint of this paper appeared, this generalized gradient was not even well-defined.
Even if the definition was fixed over the time, the use of the generalized gradient is
not satisfying at all, since it becomes not clear how this generalized gradient is related
to the (sub)differential of the objective function in limit processes with varying τ1 and
τ2. In particular, it is easy to find examples of F and sequences (τ k1 )k and (τ k2 )k such
that the generalized gradient G Fτ k1 ,τ k2

(x1, x2) is non-zero, but converges to zero for
fixed x1 and x2. Note that the advantages of variance reduction to accelerate stochastic
gradient methods were discussed by several authors, see, e.g. [24, 39].

In this paper, we merge a stochastic PALM algorithm with an inertial procedure to
obtain a new iSPALM algorithm. The inertial parameters can also be viewed as a gen-
eralization of momentum parameters to nonsmooth problems. Momentum parameters
are widely used to speed up and stabilize optimization algorithms based on (stochas-
tic) gradient descent. In particular, for machine learning applications it is known that
momentum algorithms [32, 37, 38, 41] as well as their stochastic modifications like the
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Adam optimizer [25] perform much better than a plain (stochastic) gradient descent,
see e.g. [15, 43]. From this point of view, inertial or momentum parameters are one
of the core ingredients for an efficient optimization algorithm to minimize the loss
in data driven approaches. We examine the convergence behavior of iSPALM both
theoretically and numerically. Under certain assumptions on the parameters of the
algorithm which also appear in the iPALM algorithm, we show that iSPALM con-
verges linearly. In particular, we have to modify the definition of variance-reduced
gradient estimators to inertial ones. We clearly indicate the few lemmas which are
somehow related e.g. to those in [13] and address the necessary technical adaptations
in an extended preprint [21]. The proofs given in this paper are completely new. In
the numerical part, we focus on two examples, namely (i) MNIST classification with
proximal neural networks (PNNs), and (ii) parameter learning for Student-t mixture
models (MMs).

PNNs basically replace the standard layer σ(T x + b) of a feed-forward neural
network by T Tσ(T x + b) and require that T is an element of the (compact) Stiefel
manifold, i.e. has orthonormal columns, see [18, 20]. This implies that PNNs are 1-
Lipschitz and hence more stable under adversarial attacks than a neural network of
comparable sizewithout the orthogonality constraints.While the PNNswere trained in
[18] using a SGD on the Stiefel manifold, we train it in this paper by adding the charac-
teristic function of the feasible weights to the loss for incorporating the orthogonality
constraints and use PALM, iPALM, SPRING and iSPALM for the optimization.

Learned MMs provide a powerful tool in data and image processing. While Gaus-
sian MMs are mostly used in the field, more robust methods can be achieved by using
heavier tailed distributions, as, e.g. the Student-t distribution. In [44], it was shown
that Student-t MMs are superior to Gaussian ones for modeling image patches and
the authors proposed an application in image compression. Image denoising based
on Student-t models was addressed in [27] and image deblurring in [12, 47]. Further
applications include robust image segmentation [3, 34, 42] and superresolution [19]
as well as registration [14, 48]. For learning MMs a maximizer of the corresponding
log-likelihood has to be computed. Usually an expectation maximization (EM) algo-
rithm [26, 30, 35] or certain of its acceleration [6, 31, 45] are applied for this purpose.
However, if the MM has many components and we are given large data, a stochastic
optimizat ion approach appears to be more efficient. Indeed, recently, also stochastic
variants of the EM algorithm were proposed [7, 10], but show various disadvantages
and we are not aware of a circumvent convergence result for these algorithms. In
particular, one assumption on the stochastic EM algorithm is that the underlying dis-
tribution family is an exponential family, which is not the case for MMs. In this paper,
we propose for the first time to use the (inertial) PALM algorithms as well as their
stochastic variants for maximizing a modified version of the log-likelihood function.

This paper is organized as follows: In Sect. 2, we provide the notation used through-
out the paper. To understand the differences of existing algorithms to our novel one,
we discuss PALM and iPALM together with convergence results in Sect. 3. Section 4
introduces our iSPALMalgorithm.Wediscuss the convergence behavior of iSPALMin
Sect. 5. Finally, we compare the performance of our iSPALMwith (inertial) PALMand
stochastic PALM when applied to two nonconvex optimization problems in machine
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learning. We provide the code online.1 Finally, conclusions are drawn and directions
of further research are addressed in Sect. 7.

2 Preliminaries

In this section,we introduce the basic notation and resultswhichwewill use throughout
this paper.

For an proper and lower semi-continuous function f : Rd → (−∞,∞] and τ > 0
the proximal mapping prox f

τ : Rd → P(Rd) is defined by

prox f
τ (x) := argmin

y∈Rd

{
τ
2‖x − y‖2 + f (y)

}
,

whereP(Rd) denotes the power set ofRd . The proximalmapping admits the following
properties, see e.g. [40].

Proposition 2.1 Let f : Rd → R ∪ {∞} be proper and lower semi-continuous with
infRd f > −∞. Then, the following holds true.

(i) The set prox f
τ (x) is nonempty and compact for any x ∈ R

d and τ > 0.
(ii) If f is convex, then prox f

τ (x) contains exactly one value for any x ∈ R
d and τ > 0.

To describe critical points, we will need the definition of (general) subgradients,
see e.g. [40].

Definition 2.2 Let f : Rd → (−∞,∞] be a proper and lower semi-continuous func-
tion and v ∈ R

d . Then we call

(i) v a regular subgradient of f at x̄ , written v ∈ ∂̂ f (x̄), if for all x ∈ R
d ,

f (x) ≥ f (x̄) + 〈v, x − x̄〉 + o(‖x − x̄‖).

(ii) v a (general) subgradient of f at x̄ , written v ∈ ∂ f (x̄), if there are sequences
xk → x̄ and vk ∈ ∂̂ f (xk) with vk → v as k → ∞.

The following proposition lists useful properties of subgradients.

Proposition 2.3 (Properties of Subgradients) Let f : R
d1 → (−∞,∞] and

g : Rd2 → (−∞,∞] be proper and lower semicontinuous and let h : Rd1 → R

be continuously differentiable. Then the following holds true.

1. For any x ∈ R
d1 , we have ∂̂ f (x) ⊆ ∂ f (x). If f is additionally convex, we have

∂̂ f (x) = ∂ f (x).
2. For x ∈ R

d1 with f (x) < ∞, it holds

∂̂( f + h)(x) = ∂̂ f (x) + ∇h(x) and ∂( f + h)(x) = ∂ f (x) + ∇h(x).

1 https://github.com/johertrich/Inertial-Stochastic-PALM.

https://github.com/johertrich/Inertial-Stochastic-PALM
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3. If σ(x1, x2) = f1(x1) + f2(x2), then

(
∂̂x1 f1(x̄1)
∂̂x2 f2(x̄2)

)
⊆ ∂̂σ (x̄1, x̄2) and

(
∂x1 f1(x̄1)
∂x2 f2(x̄2)

)
⊆ ∂σ(x̄1, x̄2).

Proof Part (i) was proved in [40,Theorem 8.6 and Proposition 8.12] and part (ii) in
[40,Exercise 8.8]. Concerning part (iii) we have for vxi ∈ ∂̂xi f (x̄ i ), i = 1, 2 that for
all (x1, x2) ∈ R

d × R
d it holds

σ(x1, x2) = f1(x1) + f2(x2) ≥
2∑

i=1

fi (x̄ i ) + 〈vxi , xi − x̄ i 〉 + o(‖xi − x̄ i‖).

This proves the claim for regular subgradients.
For general subgradients consider vxi ∈ ∂xi fi (x̄i ), i = 1, 2 By definition there exist

sequences xki → x̄i and vkxi → vxi with vkxi ∈ ∂̂xi fi (x
k
i ), i = 1, 2. By the statement

for regular subgradients we know that (vkx1, v
k
x2) ∈ ˆ∂σ(xk1 , x

k
2 ). Thus, it follows by

definition of the general subgradient that (vx1 , vx2) ∈ ∂σ(x̄1, x̄2). �

We call (x1, x2) ∈ R

d1 × R
d2 a critical point of F if 0 ∈ ∂F(x1, x2). By

[40,Theorem 10.1] we have that any local minimizer x̂ of a proper and lower semi-
continuous function f : Rd → (−∞,∞] fulfills

0 ∈ ∂̂ f (x̂) ⊆ ∂ f (x̂).

In particular, it is a critical point of f . Further, we have by Proposition 2.3 that x̂ ∈
prox f

τ (x) implies

0 ∈ τ(x̂ − x) + ∂̂ f (y) ⊆ τ(x̂ − x) + ∂ f (y). (1)

In this paper, we consider functions F : Rd1 × R
d2 → (−∞,∞] of the form

F(x1, x2) = H(x1, x2) + f (x1) + g(x2) (2)

with proper, lower semicontinuous functions f : Rd1 → (−∞,∞] and g : Rd2 →
(−∞,∞] bounded from below and a continuously differentiable function H : Rd1 ×
R
d2 → R. Further, we assume throughout this paper that

¯F := inf
(x1,x2)∈Rd1×R

d2
F(x1, x2) > −∞.

By Proposition 2.3 it holds

(
∂x1F(x1, x2)
∂x2F(x1, x2)

)
= ∇H(x1, x2) +

(
∂x1 f (x1)
∂x2g(x2)

)

⊆ ∇H(x1, x2) + ∂( f + g)(x1, x2) = ∂F(x1, x2). (3)
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The generalized gradient of F : Rd1 × R
d2 → (−∞,∞] was defined in [13] as

set-valued function

G Fτ1,τ2(x1, x2) :=
(

τ1(x1 − prox f
τ1(x1 − 1

τ1
∇x1H(x1, x2)))

τ2(x2 − proxgτ2(x2 − 1
τ2

∇x2H(x1, x2)))

)

.

To motivate this definition, note that 0 ∈ G Fτ1,τ2(x1, x2) is a sufficient criterion
for (x1, x2) being a critical point of F . This can be seen as follows: For (x1, x2) ∈
G Fτ1,τ2(x1, x2) we have

x1 ∈ prox f
τ1

(x1 − 1
τ1

∇x1H(x1, x2)).

Using (1), this implies

0 ∈ τ1(x1 − x1 + 1
τ1

∇x1H(x1, x2)) + ∂ f (x1) = ∇x1H(x1, x2) + ∂ f (x1).

Similarly we get 0 ∈ ∇x2H(x1, x2) + ∂g(x2). By (3) we conclude that (x1, x2) is a
critical point of F .

3 PALM and iPALM

In this section, we review PALM [4] and its inertial version iPALM [36].

3.1 PALM

The following Algorithm 3.1 for minimizing (2) was proposed in [4].

Algorithm 3.1 Proximal Alternating Linearized Minimization (PALM)

Input: (x01 , x02 ) ∈ R
d1 × R

d2 , parameters τ k1 , τ k2 for k ∈ N0.
for k = 0, 1, ... do

Set

xk+1
1 ∈ prox f

τ k1

(
xk1 − 1

τ k1
∇x1H(xk1 , xk2 )

)

Set

xk+1
2 ∈ proxg

τ k2

(
xk2 − 1

τ k2
∇x2H(xk+1

1 , xk2 )
)

To prove convergence of PALM the following additional assumptions on H are
needed:

Assumption 3.1 (Assumptions on H )
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(i) For any x1 ∈ R
d1 , the function ∇x2H(x1, ·) is globally Lipschitz continuous with

Lipschitz constant L2(x1). Similarly, for any x2 ∈ R
d2 , the function ∇x2H(·, x2)

is globally Lipschitz continuous with Lipschitz constant L1(x2).
(ii) There exist λ−

1 , λ−
2 , λ+

1 , λ+
2 > 0 such that

inf{L1(x
k
2 ) : k ∈ N} ≥ λ−

1 and inf{L2(x
k
1 ) : k ∈ N} ≥ λ−

2 ,

sup{L1(x
k
2 ) : k ∈ N} ≤ λ+

1 and sup{L2(x
k
1 ) : k ∈ N} ≤ λ+

2 .

Remark 3.2 Assume that H ∈ C
2(Rd1×d2) fulfills Assumption 3.1(i). Then, the

authors of [4] showed, that there are partial Lipschitz constants L1(x2) and L2(x1),
such that Assumption 3.1(ii) is satisfied. �


Convergence results rely on a Kurdyka-Łojasiewicz property of functions which is
defined in Appendix A. The following theorem was proven in [4,Lemma 3, Theorem
1].

Theorem 3.3 (Convergence of PALM) Let F : Rd1 × R
d2 → (−∞,∞] be given by

(2). Further, assume that it fulfills Assumptions 3.1and that∇H isLipschitz continuous
on bounded subsets of Rd1 ×R

d2 . Let (xk1 , x
k
2 )k be the sequence generated by PALM,

where the step size parameters fulfill

τ k1 ≥ γ1L1(x
k
2 ), τ k2 ≥ γ2L2(x

k+1
1 )

for some γ1, γ2 > 1. Then, for η := min{(γ1 − 1)λ−
1 , (γ2 − 1)λ−

2 }, the sequence
(F(xk1 , x

k
2 ))k is nonincreasing and

η
2

∥∥(xk+1
1 , xk+1

2 ) − (xk1 , x
k
2 )

∥∥2
2 ≤ F(xk1 , x

k
2 ) − F(xk+1

1 , xk+1
2 ).

If F is in addition a KL function and the sequence (xk1 , x
k
2 )k is bounded, then it

converges to a critical point of F.

3.2 iPALM

To speed up the performance of PALM the inertial variant iPALM in Algorithm 3.2
was suggested in [36].

Remark 3.4 (Relation to Momentum Methods) The inertial parameters in iPALM can
be viewed as a generalization of momentum parameters for nonsmooth functions. To
see this, note that iPALM with one block, f = 0 and βk = 0 reads as

yk = xk + αk(xk − xk−1),

xk+1 = yk − 1
τ k

∇H(xk).

By introducing gk := xk − xk−1, this can be rewritten as

gk+1 = αkgk − 1
τ k

∇H(xk),
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Algorithm 3.2 Inertial Proximal Alternating Linearized Minimization (iPALM)

Input: (x−1
1 , x−1

2 ) = (x01 , x02 ) ∈ R
d1 × R

d2 , parameters αk1 , αk2 , βk
1 , βk

2 , τ k1 , τ k2 for k ∈ N0.
for k = 0, 1, ... do

Set

yk1 = xk1 + αk1(xk1 − xk−1
1 )

zk1 = xk1 + βk
1 (xk1 − xk−1

1 )

xk+1
1 ∈ prox f

τ k1

(
yk1 − 1

τ k1
∇x1H(zk1, x

k
2 )

)

Set

yk2 = xk2 + αk2(xk2 − xk−1
2 )

zk2 = xk2 + βk
2 (xk2 − xk−1

2 )

xk+1
2 ∈ proxg

τ k2

(
yk2 − 1

τ k2
∇x2H(xk+1

1 , zk2)
)

xk+1 = xk + gk+1.

This is exactly the momentum method as introduced by Polyak in [37]. Similar, if
f = 0 and αk = βk �= 0, iPALM can be rewritten as

gk+1 = αkgk − 1
τ k

∇H(xk + αkgk),

xk+1 = xk + gk+1,

which is known as Nesterov’s Accelerated Gradient (NAG) [32]. Consequently,
iPALM can be viewed as a generalization of both the classical momentum method
and NAG to the nonsmooth case. Even if there exists no proof of tighter convergence
rates for iPALM than for PALM, this motivates that the inertial steps really accel-
erate PALM, since NAG has tighter convergence rates than a plain gradient descent
algorithm provided that the objective function is convex. �


To prove the convergence of iPALM the parameters of the algorithm must be care-
fully chosen.

Assumption 3.5 (Conditions on the Parameters of iPALM) Let λ+
i , i = 1, 2 and

L1(xk2 ), L2(xk1 ) be defined by Assumption 3.1. There exists some ε > 0 such that for
all k ∈ N and i = 1, 2 the following holds true:

(i) There exist 0 < ᾱi < 1−ε
2 such that 0 ≤ αk

i ≤ ᾱi and 0 < β̄ i ≤ 1 such that
0 ≤ βk

i ≤ β̄ i .
(ii) The parameters τ k1 and τ k2 are given by

τ k1 := (1 + ε)δ1 + (1 + β̄1)L1(xk2 )

1 − αk
1

and τ k2 := (1 + ε)δ2 + (1 + β̄2)L2(x
k+1
1 )

1 − αk
2

,
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and for i = 1, 2,

δi := ᾱi + β̄ i

1 − ε − 2ᾱi
λ+
i .

The following theorem was proven in [36,Theorem 4.1].

Theorem 3.6 (Convergence of iPALM) Let F : Rd1 × R
d2 → (−∞,∞] given by (2)

be a KL function. Suppose that H fulfills the Assumptions 3.1 and that∇H is Lipschitz
continuous on bounded subsets of Rd1 × R

d2 . Further, let the parameters of iPALM
fulfill the parameter conditions of Assumption 3.5. If the sequence (xk1 , x

k
2 )k generated

by iPALM is bounded, then it converges to a critical point of F.

Remark 3.7 Even though we cited PALM and iPALM just for two blocks (x1, x2) of
variables, the convergence proofs from [4] and [36] even work with more than two
blocks. �

4 iSPALM

In many problems in imaging and machine learning the function H : Rd1 ×R
d2 → R

in (2) is of the form

H(x1, x2) = 1

n

n∑

i=1

hi (x1, x2), (4)

where n is large. Then the computation of the gradients in PALM and iPALM is very
time consuming. The idea to combine stochastic gradient estimators with a PALM
scheme was first discussed by Xu and Yin in [46]. The authors replaced the gradient
in Algorithm 3.1 by the stochastic gradient descent (SGD) estimator

∇̃xi H(x1, x2) := 1

b

∑

j∈B
∇xi h j (x1, x2),

where B ⊂ {1, . . . , n} is a random subset (mini-batch) of fixed batch size b = |I |.
This gives Algorithm 4.1 which we call SPALM.

Xu and Yin showed in [46] under rather strong assumptions, in particular f , g have
to be Lipschitz continuous and the variance of the SGD estimator has to be bounded,
that there exists a subsequence (xk1 , x

k
2 )k of iterates generated by Algorithm 4.1 such

that the sequence E
(
dist(0, ∂F(xk1 , x

k
2 )

)
converges to zero as k → ∞. If F , f and g

are strongly convex, the authors proved also convergence of the function values to the
infimum of F .

Driggs et al. [13] could weaken the assumptions and improve the convergence rate
by replacing the SGD estimator by so-called variance-reduced gradient estimators ∇̃.
They called their method SPRING.
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Algorithm 4.1 Stochastic Proximal Alternating Linearized Minimization (SPALM
with SGD/SPRING with SARAH estimator ∇̃)
Input: (x01 , x02 ) ∈ R

d1 × R
d2 , parameters τ k1 , τ k2 for k ∈ N0.

for k = 0, 1, ... do
Set

xk+1
1 ∈ prox f

τ k1

(
xk1 − 1

τ k1
∇̃x1H(xk1 , xk2 )

)

Set

xk+1
2 ∈ proxg

τ k2

(
xk2 − 1

τ k2
∇̃x2H(xk+1

1 , xk2 )
)

However, in deep learning with nonsmooth functions, the combination of
momentum-like methods and a stochastic gradient estimator turned out to be essen-
tial [15, 43]. To this end, we define inertial variance-reduced gradient estimators in a
slightly different way as in [13].

Definition 4.1 (Inertial Variance-Reduced Gradient Estimator) A gradient estimator
∇̃ is called inertial variance-reduced for a differentiable function H : Rd1 ×R

d2 → R

with constants V1, Vϒ ≥ 0 and ρ ∈ (0, 1], if for any sequence (xk)k = (xk1 , x
k
2 )k∈N0 ,

x−1 := x0 and any 0 ≤ βk
i < β̄i , i = 1, 2 there exists a sequence of random variables

(ϒk)k∈N with E(ϒ1) < ∞ such that following holds true:

(i) For zki := xki + βk
i (x

k
i − xk−1

i ), i = 1, 2, we have

Ek(‖∇̃x1H(zk1, x
k
2 ) − ∇x1H(zk1, x

k
2 )‖2 + ‖∇̃x2H(xk+1

1 , zk2)

− ∇x2H(xk+1
1 , zk2)‖2)

≤ ϒk + V1
(
Ek(‖xk+1 − xk‖2) + ‖xk − xk−1‖2 + ‖xk−1 − xk−2‖2

)
.

(ii) The sequence (ϒk)k decays geometrically, that is

Ek(ϒk+1) ≤ (1 − ρ)ϒk + Vϒ(Ek(‖xk+1−xk‖2)+‖xk−xk−1‖2
+ ‖xk−1 − xk−2‖2).

(iii) If limk→∞ E(‖xk − xk−1‖2) = 0, then E(ϒk) → 0 as k → ∞.

While the SGD estimator is not inertial variance-reduced, we will show that the
SARAH [33] estimator has this property.

Definition 4.2 (SARAH Estimator) The SARAH estimator reads for k = 0 as

∇̃x1H(x01 , x
0
2 ) = ∇x1H(x01 , x

0
2 ).

For k = 1, 2, . . . we define random variables pki ∈ {0, 1} with P(pki = 0) = 1
p and

P(pki = 1) = 1 − 1
p , where p ∈ (1,∞) is a fixed chosen parameter. Further, we
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define Bk
i to be random subsets uniformly drawn from {1, . . . , n} of fixed batch size

b. Then for k = 1, 2, . . . the SARAH estimator reads as

∇̃x1H(xk1 , xk2 ) =
{∇x1H(xk1 , xk2 ), if pk1 = 0,
1
b

∑
i∈Bki

∇x1hi (x
k
1 , xk2 ) − ∇x1hi (x

k−1
1 , xk−1

2 ) + ∇̃x1H(xk−1
1 , xk−1

2 ), if pk1 = 1,

and analogously for ∇̃x2H . In the sequel, we assume that the family of the random
elements pki , B

k
i for i = 1, 2 and k = 1, 2, . . . is independent.

Indeed, we can show the desired property of the SARAH gradient estimator.

Proposition 4.3 Let H : Rd1 ×R
d2 → R be given by (4) with functions hi : Rd1 ×R

d2

having a globally M-Lipschitz continuous gradient. Then the SARAH estimator ∇̃ is
inertial variance-reduced with parameters ρ = 1

p and

Vϒ = 3(1 − 1
p )M2

(
1 + max

(
(β̄1)

2, (β̄2)
2
))

.

Furthermore, we can choose

ϒk+1 = ‖∇̃x1H(zk1, x
k
2 ) − ∇x1H(zk1, x

k
2 )‖2 + ‖∇̃x2H(xk+1

1 , zk2) − ∇x2H(xk+1
1 , zk2)‖2.

For the proof which follows mainly the path of [13,Proposition 2.2], but must be
nevertheless carefully adapted to the inertial setting, we refer to [21].

Finally, we can propose our inertial stochastic PALM (iSPALM) algorithm with
SARAH estimator ∇̃ in Algorithm 4.2.

Algorithm 4.2 Inertial Stochastic Proximal Alternating Linearized Minimization
(iSPALM)

Input: (x−1
1 , x−1

2 ) = (x01 , x02 ) ∈ R
d1 × R

d2 , parameters αk1 , αk2 , βk
1 , βk

2 , τ k1 , τ k2 for k ∈ N0.
for k = 0, 1, ... do

Set

yk1 = xk1 + αk1(xk1 − xk−1
1 )

zk1 = xk1 + βk
1 (xk1 − xk−1

1 )

xk+1
1 ∈ prox f

τ k1

(
yk1 − 1

τ k1
∇̃x1H(zk1, x

k
2 )

)
.

Set

yk2 = xk2 + αk2(xk2 − xk−1
2 )

zk2 = xk2 + βk
2 (xk2 − xk−1

2 )

xk+1
2 ∈ proxg

τ k2

(
yk2 − 1

τ k2
∇̃x2H(xk+1

1 , zk2)
)
.
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Remark 4.4 Similarly as in Remark 3.4, iSPALM can be viewed as a generalization
of the stochastic versions of the momentum method and NAG to the nonsmooth case.
Note, that in the stochastic setting the theoretical error bounds of momentum methods
are not tighter than for a plain gradient descent. An overview over these conver-
gence results can be found in [15, 43]. Consequently, we are not able to show tighter
convergence rates for iSPALM than for stochastic PALM. Nevertheless, stochastic
momentum methods as the momentum SGD and the Adam optimizer [25] are widely
used and have shown a better convergence behavior than a plain SGD in a huge number
of applications. �

5 Convergence analysis of iSPALM

We assume that the parameters of iSPALM fulfill the following conditions.

Assumption 5.1 (Conditions on the Parameters of iSPALM) Let λ+
i , i = 1, 2 and

L1(xk2 ), L2(xk1 ) be defined byAssumption 3.1 andρ, V1, Vϒ byDefinition 4.1. Further,
let H : Rd1 ×R

d2 → R be given by (4) with functions hi : Rd1 ×R
d2 having a globally

M-Lipschitz continuous gradient. There exist ε, ε > 0 such that for all k ∈ N and
i = 1, 2 the following holds true:

(i) There exist 0 < ᾱi < 1−ε
2 such that 0 ≤ αk

i ≤ ᾱi and 0 < β̄ i ≤ 1 such that
0 ≤ βk

i ≤ β̄ i

(ii) The parameters τ ki , i = 1, 2 are given by

τ k1 := (1 + ε)δ1 + M + L1(x
k
2 ) + S

1 − αk
1

, and τ k2 := (1 + ε)δ2 + M + L2(x
k+1
1 ) + S

1 − αk
2

,

where S := 4ρV1+Vϒ

ρM + ε and for i = 1, 2,

δi := (M + λ+
i )ᾱi + 2λ+

i β̄
2
i + S

1 − 2ᾱi − ε
.

To analyze the convergence behavior of iSPALM, we start with two auxiliary lem-
mas. The first one can be proven analogously to [36,Proposition 4.1].

Lemma 5.2 Let (xk1 , x
k
2 )k be an arbitrary sequence and αk

i , β
k
i ∈ R, i = 1, 2. Further

define

yki := xki + αk
i (x

k
i − xk−1

i ), zki := xki + βk
i (x

k
i − xk−1

i ), i = 1, 2,

and

�k
i := 1

2‖xki − xk−1
i ‖2, i = 1, 2.

Then, for any k ∈ N and i = 1, 2, we have
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(i) ‖xki − yki ‖2 = 2(αk
i )

2�k
i ,

(ii) ‖xki − zki ‖2 = 2(βk
i )

2�k
i ,

(iii) ‖xk+1
i − yki ‖2 ≥ 2(1 − αk

i �
k+1
i + 2αk

i )(α
k
i − 1)�k

i .

The second auxiliary lemma can be proven analogously to [36,Lemma 3.2].

Lemma 5.3 Let ψ = σ + h, where h : Rd → R is a continuously differentiable
function with Lh-Lipschitz continuous gradient, and σ : Rd → (−∞,∞] is proper
and lower semicontinuous with infRd σ > −∞. Then it holds for any u, v, w ∈ R

d

and any u+ ∈ R
d defined by

u+ ∈ proxσ
t (v − 1

t ∇̃h(w)), t > 0

that

ψ(u+) ≤ ψ(u) + 〈u+ − u,∇h(u) − ∇̃h(w)〉 + Lh

2

2

‖u − u+‖2

+ t

2
‖u − v‖2 − t

2
‖u+ − v‖2.

Now we can establish a result on the expectation of squared subsequent iterates.
Note that equivalent results were shown for PALM, iPALM and SPRING. Here we use
a function �, which not only contains the current function value, but also the distance
of the iterates to the previous ones. A similar idea was used in the convergence proof of
iPALM [36]. Nevertheless, incorporating the stochastic gradient estimator here makes
the proof much more involved.

Theorem 5.4 Let F : Rd1 × R
d2 → (−∞,∞] be given by (2) and fulfill Assump-

tion 3.1. Let (xk1 , x
k
2 )k be generated by iSPALM with parameters fulfilling Assump-

tion 5.1, where we use an inertial variance-reduced gradient estimator ∇̃. Then it
holds for � : (Rd1 × R

d2)3 → R defined for u = (u11, u12, u21, u22, u31, u32) ∈
(Rd1 × R

d2)3 by

�(u) := F(u11, u12) + δ1
2 ‖u11 − u21‖2 + δ2

2 ‖u12 − u22‖2

+ S
4

(
‖u21 − u31‖2 + ‖u22 − u32‖2

)

that there exists γ > 0 such that

�(u1) − inf
u∈(Rd1×R

d2 )2
�(u) + 1

Mρ
E(ϒ1) ≥ γ

T∑

k=0

E(‖uk+1 − uk‖2),

where uk := (xk1 , x
k
2 , x

k−1
1 , xk−1

2 , xk−2
1 , xk−2

2 ). In particular, we have

∞∑

k=0

E(‖uk+1 − uk‖2) < ∞.
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Proof By Lemma 5.3 with ψ := H(·, x2) + f , we obtain

H(xk+1
1 , xk2 ) + f (xk+1

1 ) ≤ H(xk1 , xk2 ) + f (xk1 )

+
〈
xk+1
1 − xk1 , ∇x1H(xk1 , xk2 ) − ∇̃x1H(zk1, x

k
2 )

〉

+ L1(xk2 )

2 ‖xk+1
1 − xk1‖2 + τ k1

2 ‖xk1 − yk1‖2 − τ k1
2 ‖xk+1

1 − yk1‖2.
(5)

Using ab ≤ s
2a

2 + 1
2s b

2 for s > 0 and ‖a − c‖2 ≤ 2‖a − b‖2 + 2‖b − c‖2 the
inner product is smaller or equal than

sk1
2 ‖xk+1

1 − xk1‖2 + 1
2sk1

‖∇x1H(xk1 , x
k
2 ) − ∇̃x1H(zk1, x

k
2 )‖2

≤ sk1
2 ‖xk+1

1 − xk1‖2 + 1
sk1

‖∇x1H(zk1, x
k
2 ) − ∇̃x1H(zk1, x

k
2 )‖2

+ 1
sk1

‖∇x1H(xk1 , x
k
2 ) − ∇x1H(zk1, x

k
2 )‖2

= sk1
2 ‖xk+1

1 − xk1‖2 + 1
sk1

‖∇x1H(zk1, x
k
2 ) − ∇̃x1H(zk1, x

k
2 )‖2 + L1(xk2 )2

sk1
‖xk1 − zk1‖2.

Combined with (5) this becomes

H(xk+1
1 , xk2 ) + f (xk+1

1 )

≤ H(xk1 , xk2 ) + f (xk1 ) + L1(xk2 )

2 ‖xk+1
1 − xk1‖2 + τ k1

2 ‖xk1 − yk1‖2 − τ k1
2 ‖xk+1

1 − yk1‖2

+ sk1
2 ‖xk+1

1 − xk1‖2 + 1
sk1

‖∇x1H(zk1, x
k
2 ) − ∇̃x1H(zk1, x

k
2 )‖2 + L1(xk2 )2

sk1
‖xk1 − zk1‖2.

Using Lemma 5.2 we get

H(xk+1
1 , xk2 ) + f (xk+1

1 )

≤ H(xk1 , x
k
2 ) + f (xk1 ) +

(
L1(x

k
2 ) + sk1 − τ k1 (1 − αk

1)
)

�k+1
1

+ 1
sk1

(
2L1(x

k
2 )

2(βk
1 )

2 + sk1τ
k
1 αk

1

)
�k

1 + 1
sk1

‖∇x1H(zk1, x
k
2 ) − ∇̃x1H(zk1, x

k
2 )‖2.

Analogously we conclude for ψ := H(x1, ·) + g that

H(xk+1
1 , xk+1

2 ) + g(xk+1
2 )

≤ H(xk+1
1 , xk2 ) + g(xk2 ) +

(
L2(x

k+1
1 ) + sk2 − τ k2 (1 − αk

2)
)

�k+1
2

+ 1
sk2

(
2L2(x

k+1
1 )2(βk

2 )2 + sk2τ k2 αk
2

)
�k
2 + 1

sk2
‖∇x2H(xk+1

1 , zk2) − ∇̃x2H(xk+1
1 , zk2)‖2.
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Adding the last two inequalities and using the abbreviation Lk
1 := L1(xk2 ) and

Lk
2 := L2(x

k+1
1 ), we obtain

F(xk+1
1 , xk+1

2 ) ≤ F(xk1 , xk2 )

+
2∑

i=1

((
Lki + ski − τ ki (1 − αk

i )
)

�k+1
i + 1

ski

(
2(Lki )

2(βk
i )2 + ski τ ki αk

i

)
�k
i

)

+ 1
sk1

‖∇x1H(zk1, x
k
2 ) − ∇̃x1H(zk1, x

k
2 )‖2 + 1

sk2
‖∇x2H(xk+1

1 , zk2) − ∇̃x2H(xk+1
1 , zk2)‖2.

(6)

Reformulating (6) in terms of

�(uk) = F(xk1 , x
k
2 ) + δ1�

k
1 + δ2�

k
2 + S

2 (�k−1
1 + �k−1

2 ) (7)

leads to

�(uk) − �(uk+1) = F(xk1 , xk2 ) − F(xk+1
1 , xk+1

2 ) + δ1�
k
1 + δ2�

k
2 − δ1�

k+1
1 − δ2�

k+1
2

+ S
2

(
�k−1
1 + �k−1

2 − �k
1 − �k

2

)

≥
2∑

i=1

((
τ ki (1 − αk

i ) − ski − Lki − δi

)
�k+1
i

)
+

2∑

i=1

((
δi − 2

ski
(Lki )

2(βk
i )2 − τ ki αk

i

)
�k
i

)

− 1
sk1

‖∇x1H(zk1, x
k
2 ) − ∇̃x1H(zk1, x

k
2 )‖2 − 1

sk2
‖∇x2H(xk+1

1 , zk2) − ∇̃x2H(xk+1
1 , zk2)‖2

+ S
2

(
�k−1
1 + �k−1

2 − �k
1 − �k

2

)
. (8)

Now, we set sk1 = sk2 := M use that Lk
i ≤ M , take the conditional expectation Ek

in (8) and use that ∇̃ is an inertial variance-reduced estimator to get

�(uk) − Ek(�(uk+1))

≥
2∑

i=1

((
τ ki (1 − αk

i )−M−Lki − δi

)
Ek(�

k+1
i ) +

(
δi − 2

M (Lki )
2(βk

i )2 − τ ki αk
i

)
�k
i

)

− 2V1
M

2∑

i=1

(
Ek(�

k+1
i ) + �k

i

)
− 1

M ϒk + S
2

(
�k−1
1 + �k−1

2 − �k
1 − �k

2

)

≥
2∑

i=1

((
τ ki (1 − αk

i ) − M − Lki − δi − 2V1
M

)
Ek(�

k+1
i )

)

+
2∑

i=1

((
δi − 2Lki (β

k
i )2 − τ ki αk

i − 2V1
M

)
�k
i

)

− 1
M ϒk + S

2

(
�k−1
1 + �k−1

2 − �k
1 − �k

2

)
. (9)
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Since ∇̃ is inertial variance-reduced, we know from Definition 4.1 (ii) that

ρϒk ≤ ϒk − Ek(ϒk+1) + 2Vϒ

2∑

i=1

(
Ek(�

k+1
i ) + �k

i + �k−1
i

)
. (10)

Inserting this in (9) and using the definition of S yields

�(uk) − Ek

(
�(uk+1)

)
≥

2∑

i=1

((
τ ki (1 − αk

i ) − M − Lki ) − δi − S
2

)
Ek(�

k+1
i )

)

+
2∑

i=1

((
δi − 2Lki (β

k
i )2 − τ ki αk

i − S
2

)
�k
i

)

− 2Vϒ

ρM
(�k−1

1 + �k−1
2 ) + 1

Mρ

(
Ek(ϒk+1) − ϒk

) + S
2

(
�k−1
1 + �k−1

2 − �k
1 − �k

2

)

≥
2∑

i=1

( (
τ ki (1 − αk

i ) − M − Lki − δi − S
)

︸ ︷︷ ︸
aki

Ek(�
k+1
i )

)

+
2∑

i=1

( (
δi − 2Lki (β

k
i )2 − τ ki αk

i − S
)

︸ ︷︷ ︸
bki

�k
i

)

+ 1
Mρ

(
Ek(ϒk+1) − ϒk

) +
(
S
2 − 2Vϒ

ρM

) (
�k−1
1 + �k−1

2

)
. (11)

Choosing τ ki , δi , i = 1, 2 and ε as in Assumption 5.1(ii), we obtain by straightfor-
ward computation for i = 1, 2 and all k ∈ N that aki = εδi and

bki = 1
1−αk

i

(
(1 − ε − 2αk

i )δi − αk
i M − S − Lk

i

(
2(βk

i )
2(1 − αk

i ) + αk
i

))
+ εδi

≥ 1
1−αk

i

(
(1 − ε − 2ᾱi )δi − ᾱi M − S − λ+

i

(
2(β̄i )

2(1 − αk
i ) + ᾱi

))
+ εδi

= εδi + 2
2λ+

i αk
i (β̄i )

2

1 − αk
i

≥ εδi .

Applying this in (11), we get

�(uk) − Ek

(
�(uk+1)

)
≥ ε min(δ1, δ2)

2∑

i=1

(Ek(�
k+1
i ) + �k

i )

+ 1
Mρ

(Ek(ϒk+1) − ϒk) +
(
S
2 − 2Vϒ

ρM

) (
�k−1

1 + �k−1
2

)
.
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By definition of S it holds
(
2Vϒ

ρM − S
2

)
≥ ε. Thus, we get for γ := 1

2 min(εδ1, εδ2, ε)

that

�(uk) − Ek

(
�(uk+1)

)
≥ 2γ

2∑

i=1

(
Ek(�

k+1
i ) + �k

i + �k−1
i

)
+ 1

Mρ
(Ek(ϒk+1) − ϒk).

Taking the full expectation yields

E(�(uk) − �(uk+1)) ≥ γE(‖uk+1 − uk‖2) + 1
Mρ

E(ϒk+1 − ϒk), (12)

and summing up for k = 1, . . . , T ,

E(�(u1) − �(uT+1)) ≥ γ

T∑

k=0

E(‖uk+1 − uk‖2) + 1
Mρ

E(ϒT+1 − ϒ1).

Since ϒk ≥ 0, this yields

γ

T∑

k=0

E(‖uk+1 − uk‖2) ≤ �(u1) − inf
u∈(Rd1×R

d2 )2
�(u)

︸ ︷︷ ︸
>−∞

+ 1
Mρ

E(ϒ1)
︸ ︷︷ ︸

<∞

< ∞.

This finishes the proof. �

Next, we want relate the sequence of iterates generated by iSPALM to the subgra-

dient of the objective function. Such a relation was also established for the (inertial)
PALM algorithm. However, due to the stochastic gradient estimator the proof differs
significantly from its deterministic counterparts. Note that the convergence analysis of
SPRING in [13] does not use the subdifferential but the so-called generalized gradient
G Fτ1,τ2 . This is not satisfying at all, since it becomes not clear how this generalized
gradient is related to the (sub)differential of the objective function in limit processes
with varying τ1 and τ2. In particular, it is easy to find examples of F and sequences
(τ k1 )k and (τ k2 )k such that the generalized gradient G Fτ k1 ,τ k2

(x1, x2) is non-zero, but
converges to zero for fixed x1 and x2.

Theorem 5.5 Under the assumptions of Theorem 5.4 there exists some C > 0 such
that

E

(
dist(0, ∂F(xk+1

1 , xk+1
2 ))2

)
≤ CE(‖uk+1 − uk‖2) + 3E(ϒk).

In particular, it holds

E

(
dist(0, ∂F(xk+1

1 , xk+1
2 ))2

)
→ 0 as k → ∞.
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Proof By definition of xk+1
1 , and (1) as well as Proposition 2.3 it holds

0 ∈ τ k1 (xk+1
1 − yk1 ) + ∇̃x1H(zk1, x

k
2 ) + ∂ f (xk+1

1 ).

This is equivalent to

τ k1 (yk1 − xk+1
1 ) + ∇x1H(xk+1

1 , xk+1
2 ) − ∇̃x1H(zk1, x

k
2 )

∈ ∇x1H(xk+1
1 , xk+1

2 ) + ∂ f (xk+1
1 ) ∈ ∂x1F(xk+1

1 , xk+1
2 ).

Analogously we get that

τ k2 (yk2 − xk+1
2 ) + ∇x2H(xk+1

1 , xk+1
2 ) − ∇̃x1H(xk+1

1 , zk2)

∈ ∇x2H(xk+1
1 , xk+1

2 ) + ∂g(xk+1
2 ) ∈ ∂x2F(xk+1

1 , xk+1
2 ).

Then we obtain by Proposition 2.3 that

v :=
(

τ k1 (yk1 − xk+1
1 ) + ∇x1H(xk+1

1 , xk+1
2 ) − ∇̃x1H(zk1, x

k
2 )

τ k2 (yk2 − xk+1
2 ) + ∇x2H(xk+1

1 , xk+1
2 ) − ∇̃x1H(xk+1

1 , zk2)

)

∈ ∂F(xk+1
1 , xk+1

2 ),

and it remains to show that the squared norm of v is in expectation bounded by
CE(‖uk+1 − uk‖2)+ 3E(ϒk) for some C > 0. Using (a+ b+ c)2 ≤ 3(a2 + b2 + c2)
we estimate

‖v‖2 = ‖τ k1 (yk1 − xk+1
1 ) + ∇x1H(xk+1

1 , xk+1
2 ) − ∇̃x1H(zk1, x

k
2 )‖2

+ ‖τ k2 (yk2 − xk+1
2 ) + ∇x2H(xk+1

1 , xk+1
2 ) − ∇̃x1H(xk+1

1 , zk2)‖2
≤ 3(τ k1 )2‖yk1 − xk+1

1 ‖2 + 3‖∇x1H(xk+1
1 , xk+1

2 ) − ∇x1H(zk1, x
k
2 )‖2

+ 3‖∇x1H(zk1, x
k
2 ) − ∇̃x1H(zk1, x

k
2 )‖2 + 3(τ k2 )2‖yk2 − xk+1

2 ‖2
+ 3‖∇x2H(xk+1

1 , xk+1
2 ) − ∇x2H(xk+1

1 , zk2)‖2
+ 3‖∇x2H(xk+1

1 , zk2) − ∇̃x2H(xk+1
1 , zk2)‖2.

Since ∇H is M-Lipschitz continuous and (a + b)2 ≤ 2(a2 + b2), we get further

‖v‖2 ≤ 12(τ k1 )2�k+1
1 + 6(τ k1 )2‖yk1 − xk1‖2 + 12(τ k2 )2�k+1

2 + 6(τ k2 )2‖yk2 − xk2‖2
+ 3M2‖xk+1

1 − zk1‖2 + 6M2�k+1
2 + 3M2‖xk+1

2 − zk2‖2

+ 3
(
‖∇x1H(zk1, x

k
2 ) − ∇̃x1H(zk1, x

k
2 )‖2 + ‖∇x2H(xk+1

1 , zk2) − ∇̃x2H(xk+1
1 , zk2)‖2

)
.

Using Lemma 5.2 and the fact that ∇̃ is inertial variance-reduced, this implies

‖v‖2 ≤ 12(τ k1 )2�k+1
1 + 12(τ k1 )2(αk

1)
2�k

1 + 12(τ k2 )2�k+1
2 + 12(τ k2 )2(αk

2)
2�k

2

+ 12M2�k+1
1 + 6M2‖xk1 − zk1‖2 + 6M2�k+1

2 + 12M2�k+1
2 + 6M2‖xk2 − zk2‖2

+ 3
(
‖∇x1H(zk1, x

k
2 ) − ∇̃x1H(zk1, x

k
2 )‖2 + ‖∇x2H(xk+1

1 , zk2) − ∇̃x2H(xk+1
1 , zk2)‖2

)
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≤ 12
(
(τ k1 )2 + M2

)
�k+1
1 + 12

(
(τ k1 )2(αk

1)
2 + M2(βk

1 )2
)

�k
1

+
(
12(τ k2 )2 + 18M2

)
�k+1
2 + 12

(
(τ k2 )2(αk

2)
2 + M2(βk

2 )2
)

�k
2

+ 3
(
‖∇x1H(zk1, x

k
2 ) − ∇̃x1H(zk1, x

k
2 )‖2 + ‖∇x2H(xk+1

1 , zk2) − ∇̃x2H(xk+1
1 , zk2)‖2

)

≤ C0‖uk+1 − uk‖2
+ 3(‖∇x1H(zk1, x

k
2 ) − ∇̃x1H(zk1, x

k
2 )‖2)

+ 3(‖∇x2H(xk+1
1 , zk2) − ∇̃x2H(xk+1

1 , zk2)‖2),

where

C0 = 12max

(
(τ k1 )2 + M2, (τ k1 )2(αk1)2 + M2(βk

1 )2, (τ k2 )2 + 3

2
M2, (τ k2 )2(αk2)2 + M2(βk

2 )2
)

.

Noting that dist(0, ∂F(xk+1
1 , xk+1

2 ))2 ≤ ‖v‖2, taking the conditional expectation
Ek and using that ∇̃ is inertial variance-reduced, we conclude

Ek

(
dist(0, ∂F(xk+1

1 , xk+1
2 ))2

)

≤ Ek

(
C0‖uk+1 − uk‖2

)

+ 3Ek

(
‖∇x1H(zk1, x

k
2 ) − ∇̃x1H(zk1, x

k
2 )‖2 + ‖∇x2H(xk+1

1 , zk2) − ∇̃x2H(xk+1
1 , zk2)‖2

)

≤ Ek

(
(C0 + 3V1)‖uk+1 − uk‖2

)
+ 3ϒk .

Taking the full expectation on both sides and setting C := C0 + 3V1 proves the
claim. �


Using Theorem 5.5, we can show the sub-linear decay of the expected squared
distance of the subgradient to 0.

Theorem 5.6 (Convergence of iSPALM) Under the assumptions of Theorem 5.4 it
holds for t drawn uniformly from {2, . . . , T + 1} that there exists some 0 < σ < γ

such that

E

(
dist(0, ∂F(xt1, x

t
2))

2
)

≤ C
T (γ−σ)

(

�(u1) − inf
u∈Rd1×R

d2
�(u) +

(
3(γ−σ)

ρC + 1
Mρ

)
E(ϒ1)

)

.

Proof By (10), Theorem 5.5 and (12) it holds for 0 < σ < γ that

E

(
�(uk) − �(uk+1)

)
≥ γE(‖uk+1 − uk‖2) + 1

Mρ
E (ϒk+1 − ϒk)

≥ σE(‖uk+1 − uk‖2) + γ−σ
C E

(
dist(0, ∂F(xk+1

1 , xk+1
2 ))2

)

− 3(γ−σ)
C E(ϒk) + 1

Mρ
E (ϒk+1 − ϒk)

≥ σE(‖uk+1 − uk‖2) + γ−σ
C E

(
dist(0, ∂F(xk+1

1 , xk+1
2 ))2

)

+
(
3(γ−σ)

ρC + 1
Mρ

)
E (ϒk+1 − ϒk) − 3(γ−σ)Vϒ

Cρ
E(‖uk+1 − uk‖2).
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Choosing σ := 3(γ−σ)Vϒ

Cρ
yields

E

(
�(uk)−�(uk+1)

)
≥ γ−σ

C E

(
dist(0, ∂F(xk+1

1 , xk+1
2 ))2

)
−

(
3(γ−σ)

ρC + 1
Mρ

)
E (ϒk+1−ϒk) .

Adding this up for k = 1, . . . , T we get

E

(
�(u1) − �(uT )

)
≥ γ−σ

C

T∑

k=1

E

(
dist(0, ∂F(xk+1

1 , xk+1
2 ))2

)

+
(
3(γ−σ)

ρC + 1
Mρ

)
E (ϒT − ϒ1) .

Since ϒT ≥ 0 this yields for t drawn randomly from {2, . . . , T + 1} that

E

(
dist(0, ∂F(xt1, x

t
2))

2
)

= 1
T

T∑

k=1

E

(
dist(0, ∂F(xk+1

1 , xk+1
2 ))2

)

≤ C
T (γ−σ)

(

�(u1) − inf
u∈(Rd1×R

d2 )2
�(u) +

(
3(γ−σ)

ρC + 1
Mρ

)
E(ϒ1)

)

.

This finishes the proof. �

In [13] the authors proved global convergence of the objective function evaluated

at the iterates of SPRING in expectation if the global error bound

F(x1, x2) − ¯F ≤ μ dist(0, ∂F(x1, x2))
2, for all x1 ∈ R

d1 , x2 ∈ R
d2 (13)

is fulfilled for some μ > 0. Using this error bound, we can also prove global conver-
gence of iSPALM in expectation with a linear convergence rate. Note that the authors
of [13] used the generalized gradient instead of the subgradient also for this error
bound. Similar as before this seems to be unsuitable due to the heavy dependence on
of the generalized gradient on the step size parameters.

Theorem 5.7 (Convergence of iSPALM) Let the assumptions of Theorem 5.4 hold
true. If in addition (13) is fulfilled, then there exists some �0 ∈ (0, 1) and �1 > 0
such that

E

(
F(xT+1

1 , xT+1
2 ) − ¯F

)
≤ (�0)

T
(
�(u1) − ¯F + �1E(ϒ1)

)
.

In particular, it holds limT→∞ E(F(xT1 , xT2 ) − ¯F) = 0.

Proof By (12) and Theorem 5.5, we obtain for 0 < d < min(γ,
Cρμ
1−ρ

) that

E

(
�(uk+1) − ¯F + 1

Mρ
ϒk+1

)
≤ E

(
�(uk) − ¯F + 1

Mρ
ϒk

)
− γE(‖uk+1 − uk‖2)

≤ E

(
�(uk) − ¯F + 1

Mρ
ϒk

)
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− d
CE

(
dist(0, ∂F(xk+1

1 , xk+1
2 ))2

)
+ 3d

C E(ϒk)

− (γ − d)E(‖uk+1 − uk‖2).

Using (10) in combination with the global error bound (13), we get

E

(
�(uk+1) − ¯F +

(
3d
ρC + 1

Mρ

)
ϒk+1

)
≤ E

(
�(uk) − ¯F +

(
3d
ρC + 1

Mρ

)
ϒk

)

− d
Cμ

E

(
F(xk+1

1 , xk+1
2 ) − ¯F

)
−

(
γ − d − 3dVϒ

ρC

)
E(‖uk+1 − uk‖2).

Setting Cϒ :=
(

3d
ρC + 1

Mρ

)
and applying the definition (7) of �, this implies

(
1 + d

Cμ

)
E

(
�(uk+1) − ¯F

)
− d

Cμ
E(δ1�

k+1
1 + δ2�

k+1
2 ) + CϒE(ϒk+1)

≤ E

(
�(uk) − ¯F

)
+ CϒE(ϒk) −

(
γ − d − 3dVϒ

ρC

)
E(‖uk+1 − uk‖2).

With δ := max(δ1, δ2) and �k+1
1 + �k+1

2 ≤ 1
2‖uk+1 − uk‖2 we get

(
1 + d

Cμ

)
E

(
�(uk+1) − ¯F

)
+ CϒE(ϒk+1)

≤ E

(
�(uk) − ¯F

)
+ CϒE(ϒk) −

(
γ − d − 3dVϒ

ρC − dδ
2Cμ

)
E(‖uk+1 − uk‖2).

Multiplying by Cd := 1

1+ d
Cμ

= Cμ
Cμ+d this becomes

E

(
�(uk+1) − ¯F

)
+ CϒCdE(ϒk+1) ≤ Cμ

Cμ+dE

(
�(uk) − ¯F

)
+ CϒCdE(ϒk)

− Cμ
Cμ+d

(
γ − d − 3dVϒ

ρC − dδ
2Cμ

)
E(‖uk+1 − uk‖2). (14)

Since d <
Cρμ
1−ρ

we know that s := 1−Cd
Cd+ρ−1 = d

ρCμ+(ρ−1)d > 0. Thus, adding sCϒCd

times equation Definition 4.1 (ii) to (14) gives

E

(
�(uk+1) − ¯F

)
+ (1 + s)CϒCdE(ϒk+1) ≤ CdE

(
�(uk) − ¯F + (1 + s)CϒCdE(ϒk)

)

+ Cd

(
Vϒ sCϒ −

(
γ − d − 3dVϒ

ρC − dδ
2Cμ

))

︸ ︷︷ ︸
=:h(d)

E(‖uk+1 − uk‖2),

where we have used that 1+ (1− ρ)s = Cd(1+ s). Since s converges to 0 as d → 0
we have that limd→0 h(d) = −γ . Thus we can choose d > 0 small enough, such that
h(d) < 0. Then we get

E

(
�(uk+1) − ¯F

)
+ (1 + s)CϒCdE(ϒk+1) ≤ CdE

(
�(uk) − ¯F + (1 + s)CϒCdE(ϒk)

)
.
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Finally, setting �0 := Cd and �1 := (1 + s)CϒCd and applying the last equation
iteratively, we obtain

E

(
�(uT+1) − ¯F + �1ϒT+1

)
≤ (�0)

T
E

(
�(u1) − ¯F + �1ϒ1

)
.

Note that �(uT+1) ≥ F(xT+1
1 , xT+1

2 ) and that ϒT+1 ≥ 0. This yields

E

(
F(xT+1

1 , xT+1
2 ) − ¯F

)
≤ (�0)

T
E

(
�(u1) − ¯F + �1ϒ1

)
,

and we are done. �


6 Numerical results

In this section, we demonstrate the performance of iSPALM for two different appli-
cations, namely for learning (i) the parameters of Student-t MMs, and (ii) the weights
of PNNs. In comparison with PALM, iPALM and SPRING, we will see that our algo-
rithm increases the stability of SPRING and iSPALM if we enforce the evaluation of
the full gradient at the beginning of each epoch. We will exclusively use the SARAH
estimator.

We run all our experiments on a Lenovo ThinkStation with Intel i7-8700 processor,
32GB RAM and a NVIDIA GeForce GTX 2060 Super GPU. For the implementation
we use Python and Tensorflow.

6.1 Parameter choice and implementation aspects

On the one hand, the algorithms based on PALMhavemany parameters which enables
a high adaptivity of the algorithms to the specific problems. On the other hand, it is
often hard to fit these parameters to ensure the optimal performance of the algorithms.

Based on approximations L̃1(xk2 ) and L̃2(x
k+1
1 ) of the partial Lipschitz constants

L1(xk2 ) and L2(x
k+1
1 ) outlined below, we use the following step size parameters τ ki ,

i = 1, 2:

• For PALM and iPALM, we choose τ k1 = L̃1(xk1 , x
k
2 ) and τ k2 = L̃2(x

k+1
1 , xk2 )

which was also suggested in [4, 36].
• For SPRING and iSPALM, we choose τ k1 = s1 L̃1(xk1 , x

k
2 ) and τ k2 =

s1 L̃2(x
k+1
1 , xk2 ), where the manually chosen scalar s1 > 0 depends on the appli-

cation. Note that the authors in [13] propose to take s1 = 2 which was not optimal
in our examples.

Computation of Gradients and Approximative Lipschitz Constants Since the global
and partial Lipschitz constants of the block-wise gradients of H are usually unknown,
we estimate them locally using the second order derivative of H which exists in our
examples. If H acts on a high dimensional space, it is often computationally to costly
to compute the full Hessian matrix. Thus we compute a local Lipschitz constant only
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in the gradient direction, i.e. we compute

L̃i (x1, x2) := ‖∇2
xi H(x1, x2)g‖, g := ∇xi H(x1, x2)

‖∇xi H(x1, x2)‖ (15)

For the stochastic algorithmswe replace H by the approximated function H̃ (x1, x2) :=
1
b

∑
i∈Bk

i
hi (x1, x2), where Bk

i is the current mini-batch. The analytical computation

of L̃i in (15) is still hard. Even computing the gradient of a complicated function H
can be error prone and laborious. Therefore, we compute the (partial) gradients of H
or H̃ , respectively, using the reverse mode of algorithmic differentiation (also called
backpropagation), see e.g. [16]. To this end, note that the chain rule yields that

∥∥∥∇xi

(
‖∇xi H(x1, x2)‖2

)∥∥∥ =
∥∥∥2‖∇xi H(x1, x2)‖∇2

xi H(x1, x2)∇xi H(x1, x2)
∥∥∥

= 2‖∇xi H(x1, x2)‖2 L̃i (x1, x2).

Thus, we can compute L̃i (x1, x2) by applying two times the reverse mode. If we
neglect the taping, the execution time of this procedure can provably be bounded by a
constant times the execution time of H , see [16,Sect. 5.4]. Therefore, this procedure
gives us an accurate and computationally very efficient estimation of the local partial
Lipschitz constant.

Inertial Parameters For the iPALM and iSPALM we have to choose the inertial
parameters αk

i ≥ 0 and βk
i ≥ 0. With respect to our convergence results we have to

assume that there exist αk
i ≤ ᾱi < 1

2 and βk
i ≤ β̄ i < 1, i = 1, 2. Note that for convex

functions f and g, the authors in [36] proved that the assumption on the α’s can be
lowered to αk

i ≤ ᾱi < 1 and suggested to use αk
i = βk

i = k−1
k+2 . Unfortunately, we

cannot show this for iSPALM and indeed we observe instability and divergence in
iSPALM, if we choose αk

i > 1
2 . Therefore, we choose for iSPALM the parameters

αk
i = βk

i = s2
k − 1

k + 2
,

where the scalar 0 < s2 < 1 is manually chosen depending on the application.

Implementation Weprovide a general framework for implementing PALM, iPALM,
SPRING and iSPALM2 on a GPU. Using this framework, it suffice to provide an
implementation for the functions H and prox fi

τi in order to use one of the above
algorithms for the function F(x1, . . . , xK ) = H(x1, . . . , xK ) + ∑K

i=1 fi (xi ). We
provide also the code of our numerical examples below on this website.

2 https://github.com/johertrich/Inertial-Stochastic-PALM.

https://github.com/johertrich/Inertial-Stochastic-PALM
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6.2 Student-tmixture models

First, we apply the various PALM algorithms for estimating the parameters of d-
dimensional Student-t MMs with K components. More precisely, we aim to find
α = (α1, . . . , αK ) ∈ �K := {(αk)

K
k=1 : ∑K

k=1 αk = 1, αk ≥ 0}, ν = (ν1, . . . , νK ) ∈
R

K
>0, μ = (μ1, . . . , μK ) ∈ R

K , and � = (�1, . . . , �K ) ∈ SPD(d)K in the probabil-
ity density function

p(x) =
K∑

k=1

αk f (x |νk, μk, �k).

Here SPD(d) denotes the symmetric positive definite d × d matrices, and f is the
density function of the Student-t distribution with ν > 0 degrees of freedom, location
parameter μ ∈ R

d and scatter matrix � ∈ SPD(d) given by

f (x |ν, μ,�) = �
( d+ν

2

)

�
(

ν
2

)
ν

d
2 π

d
2 |�| 12

1
(
1 + 1

ν
(x − μ)T�−1(x − μ)

) d+ν
2

with the Gamma function �.
For samples X = (x1, . . . , xn) ∈ R

d×n , we want to minimize the negative log-
likelihood function

L(α, ν, μ,�|X ) = −1

n

n∑

i=1

log

( K∑

k=1

αk f (xi |νk, μk, �k)

)

subject to the parameter constraints. A first idea to rewrite this problem in the form
(2) looks as

F(α, ν, μ,�) = H(α, ν, μ,�) + f1(α) + f2(ν) + f3(μ) + f4(�), (16)

where H := L, f1 := ι�K , f2 := ι
R
K
>0
, f3 := 0, f4 := ιSPD(d)K , and ιS denotes

the indicator function of the set S defined by ιS(x) := 0 if x ∈ S and ιS(x) := ∞
otherwise. Indeed one of the authors has applied PALM and iPALM to such a setting
without any convergence guarantee in [19]. The problem is that L is not defined on
the whole Euclidean space and since L(α, ν, μ,�) → ∞ as �k → 0 for some k,
the function can also not continuously extended to the whole RK × R

K × R
d×K ×

Sym(d)K , where Sym(d) denotes the space of symmetric d×d matrices. Furthermore,
the functions f2 and f4 are not lower semi-continuous. Consequently, the function (16)
does not fulfill the assumptions required for the convergence of PALM and iPALM.
Therefore we modify the above model as follows: Let SPDε(d) := {� ∈ SPD(d) :
� � ε Id}. Then we use the surjective mappings ϕ1 : RK → �K , ϕ2 : RK → R

K≥ε
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and ϕ3 : Sym(d)K → SPDε(d)K defined by

ϕ1(α) := exp(α)
∑K

j=1 exp(α j )
, ϕ2(ν) := ν2 + ε, ϕ3(�) :=

(
�T

k �k + ε Id
)K

k=1

to reshape problem (16) as the unconstrained optimization problem

argmin
α∈RK ,ν∈RK ,μ∈Rd×K ,�∈Sym(d)K

H(α, ν, μ,�) := L(ϕ1(α), ϕ2(ν), μ, ϕ3(�)|X ).

(17)

For this problem, PALM and iPALM reduce basically to block gradient descent
algorithms. In Appendix B, we verify that the above function H is indeed a KL
function which is bounded from below, and satisfies the Assumption 3.1(i). Since
H ∈ C2(RK × R

K × R
d×K × Sym(d)K ) , we know by Remark 3.2 that Assump-

tion 3.1(ii) is also fulfilled. Further,∇H is continuous on bounded sets. Then, choosing
the parameters of PALM, resp. iPALM as required by Theorem 3.3 resp. 3.6, we con-
clude that the sequences generated by both algorithms converge to a critical point of H
supposed that they are bounded. Similarly, if we assume in addition that the stochastic
gradient estimators are inertial variance-reduced, we can conclude that the iSPALM
sequence converges as in Theorems 5.6 and 5.7, if the corresponding requirements on
the parameters are fulfilled.

In our numerical examples, we generate the data by sampling from the Student-t
MM, where the parameters of the ground truth MM are generate as follows:

• We generate α = ᾱ2+1
‖ᾱ2+1‖1 , where the entries of ᾱ ∈ R

K are drawn independently

from the standard normal distribution.
• We generate νi = min(ν̄2i + 1, 100), where ν̄i , i = 1, . . . , n is drawn from a
normal distribution with mean 0 and standard deviation 10.

• The entries of μ ∈ R
d×K are drawn independently from a normal distribution

with mean 0 and standard deviation 2.
• We generate �i = �̄

T
i �̄i + I , where the entries of �̄i ∈ R

d×d are drawn inde-
pendently from the standard normal distribution.

For the initialization of the algorithms, we assign to each sample xi randomly a class
ci ∈ {1, . . . , K }. Then we initialize the parameters (νk, μk, �k) by estimating the
parameters of a Student-t distribution of all samples with ci = k using a faster alterna-
tive of the EMalgorithm calledmultivariatemyriad filter, see [17]. Furtherwe initialize

α by αk = |{i∈{1,...,N }:ci=k}|
N . We run the algorithm for n = 200,000 data points of

dimension d = 10 and K = 30 components. We use a batch size of b = 20,000.
To represent the randomness in SPRING and iSPALM, we repeat the experiment 10
times with the same samples and the same initialization. The resulting mean and stan-
dard deviation of the negative log-likelihood values versus the number of epochs and
the execution times, respectively, are given in Fig. 1. Further, we visualize the mean
squared norm of the gradient after each epoch. One epoch contains for SPRING and
iSPALM10 steps and for PALM and iPALM1 step.We see that in terms of the number
of epochs as well as in terms of the execution time the iSPALM is the fastest algorithm.
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Fig. 1 Objective function versus number of epochs and versus execution time for estimating the parameters
of Student-t MMs

6.3 Proximal neural networks (PNNs)

PNNs for MNIST classification In this example, we train a Proximal Neural Network
as introduced in [18] for classification on the MNIST data set.3 The training data
consists of N = 60,000 images xi ∈ R

d of size d = 282 and labels yi ∈ {0, 1}10,
where the j th entry of yi is 1 if and only if xi has the label j . A PNN with K − 1
layers and activation function σ is defined by

T T
K−1σ(TK−1 · · · T T

1 σ(T1x + b1) · · · + bK−1),

where the Ti are contained in the (compact) Stiefel manifold St(d, ni ) and bi ∈ R
ni

for i = 1, . . . , K − 1. To get 10 output elements in (0, 1), we add similar as in [18]
an additional layer

g(TK x), TK ∈ [−10, 10]10,d , bK ∈ R
10

3 http://yann.lecun.com/exdb/mnist.

http://yann.lecun.com/exdb/mnist
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with the activation function g(x) := 1
1+exp(−x) . Thus the full network is given by

�(x, u) = g(TK T
T
K−1σ(TK−1 · · · T T

1 σ(T1x + b1) + · · · + bK−1) + bK ),

u = (T1, . . . , TK , b1, . . . , bK ).

It was demonstrated in [18] that this kind of network is more stable under adversarial
attacks than the same network without the orthogonality constraints.

Training PNNs with iSPALM Now, we want to train a PNN with K − 1 = 3 layers
and n1 = 784, n2 = 400 and n3 = 200 for MNIST classification. In order of applying
our theory, we use the exponential linear unit (ELU)

σ(x) =
{
exp(x) − 1, if x < 0,

x if x ≥ 0,

as activation function, which is differentiable with a 1-Lipschitz gradient. Then, the
loss function is given by

F(u) = H(u) + f (u), u = (T1, . . . , T4, b1, . . . , b4)

where Ti ∈ R
d,ni , bi ∈ R

ni , i = 1, 2, 3, and T4 ∈ [−10, 10]10,d , b4 ∈ R
10, and

f (u) = ιU with

U := {(T1, . . . , T4, b1, . . . , b4) : Ti ∈ St(d, ni ), i = 1, 2, 3, T4 ∈ [−10, 10]10,d}.

and

H(u) := 1

N

N∑

i=1

‖�(xi , u) − yi‖2.

Since H is unfortunately not Lipschitz continuous, we propose a slight modification.
Note that for any u = (T1, . . . , T4, b1, . . . , b4)which appears as xk , yk or zk in PALM,
iPALM, SPRINGor iSPALMwe have that there exist v,w ∈ U such that u = v+w. In
particular, we have that ‖Ti‖F ≤ 2

√
d, i = 1, 2, 3 and ‖T4‖F ≤ 20

√
10d Therefore,

we can replace H by

H̃(u) = �4
i=1η(‖Ti‖2F )

1

N

N∑

i=1

‖�(xi , u) − yi‖2,

without changing the algorithm, where η is a smooth cutoff function of the interval
(−∞, 4000d]. Now, simple calculations yield that the function H̃ is globally Lips-
chitz continuous. Since it is also bounded from below by 0 we can conclude that our
convergence results of iSPALM are applicable.
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Fig. 2 Loss function versus number of epochs and versus execution time for training a PNN for MNIST
classification

Remark 6.1 For the implementation, we need to calculate prox f̃ , which is the orthog-
onal projection PU onto U . This includes the projection of the matrices Ti , i = 1, 2, 3
onto the Stiefel manifold. In [23,Sect. 7.3,7.4] it is shown, that the projection of a
matrix A onto the Stiefel manifold is given by theU -factor of the polar decomposition
A = US ∈ R

d,n , where U ∈ St(d, n) and S is symmetric and positive definite. Note
that U is only unique, if A is non-singular. Several possibilities for the computing U
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are considered in [22,Chapter 8]. In particular, U is given by VW , where A = V�W
is the singular value decomposition of A. For our numerical experiments we use the
iteration

Yk+1 = 2Yk(I + Y T
k Yk)

−1

with Y0 = A, which converges for any non-singular A to U , see [22]. �


Now we run PALM, iPALM and SPRING, iSPRING for 200 epochs using a batch
size of b = 1500. One epoch contains for SPRING and iSPALM 40 steps and for
PALM and iPALM 1 step. As in the previous example we repeat the experiment 10
times with the same initialization and plot for the resulting loss functions mean and
standard deviation to represent the randomness of the algorithms. Figure 2 shows the
mean and standard deviation of the loss versus the number of epochs or the execution
time aswell as the squared normof theRiemannian gradient for the iterates of iSPALM
after each epoch. We observe that iSPALM performs much better than SPRING and
that iPALM performs much better than PALM. Therefore this example demonstrates
the importance of the inertial parameters in iPALMand iSPALM.Further, iSPALMand
SPRING outperform their deterministic versions significantly. The resulting weights
from iSPALM reach after 200 epochs an average accuracy of 0.985 on the test set.

7 Conclusions

We combined a stochastic variant of the PALM algorithm with the inertial PALM
algorithm to a new algorithm, called iSPALM. We analyzed the convergence behav-
ior of iSPALM and proved convergence results, if the gradient estimators are inertial
variance-reduced. In particular, we showed that the expected distance of the subdif-
ferential to zero converges to zero for the sequence of iterates generated by iSPALM.
Additionally, the sequence of function values achieves linear convergence for func-
tions satisfying a global error bound.We proved that a modified version of the negative
log-likelihood function of Student-t MMs fulfills all necessary convergence assump-
tion of PALM, iPALM. We demonstrated the performance of iSPALM for two quite
different applications. In the numerical comparison, it turns out that iSPALM shows
the best performance of all four algorithms. In particular, the example with the PNNs
demonstrates the importance of combining inertial parameters and stochastic gradient
estimators.

In future work, it would be interesting to compare the performance of the iSPALM
algorithm with more classical algorithms for estimating the parameters of Student-t
MMs, in particular with the EM algorithm and some of its accelerations. For first
experiments in this direction we refer to our work [17, 19]. Further, we intend to apply
iSPALM to other practical problems, e.g. in more sophisticated examples of deep
learning.
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A KL functions

Let us recall the notation of Kurdyka-Łojasiewicz functions. For η ∈ (0,∞], we
denote by �η the set of all concave continuous functions φ : [0, η) → R≥0 which
fulfill the following properties:

(i) φ(0) = 0.
(ii) φ is continuously differentiable on (0, η).
(iii) For all s ∈ (0, η) it holds φ′(s) > 0.

Definition A.1 (Kurdyka-Lojasiewicz property)A proper, lower semicontinuous func-
tion σ : Rd → (−∞,+∞] has the Kurdyka-Łojasieweicz (KL) property at ū ∈
dom ∂σ = {u ∈ R

d : ∂σ �= ∅} if there exist η ∈ (0,∞], a neighborhood U of ū and
a function φ ∈ �η, such that for all

u ∈ U ∩ {v ∈ R
d : σ(ū) < σ(v) < σ(ū) + η},

it holds

φ′(σ (u) − σ(ū)) dist(0, ∂σ (u)) ≥ 1.

We say that σ is a KL function, if it satisfies theKL property in each point u ∈ dom ∂σ .

B Properties of the objective function in MMs

We start with the KL property.

Lemma B.1 The function H : RK ×R
K ×R

d×K × Sym(d)K → R defined in (17) is
a KL function. Moreover, it is bounded from below.

Proof 1. Since the Gamma function is real analytic, we have that H is a combination
of sums, products, quotients and concatenations of real analytic functions. Thus
H is real analytic. This implies that it is a KL function, see [1,Example 1] and [28,
29].

http://creativecommons.org/licenses/by/4.0/
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2. First, we proof that f (x |ν, μ,�) is bounded from above for ν > ε,μ ∈ R
d and

� � ε Id . By definition of the Gamma function and since

�(ν+d
2 )/�(ν

2 )ν
d
2 → 1 as ν → ∞ (18)

we have that (18) is bounded from below for ν ∈ [ε,∞). Further, we see by

assumptions onν and� that |�|− 1
2 ≤ ε

− d
2 and

(
1 + 1

ν
(x − μ)T�−1(x − μ)

)− d+ν
2

≤ 1. Thus, f (x |ν, μ,�) is the product of bounded functions and therefore itself
bounded by some C > 0. This yields for α̃ = ϕ1(α), ν̃ = ϕ2(ν) and �̃ = ϕ3(�)

that

−
n∑

i=1

log

(
K∑

k=1

α̃k f (xi |ν̃k, μ̃k, �̃k)

)

≤ −
n∑

i=1

log

(
K∑

k=1

α̃kC

)

≤ −n logC,

which finishes the proof.
�


Next we state the Lipschitz properties of H .

Lemma B.2 For H : R
K × R

K × R
d×K × Sym(d)K → R defined by (17) and

all α ∈ R
K , ν ∈ R

K , μ ∈ R
d×K and � ∈ R

d×d×K we have that the gradients
∇αH(·, ν, μ,�), ∇νH(α, ·, μ,�), ∇μH(α, ν, ·, �), and ∇�H(α, ν, μ, ·) are glob-
ally Lipschitz continuous.

The proof follows by straightforward computation. The technical details, in partic-
ular the computation of the outer derivatives of the objective function in (17) can be
found in [21].
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