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Abstract
Rice (Oryza sativa L.) is the staple food of more than 50% of the world’s population. 
Manual puddled transplanted rice (PTR) system is still the predominant method of rice 
establishment. However, due to declining water tables, increasing water scarcity, water, 
labor- and energy-intensive nature of PTR, high labor wages, adverse effects of puddling 
on soil health and succeeding crops, and high methane emissions, this production system 
is becoming less profitable. These factors trigger the need for an alternative crop establish-
ment method. The direct-seeded rice (DSR) technique is gaining popularity because of its 
low input demand compared to PTR. It is done by sowing pre-germinated seeds in puddled 
soil (wet-DSR), standing water (water seeding), or dry seeding on a prepared seedbed (dry-
DSR). DSR requires less water and labor (12–35%), reduces methane emissions (10–90%), 
improves soil physical properties, involves less drudgery and production cost (US$9–125 
per hectare), and gives comparable yields. Upgraded short-duration and high-yielding vari-
eties and efficient nutrient, weed, and resource management techniques encouraged the 
farmers to switch to DSR culture. However, several constraints are associated with this 
shift: more weeds, the emergence of weedy rice, herbicide resistance, nitrous oxide emis-
sions, nutrient disorders, primarily N and micro-nutrients, and an increase in soil-borne 
pathogens lodging etc. These issues can be overcome if proper weed, water, and fertilizer 
management strategies are adopted. Techniques like stale bed technique, mulching, crop 
rotation, Sesbania co-culture, seed priming, pre-emergence and post-emergence spray, and 
a systematic weed monitoring program will help reduce weeds. Chemical to biotechnologi-
cal methods like herbicide-resistant rice varieties and more competitive allelopathic varie-
ties will be required for sustainable rice production. In addition, strategies like nitrifica-
tion inhibitors and deep urea placement can be used to reduce  N2O emissions. Developing 
site and soil-specific integrated packages will help in the broader adoption of DSR and 
reduce the environmental footprint of PTR. The present paper aims to identify the gaps and 
develop the best-bet agronomic practices and develop an integrated package of technolo-
gies for DSR, keeping in mind the advantages and constraints associated with DSR, and 
suggest some prospects. Eco-friendly, cost-effective DSR package offers sustainable rice 
production systems with fewer resources and low emissions.
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Introduction

Rice (Oryza sativa L.) is a major cereal crop cultivated in at least 95 countries 
across the globe [55] and provides staple food for more than half of the world’s 
population [2, 205]. On a global scale, the total area under rice is 163.5 million 
hectares with an annual production of 758.9 million tons and productivity of 
4641.5 kg/ha. In India, it is grown on about 42.5 million ha with a total produc-
tion of 105.5 million tons and productivity of 3632.9  kg/ha. To meet the second 
Sustainable Development Goal (SDG) of the UN, which is to end hunger in all 
its forms by 2030 and achieve global food security, additional paddy is needed 
to be produced to feed the ever-increasing population. However, the possibility 
of an increase in area under rice is very limited in the coming future. Therefore, 
the only way to get this extra rice is to increase productivity. The main dare is 
to achieve this productivity gain with less water, labor, and chemicals to ensure 
sustainability.

The following are the major constraints associated with the productivity and 
sustainability of rice-based systems: (1) increasing scarcity of water and labor, 
(2) inefficient use of inputs (fertilizer, water, labor), (3) climate change and vari-
ability, (4) emerging energy crisis and hike in fuel prices, (5) multiplying cost 
of cultivation, and (6) other issues like rapid urbanization, migration of labor to 
cities, non-agricultural work preferences, and farm-related pollution [119]. Better 
agronomic management practices and innovations in technology are required to 
overcome these problems.

Asia accounts for more than 90% of rice production and consumption. Con-
ventionally, rice in Asia is grown by the transplanting method. Rice nurseries are 
raised in the transplanting method, and after 20–30 days, those rice seedlings are 
transplanted into puddled soil. Rice grown by this method is known as puddled 
transplanted rice (PTR). Puddling the soil has its benefits for rice cultivation. It 
creates an impervious layer that helps to reduce water percolation losses, facili-
tates easy seedling establishment, controls weed, and creates anaerobic conditions 
to enhance nutrient availability [196]. However, repeated puddling damages soil 
aggregates, breaks capillary pores, lessens permeability in sub-surface layers, and 
forms hard-pan [1, 201, 203], which proves detrimental to the establishment and 
growth of the following crop [83]. Besides, puddling and transplanting demand 
large amount of water (3000–5000 L water to produce 1 kg rice] [27] and human 
labor, which are becoming scarce and expensive day by day, thereby increasing 
the cost of cultivation and making the paddy production less profitable.

Moreover, the physical drudgery in transplanting — which women primarily do — 
is a matter of concern. So, all the above factors trigger the search for an alternative rice 
crop establishment method. Direct seeded rice (DSR) seems a viable option to make 
this shift. DSR refers to the process of sowing rice seeds directly into the field in place 
of transplanting the rice seedlings from the nursery. Upgraded short-duration and high-
yielding varieties and nutrient, weed, and resource management techniques encouraged 
the farmers to switch to DSR culture. It is widely practiced in many Asian countries: 
Malaysia, Sri Lanka, Vietnam, Thailand, Cambodia, and the Philippines. This review 
aims to develop best-bet agronomic practices so that ecological and agronomic input 
efficiency can be enhanced and the environmental footprint of PTR can be reduced. 
Types of direct seeding, reasons for adoption of DSR, advantages and constraints of 
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DSR, and integrated package of technologies for DSR are discussed further in this 
paper.

Direct Seeding

Direct seeding is the oldest known method of rice establishment. It was prevalent 
before the 1950s, but gradually, puddled transplanting replaced this method [75, 168, 
185, 186]. Direct seeding can be done in three principal ways, which are modified with 
time based on technological innovations and demand for better resource-efficient prac-
tices. These direct seeding methods can be classified based on land preparation, seed-
bed condition, ways of sowing, and seed environment (aerobic or anaerobic) [119].

1. Wet-DSR: in this, pre-germinated seeds (radicle 1–3 mm) are broadcast or sown in lines 
on wet/puddled soil. When pre-germinated seeds are sown on the surface of puddled 
soil, the seed environment becomes aerobic, and it is called aerobic wet-DSR (surface). 
It can be done using a drum seeder [187]. On the other hand, when the pre-germinated 
seeds are drilled into puddled soil, the seed environment becomes anaerobic and is called 
anaerobic wet-DSR (subsurface). In this, seeds are sown inline using an anaerobic seeder 
with a furrow opener and closer [16]. Wet-DSR is primarily done to manage the labor 
shortage and is currently practiced in Malaysia, Thailand, Vietnam, the Philippines, and 
Sri Lanka [21, 24, 167].

2. Dry-DSR is broadcast or drilled in dry/unpuddled soil. In dry-DSR, rice is established 
using several different methods, including (a) broadcasting of dry seeds on unpuddled 
soil after either zero tillage (ZT) or conventional tillage (CT), (b) dibbled method in a 
well-prepared field (CT-dry-dibbledR), and (c) drilling of seeds in rows after conven-
tional tillage (CT-dry-DSR), reduced tillage using a power-tiller-operated seeder (PTOS) 
(RT (PTOS)-dry-DSR), *-/zero tillage (ZT-dry-DSR), or raised beds (Bed-dry-DSR) 
[119]. The seedbed condition is dry (unpuddled), and the seed environment is mostly 
aerobic; thus, this method is known as dry-DSR. This method is traditionally practiced 
in rainfed upland, lowland, and flood-prone Asia areas [185, 186]. However, this method 
has recently been gaining importance in irrigated areas where water is becoming scarce. 
In dry-DSR, land preparation is done before the onset of monsoon, and seeds are sown 
before the wet season to take advantage of pre-monsoon rainfall for CE and early crop 
growth.

  Both wet-DSR and dry-DSR can reduce water and labor usage compared to CT-PTR.
3. Water seeding is broadcast in standing water. Water seeding has gained popularity in 

red rice or weedy rice, which is becoming a severe problem [13]. Aerial water seed-
ing is the most common method used in California (USA), Australia, and European 
countries to suppress difficult-to-control weeds, including weedy rice. This method is 
also becoming popular in Malaysia. The rice varieties used possess good tolerance of 
a low dissolved oxygen level, low light, and other stress environments [16]. In addition 
to irrigated areas, water seeding is practiced in areas where early flooding occurs and 
water cannot be drained from the fields.

Method of DSR adopted varies considerably from location to location depending 
upon different factors like labor, land preparation (tillage), establishment methods, 
seed rate, water, and weed and nutrient management [116].
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Drivers of Shift from Puddled Transplanting to Direct Seeding of Rice

Water Scarcity

Globally, water is becoming a scarce resource. The groundwater table is declining at 
an alarming rate. On the other hand, conventional rice cultivation requires substantial 
water. The lack of ability to recreate water calls for the need to conserve and ensure ade-
quate water drops. It has been estimated that up to 5000 L of water is used to produce 
just 1 kg of rough rice [27], which is way too high. Rice consumes two to three times 
more freshwater than any other cereals [18, 31, 239]. Barker et  al. [18] also reported 
that rice consumes about 50% of total irrigation water used in Asia. In India, per cap-
ita water availability decreased by 72.3% between 1951 and 2005 (5831  m3 and 1611 
 m3 in 1951 and 2015, respectively) and is likely to decline further by 77.8% till 2050 
(1292  m3 in 2050) (modified from Gardner-Outlaw and Engelman [68]). Water avail-
ability decreases because of the increasing population, declining water table, deteriorat-
ing water quality, inefficient irrigation systems, and competition from non-agricultural 
sectors. So, water scarcity acts as a driving force for adopting direct seeding. Since the 
last decade, there have been numerous efforts to find alternatives to conventional PTR 
[119]. Excellent water management will ensure the availability of sufficient water for 
crop production.

Many studies have reported the potential of DSR as a replacement for PTR. For 
example, an average of 67–104  mm (11–18%) irrigation water savings in wet-DSR 
than CT-PTR was observed under on-farm trials in the Philippines [236] while keep-
ing the criteria of irrigation application same for both the rice establishment methods. 
However, in another study done in the Muda region of Malaysia by Cabangon [30], it 
was found that the application of irrigation water in dry-DSR was less by ~ 200 mm 
(40%) than CT-PTR. Likewise, in India, 10–15% water savings have been reported 
with dry-DSR compared to CT-PTR when the criteria of irrigation application were 
either the appearance of hairline cracks or tensiometer-based (− 20  kPa at 20-cm 
depth) [22, 96, 228, 229].

As DSR requires less water and is more tolerant of water stress than PTR, it has a more 
adaptive capacity to climate change. Climate change is likely to increase rainfall variability 
and the risk of drought and water stress in the coming future. With the growing shortage 
of water, dry-DSR with minimum/reduced or zero tillage further enhances the potential of 
this technology by saving labor [35, 104].

Labor Shortage

CT-PTR is very labor-intensive. On the other hand, Indian farming is witness-
ing labor scarcity [209]. Major reasons contributing to the scarcity are low wages 
and temporary employment in agriculture, migration of labor to cities in search 
of urbanized lifestyle, physical drudgery involved in farming, preference for non-
agricultural work, and involvement in social welfare schemes like The Mahatma 
Gandhi National Rural Employment Guarantee Act (MGNREGA), 2005. Covid-
19 pandemic–related curbs have further worsened the situation. Moreover, labor 
scarcity is season- and location-specific because of the mismatch in demand and 
supply at the right time and place. Dawe [47] reported that labor required for 

256



Circular Economy and Sustainability (2023) 3:253–290

1 3

agricultural work is declining at the rate of 0.1–0.4%, with an average of 0.2% per 
year. Because of severe labor scarcity, labor wages have gone up drastically in the 
last few years. This has made the CT-PTR system uneconomical. All these factors 
urge the need for alternative practices like DSR.

DSR demands less labor as it avoids raising nurseries, uprooting seedlings, pud-
dling, and transplanting. Instead of transplanting, which requires 25–50 person-
days/ha, DSR requires about 5 person-days/ha [16, 47]. Thus, the requirement of 
labor in DSR is spread out over a longer period. This, in turn, avoids the prob-
lem of labor scarcity at peak season and having less dependence on hired labor. It 
has been reported that the labor requirements for crop establishment (CE) in direct 
seeding compared with transplanting decrease by more than 75% [47, 92, 167]. 
Depending on the season, location, and type of DSR method used, labor require-
ments reduced from 11 to 66% in DSR compared with CT-PTR [114, 187]. The var-
iation in labor savings largely depends on the labor used for controlling weeds in 
DSR. If weeds can be managed effectively using herbicides, it can save additional 
labor. The newly emerging techniques of ZT-Dry-DSR report substantial labor sav-
ings, as no puddling and tillage are required in this operation. It has been reported 
that PTR can be substituted with wet-DSR at places where only labor/wage rate is 
a major limiting factor (e.g., Malaysia, Sri Lanka). But, in areas where water and 
labor are scarce, PTR should be replaced with dry-DSR (e.g., South Asia). Global 
drivers for shift from PTR to DSR are shown in Figs. 1, 2, 3, and 4.

Fig. 1  An illustrative representation of major constraints and possible solutions for conventional agriculture 
and outcomes of emergent agronomic practices
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Soil Health

Puddling has varying effects on the well-being of soil health (soil quality, especially on 
soil physical properties), which claims to be another reason for the shift from CT-PTR to 
dry-DSR on plowed soil (no puddling) or in ZT conditions, where an upland crop is grown 
after rice [73, 76, 119]. This is particularly relevant to the rice–wheat system, in which soil 
goes through the wetting and drying phenomenon [118]. Puddling breaks soil aggregates, 
destroys capillary pores, disperses fine clay particles, and forms hard-pan at shallow depth. 
Although puddling helps transplant and establish seedlings, control weeds, better water, 
and nutrient availability, it adversely affects the growth and yield of succeeding upland 
crops [69].

Numerous studies have been published that evaluated the effects of puddling in rice on 
succeeding wheat crops. Kumar [116] compiled and analyzed 35 such studies, out of which 

Fig. 2  Global drivers for Shift 
from PTR to DSR

Fig. 3  Benefits of DSR adapted from: Kumar and Ladha (2011), Chakraborty et al. (2017), Padre et al. (2016)

258



Circular Economy and Sustainability (2023) 3:253–290

1 3

28 showed adverse effects of puddling on subsequent wheat crop productivity. Five cases 
mentioned no impact, and only one study showed positive puddling results. The parameters 
considered were location, soil type, rice establishment method, number of crop cycles, rice 
yield, wheat yield, and percentage of change in wheat yield. In two medium-term studies 
carried out at Pantnagar (5-years) and Modipuram (7-years), the performance of wheat was 
evaluated after either puddled or dry-DSR. It was observed that the Pantnagar site had 12% 
higher wheat yield in dry-DSR plots than in CT-TPR in all 5 years [208, 210, 223b]. How-
ever, at Modipuram, the wheat yield was the same in the first 3 years, followed by 0.5–1.0 
t/ha (9–25%) higher yield in dry-DSR plots in the later years [69]. The main reason for the 
lower grain yield of wheat after CT-PTR was poor root development due to the puddling 
done in the preceding rice crop [1, 25, 40, 89, 161].

Similarly, Gangwar [65, 66] compared the DSR-based cropping system productiv-
ity with the PTR-based cropping system productivity. He observed that the DSR-wheat, 
DSR-chickpea, and DSR-mustard system productivities (14.96 t/ha, 14.48 t/ha, and 13.48 
t/ha, respectively) were higher than the PTR systems (13.53 t/ha, 12.12 t/ha, and 11.81 t/
ha respectively). It can be understood that puddling benefits the rice crop, but it has detri-
mental effects on the growth and yield of the succeeding crop as it badly affects soil health 
[133, 224]. Therefore, it becomes imperative to find alternative methods to puddling. More 
attention should be paid to the regions where water availability is less and crops are grown 
after rice cultivation.

CA

Conservation agriculture (CA) involves minimum soil disturbance (reduced tillage or zero till-
age), permanent soil covers through crop residues or cover crops (incorporation/retention), and 
crop diversification (sequences and rotations) for achieving higher productivity [135]. Con-
servation tillage (CT) involves zero or minimal tillage followed by row seeding using a drill. 
As stated by Ladha [119] when CT utilizes crop residue as mulch with improved crop and 
resource management practices, it is termed CA. Conventional agriculture (resource intensive) 

Fig. 4  DTPA-extractable iron (ppm) in the soil at 0–15 and 15–30  cm depth at maximum tillering stage 
(adapted from Singh et al. 2002)
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has led to declining/stagnating crop and factor productivity and a deteriorating resource base 
in cereal systems [111, 137]. Zero tillage is primarily promoted in wheat in the rice–wheat 
system and covers about 3 million hectares of land in Indo-Gangetic Plains (IGP) of South 
Asia [77, 80]. Factors responsible for rising interest and wide adoption of ZT in wheat are 
increased productivity (3–12%, due to timely planting), profitability by the reduction in pro-
duction cost (by avoiding tillage), better resource-use efficiency, and farmer’s livelihood, par-
ticularly in areas where rice harvest is delayed [51, 77, 84, 119]. Now, efforts are being made 
to develop ZT rice followed by ZT wheat — commonly referred to as “double-zero tillage” to 
explore the full potential of zero tillage.

Economics of DSR

The economic motive for farmers is to get higher profitability which can be defined as the dif-
ference between the gross economic returns and the total cost. With CT, farmers get a higher 
net economic return under wet or dry DSR than TPR, with 13% higher for wet DSR [33]. 
Under dry-DSR with ZT, the economic returns are even higher by 25.9% than TPR due to 
increased savings in water input and cost of cultivation. Such an increase in farmers’ profit-
ability can be explained by two reasons, a reduction of production costs and an expansion of 
the total revenue.

The production costs include two parts, the cost of inputs (seeds, agro-chemicals, ferti-
lizers and pesticides, water), and the cost induced by the use of production factors (human 
labor and machines) in field operations (such as land preparation, sowing, irrigation, weeding, 
agro-chemicals applications, harvesting, threshing). Overall analysis of 77 published studies in 
Asian countries done by [116] shows that various methods of DSR reduced the cost of produc-
tion by US$9–125/ha compared with conventional practice (TPR). According to Chakraborty 
[33], wet-DSR induces a reduction in cost by 2.4–8.8%. These cost reductions under DSR are 
mainly due to lower labor costs, tillage costs, or both.

Reduced Tillage

According to the rice establishment method, the necessity of tillage can be relatively relaxed. 
Under TPR, rice seedlings are transplanted into puddled soil after land preparation with wet 
intensive tillage, a very energy-intensive method. Tillage operations account for 15% of the 
total production cost in irrigated rice, and farmers in the Indo-Gangetic Plains are assumed 
to spend US$50–60/ha on land preparation [129]. On the contrary, under dry-DSR, seeds are 
sown on unpuddled soil, either after dry tillage or minimal tillage. Of course, reduced tillage 
significantly lowers the production cost (US$37–92/ha) [116]. According to Chakraborty [33], 
wet-DSR and dry-DSR have a higher grain yield than TPR under conventional tillage, and 
wet-DSR has the most considerable yield advantage (1.3–4.7%). The main benefits of mini-
mum and zero tillage practices are conservation of organic matter and soil moisture, reduction 
in water and wind erosion, reduction in fuels and animal and human energy, and time and 
water required for land preparation, and possible provision of a favorable environment for bio-
logical activity [56].
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Crop Intensification

Besides saving water and labor, DSR provides economic benefits by integrating an addi-
tional crop (crop intensification). This becomes the reason for the spread and rapid adop-
tion of DSR in many regions. Furthermore, early maturity (7–11 days) of DSR than PTR 
allows it to incorporate another crop and fits well in different cropping systems.

In Long An Province in the Mekong River Delta region of Vietnam, DSR facili-
tated double cropping in place of a single crop of PTR [167]. Early harvesting of dry-
DSR in August was possible due to the early establishment and short-duration varieties 
(95–105 days), leaving sufficient time and rainfall for another rainfed rice crop to grow. My 
[151] reported that some farmers could grow a third rice crop from December to February 
with additional irrigation. Thus, DSR is increasing gradually and steadily over different 
regions. Availability of new high-yielding and short-duration varieties and new herbicides 
for weed control made this shift technically viable [149, 167]. Rising rice production has 
helped increase food security, but there is a widely recognized need to assess the sustain-
ability of such production systems [49].

GHG Emission

Agriculture contributes to the emission of greenhouse gases (GHGs) (mainly  CO2,  CH4 
and  N2O), which cause global warming. Based on data from the meta-analysis by Joseph 
Poore and Thomas Nemecek [180], published in Science, crop production accounts for 
27% of food emissions. About 21% of these food’s emissions come from crop production 
for direct human consumption, and 6% comes from animal feed production. They are the 
direct emissions that result from agricultural production — this includes elements such as 
the release of nitrous oxide from fertilizers and manure, carbon dioxide from agricultural 
machinery, and methane emissions from rice production. Rice-based cropping systems 
play a significant role. GHG emissions, mainly  CO2 and  CH4 from rice fields, are substan-
tial and sensitive to management practices. Therefore, rice is an essential target for mitigat-
ing GHG emissions [246].

Rice is among the three major crops of the world, occupying ~ 155 million ha of land. 
An increasing population of India will demand 25% more rice by 2025 [129]. In the Indo-
Gangetic Plain of Northern India, Punjab, India, produces 50% of the nation’s rice and is 
known as the “food bowl of India.” The most common method of rice cultivation in the 
IGP is puddled transplanting. This flooded rice culture is the primary culprit of methane 
emissions because prolonged flooding results in anaerobic soil conditions. This accounts 
for 10–20% of total global methane emissions [86, 189].  CH4 is produced in flooded soils 
due to reducing C compounds to  CH4 in limited oxygen supply. The standing water in con-
ventional rice fields restricts oxygen from the atmosphere into the soil. A small but particu-
lar bacterial group named methanogens makes the water-saturated soil devoid of oxygen, 
and anaerobic conditions are formed. Therefore, methane emissions are high in conven-
tional PTR, where standing water conditions are maintained throughout the crop growth. 
On the other hand, DSR fields are not continuously submerged underwater, so anaerobic 
conditions are not created. As a result, methane emissions are low [174].

Pathak [174] conducted a 2-year field experiment in the Jalandhar district of Pun-
jab, India, to quantify GHG mitigation, water, and labor-saving potential of DSR with 
TPR. He found that the average GWP of  CO2,  CH4, and  N2O in TPR was 2.91 t/ha, 
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and in DSR, it was 1.94 t/ha. It was also concluded that if the entire state under TPR 
is converted to DSR, GWP will reduce by 33%. Along with this, 3–4 irrigations were 
saved under DSR without yield loss. Tractor use decreased to 58% and human labor 
use reduced to 45% in DSR compared to TPR. This shows that by reducing GHG emis-
sions, water, and labor (both human and machine) without reducing yield, DSR can be 
a feasible alternative to PTR for mitigating and adapting to climate change and increas-
ing farmers’ income [174]. A similar study was conducted at the Indonesian Agricul-
tural Environment Research Institute (IAERI), Central Java, Indonesia. Susilawati [231] 
reported that  CH4 emissions were 47% less in DSR than PTR. GWP reduced by 46.4% 
under DSR without any significant loss of yield.

Many studies which compared  CH4 emissions from various tillage and crop establish-
ment methods along with similar water management techniques revealed that  CH4 emis-
sions were lower in wet (8–22%) or dry-DSR (24–79%) as compared to CT-PTR [116]. 
Ishibashi [91] compared ZT-dry-DSR and CT-TPR and found that the former is 20% more 
efficient in reducing GWP. Pathak [173] simulated for Indian conditions and found that 
dry-DSR on raised beds or ZT can reduce  CO2 equivalent per hectare by 40–44% com-
pared to CT-TPR. Harada [79] reported that GWP declined by 42% in Japan by changing 
puddling to zero tillage.

Even in CT-PTR,  CH4 emissions vary from study to study. The reason may be indi-
vidual or combined effects of climatic conditions, edaphic factors, and water management 
[10]. Therefore, it can be concluded that DSR is more efficient in reducing GHG emis-
sions, mainly  CH4, if proper crop management practices are adopted and precise nutrient 
use employed [32]. In addition, under DSR, the dissimilatory nitrate reduction to ammo-
nium (DNRA) pathway can reduce  N2O emissions and protect  NO3

− from leaching losses 
[164].

Constraints Associated with DSR

Weeds

Weeds are a major biotic constraint to the success of DSR in general and dry-DSR in par-
ticular [98, 185, 186, 215]. Competition by the weeds is not only for nutrients; the case has 
also been with space, light, and moisture in the entire growing season [3]. Earlier research 
has shown that yield loss is greater in DSR than in transplanted rice without effective 
weed control options [17, 185, 186]. Weeds create more problems in DSR than in puddled 
transplanting because (1) emerging DSR seedlings are less competitive with concurrently 
emerging weeds, and (2) in wet- and dry-DSR, the initial flush of weeds is not controlled 
due to the absence of flooding [113, 185, 186]. Failure to manage weeds in DSR leads to 
very low or no yield, so controlling weeds effectively in DSR is a real challenge [147, 216]. 
Direct seeded rice is heavily infested with weeds, so the success of DSR depends on effec-
tive weed management [36,185,186,215a, 219]. Yields were reduced by 96% in dry-DSR, 
61% in wet-DSR, and 40% in the machinery-transplanted crop due to uncontrolled weeds 
[107, 126]. Aerobic systems are subjected to much higher weed pressure than CPTR [185, 
186], in which weeds are suppressed due to prevailing anaerobic environments in flooded 
conditions [146]. Heavy yield losses due to lack of proper weed management can reach up 
to 70–100% in dry-DSR [122, 123], and this has been reported by many researchers [65, 
66, 208, 210, 211, 217, 223].
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Economic Consequences of Weeds

Several parameters decide the economic consequences of weeds in rice, such as infestation 
rate, the types of weeds, the cultivated varieties, and the measures taken to control them. 
Farmer’s income is affected due to the following factors:

• A quantity effect due to substantial reductions in yield
• Due to the presence of weeds seeds (including red rice) in the grain, a price effect
• A cost effective, due to increased costs of production incurred by control measures such 

as labor, equipment, chemicals, and energy [233–235]

This reduction in farmers’ income can eventually lead to the abandonment of rice 
production.

The Emergence of Weedy Rice

Weedy rice (O. sativa f. spontanea), also known as red rice, has become a severe concern 
in areas where rice production has shifted from transplanting to direct seeding, especially 
dry-DSR. The weedy rice paradox is well known but underestimated. Weedy rice is con-
specific and congeneric of cultivated rice; it has both acquired and wild rice traits. Then, 
it is challenging to control it either traditional or biotechnologically because it promotes 
crop-weed hybridization and the introgression of characteristics such as herbicide resist-
ance [233–235]. It is challenging to manage weedy rice because of its similarity with rice 
in genetics, morphology, and phenology. Weedy rice is highly competitive and can cause 
severe yield losses ranging from 15–100% [116]. Weedy rice can also reduce milling qual-
ity if mixed with rice seeds during harvesting [160]. It can also increase the cost of produc-
tion. Farmers may end up using most of the labor saved by DSR to control weeds.

Vegetatively, weedy rice possesses several traits of the agricultural weed syndrome 
[243], such as crop mimicry, seed dispersal, seed dormancy, rapid growth, high nutrient 
use efficiency, and herbicide resistance. Beyond these common traits, weedy rice exhibits 
high genetic and phenotypic diversity [156, 188, 238]. This diversity is dependent on the 
ecotype and habitat.

Selective control of weedy rice has never been achieved at a satisfactory level with her-
bicides [155]. Therefore, FAO [54] recommends an integrated approach that encompasses 
preventive, cultural, mechanical, and chemical methods targeting different phases of the 
weedy rice cycle. Moreover, clean and certified seeds should be used [185, 186]. It was 
observed by Azmi and Abdullah [12] that pre-plant application of soil-incorporated moline 
was effective in reducing the seed bank of weedy rice. Selective control of weedy rice can 
be achieved from herbicide-resistant rice technologies, but the risk of gene flow poses a 
constraint for the long-term utility of this technology [112].

However, weedy rice control methods that can be applied under DSR are neither practi-
cal nor sustainable as they are usually thought. Indeed, weedy rice is difficult to control 
because of its genetic, morphological, and phenological similarities with rice. Then, the 
integrated weed management (IWM) strategies typically do not lead to the total eradica-
tion of the weed infestation. Incomplete control of the weed for a given year could lead 
to eliminating the results of several years of sound control. Weedy rice escapes of 5% or 
less can produce enough seeds to restore original soil seed bank population levels [62]. 
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In addition, the IWM is not sustainable because the IWM methods are expensive, time-
consuming, and are not environment-friendly since they require more fuel energy, water, 
and herbicide [233–235].

Changes in Weed Flora

The composition of weed flora can change drastically with a shift from CT-TPR to alter-
native tillage and rice establishment methods [218]. Changes in weed composition and 
diversity in DSR were led by the changes in rice establishment method along with water, 
tillage, and weed management practices [116]. DSR is infested by complex weed flora, 
including grasses, broadleaf weeds, and sedges. In a study conducted at Modipuram, 
India, Singh [218] reported that the number of species of grasses, broadleaves, and sedges 
in CT-PTR was 6, 4, and 4, respectively, whereas in dry-DSR, it increased to 15 grass 
species and 19 broadleaf species, and the number of sedge species remained unaffected. 
This clearly shows that some new grass and broadleaf species that were not adapted to 
CT-PTR appeared in dry-DSR. More species-rich vegetation and diverse weed flora were 
observed in dry-DSR than in CT-TPR by Tomita [237]. About 46 species were present in 
transplanted rice in 1989, and, after 3 years (six seasons of rice) of wet-DSR, 21 new weed 
species were added to the weed flora [14, 148]. Higher numbers and more diverse flora in 
dry-DSR could lower the efficacy of weed management strategies, including herbicides. 
Therefore, it is imperative to incorporate a systematic weed monitoring program and the 
introduction of DSR. Then, only it would be possible to develop effective integrated weed 
management strategies, which include identifying new herbicides that are effective against 
a broad spectrum of weeds.

Development of Herbicide Resistance

Increased practice of DSR also increased herbicide use for controlling weeds in rice, which 
resulted in the appearance of resistance in weeds against certain herbicides. The first case 
of herbicide resistance was seen in F. miliacea against 2,4-D in Malaysia in 1989. Later on, 
this number of resistant weed biotypes against different herbicides increased to 10. Post 
DSR introduction, several herbicide-resistance cases in weeds were also observed in Thai-
land (5), Korea (10), and The Philippines (3) [116].

Emissions of Nitrous Oxide

DSR can help reduce methane emissions, but aerobic soil conditions in DSR, especially in 
dry-DSR, contribute to increased nitrous oxide emissions. The biologic processes of nitrifi-
cation and denitrification are the effective mechanisms of nitrous oxide emission from agri-
cultural soils. Nitrification occurs in aerobic soil conditions, while denitrification occurs 
under anaerobic conditions [171]. Due to the prevailing anaerobic conditions in TPR, 
denitrification is the principal mechanism for  N2O emissions, whereas DSR nitrification is 
the primary mechanism [172]. Pathak [174] quantified the  N2O emissions from DSR and 
TPR fields of Punjab, India. They reported that emissions from DSR fields were slightly 
higher than TPR. Cumulative emission of  N2O during the entire crop duration in 2010 was 
2.0–2.2 kg/ha in DSR and 1.6–1.8 kg/ha in TPR. In a study conducted in India comparing 
 N2O emissions from CT-TPR and different dry-DSR methods (CT-dry-DSR, bed-dry-DSR, 
ZT-dry-DSR), it was found that  N2O emissions were 0.31–0.39 kg N/ha in CT-TPR, which 
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increased to 0.90–1.1 kg N/ha in CT-dry-DSR and bed-dry-DSR and 1.3–2.2 kg N/ha in 
ZT-dry-DSR. Similarly, a study conducted in western Japan also observed higher emis-
sions of  N2O under ZT-dry-DSR than in CT-TPR [90]. These results suggest the need to 
deploy strategies to reduce  N2O emissions from dry-DSR to minimize adverse environ-
mental impacts. Methane emission starts at redox potential of soil below − 150  mV and 
is stimulated at less than − 200  mV [100, 128, 245]. Nitrous oxide production increases 
at redox potentials above 250  mV [85]. Hou [85] suggested developing water manage-
ment practices so that soil redox potential can be kept at an intermediate range (− 100 
to + 200 mV) to minimize emissions of both  CH4 and  N2O. This range is high enough to 
prevent  CH4 production and low to encourage  N2O reduction to  N2 as the critical soil redox 
potential identified for  N2O production is + 250 mV [85]. The overall effect of direct-seed-
ing methods on GWP depends on the total emissions of all three major GHGs. It has been 
observed that measures to reduce one source of GHG emissions lead to increases in other 
GHG emissions, and this trade-off between  CH4 and  N2O is a significant hurdle in devising 
an effective GHG mitigation strategy for rice [246]. Very few studies have compared differ-
ent rice production systems in total GWP, taking all three GHGs.

Nutrient Disorders

Nutrient dynamics in DSR and TPR systems vary due to the difference in land prepara-
tion and water management techniques [104]. Nutrients needed for direct-seeded rice have 
faced tight competition from weeds. In DSR, soil conditions are mostly aerobic because of 
dry land preparation, while in PTR, the soil is mainly kept flooded and is puddled. Pud-
dling positively impacts weed control [194] and nutrient availability [244]. Less oxygen in 
the rhizosphere in submerged conditions prevents oxidation of  NH4+ and reduces leaching 
[108]. It also increases the availability of P [208, 210, 223, 250] and Fe [165, 230].

Deficiencies of micronutrients are of major concern in DSR. The shift from PTR to 
DSR reduces Zn availability to rice because of its reduced release from highly insoluble 
fractions in aerobic rice fields [67, 108]. Reasons for Zn deficiency are high pH, high car-
bonate content [127], and more bicarbonates in calcareous soils [64], which immobilize 
Zn due to inhibition effect [72]. Zn uptake in DSR is also affected by source and time of 
application [72]. When pH is below neutral in the rhizosphere, the availability of P and Zn 
increases because of their increased solubility [108, 195]. The availability of Fe is high 
in anaerobic soils because of low redox potential. However, Fe becomes a limiting factor 
in aerobic soils when soil pH is high. Due to unsaturated soil conditions in DSR, plants 
can show chlorosis because of iron deficiency. Prolonged iron deficiency may also lead to 
severe yield losses in DSR; hence, care should be taken to manage iron deficiency. Singh 
[208, 210, 223] reported that in dry-DSR, the iron content was about half of the submerged 
PTR and WSR treatments. The values were below the critical limit of 4.5  ppm. There-
fore, appropriate nutrient management strategies need to be developed based on nutrient 
dynamic studies in DSR.

Increase in Soil‑Borne Pathogens

Soil-borne pathogens such as root-knot nematodes (RKNs) pose a severe threat when PTR 
is shifted to DSR. Meloidogyne graminicola, a root-knot nematode, was first reported in 
1963 from the Louisiana State University, Baton Rouge, USA. In a study at Tarlac, Philip-
pines, RKNs were the most damaging pathogen for aerobic rice Apo [182]. It was reported 
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that rice yield in untreated plots was 0.2–0.3 t /ha in 2006 and nil in 2007. However, in 
fields treated with nematicide dazomet, yield of 2.2 t /ha was obtained in 2006 and 2.4 t /ha 
in 2007. In the first year, the degree of galling in rice roots was only 0.4 in the nematicide-
treated plots, whereas it was 3.4–4.4 in untreated plots. In 2007, their galling increased 
even in nematicide-treated fields to 2.4, whereas it was 4.8–4.9 in untreated plots. It can be 
concluded that pathogens are detrimental to the growth of rice.

Diseases and Insect Pests

DSR is susceptible to various diseases, and rice blast is the most common [24]. Damage 
due to rice blast increases under water stress conditions [23]; processes such as liberation 
and germination of spores and infection in rice that were causing blast are affected by the 
water level [106]. The crop microclimate, especially dew deposition, is affected by water 
management, making the environment congenial for host susceptibility [192, 197]. As 
influenced by water management, the changes in crop physiology also trigger host suscep-
tibility [23]. In aerobic rice, blast resistance is the foremost important trait for breeding 
programs in Brazil [29].

A few other diseases and insect problems reported in DSR are sheath blight and dirty 
panicle [178], brown spot disease and planthoppers [197], and soil-borne pathogenic fun-
gus Gaeumannomyces graminis var. graminis in Brazil without additional irrigation [181].

Lodging

Compared to PTR, DSR is more prone to lodging [200]. Lodging makes crop harvesting 
difficult. It also reduces yield and impairs the quality of rice both in terms of appearance 
and taste [130, 200]. Rice cultivars with lodging-resistant characteristics like intermediate 
plant heights, large stem diameters, thick stem walls, and high lignin content should be 
preferred and promoted [124]. Moreover, it has been observed that a wider band of scle-
renchyma at the periphery of the stem [184] and more vascular bundles [34] make the 
cultivars more resistant to lodging. In addition, lower positioning of panicles in the plant’s 
canopy is associated with increased lodging tolerance [88, 200]. Hill seeding, lodging-
resistant cultivars, optimum N dose, seeding rates, seeding depth, and method can help 
overcome lodging [104]. Hill seeding is efficient because lodging resistance depends on the 
number of panicles in a hill and many panicles in hill-seeded rice.

Stagnant Yield

The decline in yield has been reported in direct-seeded rice [110, 242]. It may be due to 
various reasons viz., soil sickness [241], plant autotoxicity [43, 52, 97, 157], presence of 
G. graminis var. graminis in dry-DSR [181], and continuously growing DSR for more than 
2 years [53].

Developing Compatible Package for DSR

DSR has excellent potential in South Asia, but its performance has not reached its full 
potential due to the lack of a proper production technology package. The essential pre-
requisites for a successful DSR and some recommendations for a successful crop are dis-
cussed in detail in the coming sections.
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Land Preparation and Laser Leveling

Good field preparation is the starting point of DSR. Proper land preparation facilitates good 
and uniform crop establishment, aids in uniform water control and good drainage, reduces 
the amount of irrigation water needed, increases the area of cultivation due to fewer bunds, 
better input use efficiency (water, nutrients and agrochemicals), increases crop productiv-
ity, and helps in controlling weeds [95, 96, 121, 190, 207]. Lantican [121] observed the 
correlation between DSR yield and precision of land leveling in the Philippines. They esti-
mated an average yield loss of 0.9 t/ha due to deficiency in land leveling, which results 
primarily from water stress in areas not leveled.

Studies conducted by the Rice–Wheat Consortium of the Indo-Gangetic Plains (RWC) 
showcased a widespread problem of poor leveling in South Asia [95]. Considerable vari-
ability of 8–15 cm in field level is observed due to traditional leveling in Indo-Gangetic 
Plains. This results in poor crop establishment of rice because of unequal water distribution 
in soil profile and inundation of newly germinating seedlings [73]. Laser-assisted precision 
land leveling was introduced in 2001 as a pioneer for alternative tillage and crop establish-
ment methods in the region. It ensures better crop establishment by allowing planters/drills 
to place seed at a uniform distance and depth [96], resulting in consistent crop stand, pre-
cise water control, and enhanced herbicide use efficiency [39].

Crop Establishment

Optimum plant density with uniform crop emergence is crucial for attaining good yields in 
DSR. Good crop establishment depends on many factors, viz., soil type, seedbed prepara-
tion, sowing date, seed rate and seed preparation, planting machinery used, and depth of 
seeding. The soil type recommended for the direct-seeded crop is medium to heavy tex-
tured soils because it suffers from iron deficiency in light soils, which can cause significant 
yield losses [104]. The seedbed should be free of weeds and precisely leveled at sowing. 
To treat a herbicide such as a paraquat or glyphosate, it is necessary to knock down any 
existing annual or perennial weeds. Sowing time varies from location to location. In north-
ern India, rice is grown during the Kharif season before the onset of the monsoon. The 
optimum time for sowing DSR is about 10–15 days before the onset of monsoon [73, 102, 
116]. In general, seeding time for DSR should be as close as possible to the time of nursery 
sowing for the PTR.

Seed priming has been reported to show positive effects on the emergence, yield, and 
quality of dry direct seed rice [57, 58, 81]. It also improves stand establishment under vari-
able field conditions. Seed priming techniques were tried for improving germination and 
crop performance of dry-DSR [125]. Various treatments included hydro-priming, water 
hardening, and Osmo-hardening with KCI. It was observed that mean germination time 
reduced and improved germination index, seedling vigor index, and germination energy. 
Hydro-priming was the best treatment, followed by water hardening, in improving seedling 
growth, leaf area index, panicles  m−2, and grain yield of dry-DSR. Early literature shows 
a high-speed rate of up to 200 kg/ha to grow DSR crops [78]. The reason may be to sup-
press weeds or poor germination conditions, low germination percent, damage due to rats, 
insects, and birds. However, based on trials in IGP, the optimum seed rate is 20–25 kg/
ha for medium-fine-grain rice cultivars with 20  cm spacing between the rows and 5  cm 
spacing within rows [73, 76]. For basmati rice in Punjab, India, seed rates of 30, 40, and 
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50 kg/ha were evaluated by Sudhir-yadav [227], and they found that the seed rate of 30 kg/
ha yielded the highest. For accurate and precise seeding, the crop can be drilled using a 
multi-crop planter with a seed–metering system (e.g., inclined plate, cupping system, or 
vertical plates) [73, 76]. Various seed drills used for direct seeding (viz., conventional seed 
cum fertilizer drill, zero till drill, inverted T-tyne zero-till seed-cum-fertilizer drill, verti-
cal plate metering mechanism, and inclined plate metering mechanism) and machines with 
inclined plate metering mechanism are most suitable for DSR. These machines help main-
tain row to row and seed to seed spacing with negligible breakage. Seeding depth is critical 
for all varieties of rice. After pre-sowing irrigation, the sowing depth for dry DSR should 
be 2–3 cm and 3–5 cm for DSR to maximize uniform CE. As sowing is done during peak 
summers, it is essential to have enough moisture during the germination period to avoid 
moisture stress [73, 236].

Water Management

Water management at all crop growth stages is crucial, viz., seedling emergence, active 
tillering, panicle initiation, and flowering. Proper water management, especially during the 
crop establishment phase (first 7–15 days after sowing), is crucial in dry drill–seeded rice 
[16, 114]. To avoid seed rotting, the soil must be kept moist but not saturated from sow-
ing to emergence. After sowing in dry soil, it is essential to provide flush irrigation to wet 
the soil if it is unlikely to rain, then saturating the field at the three-leaf stage [28]. This 
practice will ensure good rooting and seedling establishment and enhance the germination 
of weeds. Therefore, early weed control with an effective pre-emergence herbicide will be 
possible to check weed emergence and growth.

Precise land leveling is essential for the uniform spread of water and easy drainage, 
which is needed during the CE phase of dry-DSR. When water control and drainage are 
poor, the crop is likely to fail due to submergence in the early stage. Bund management 
also plays an important role in maintaining uniform water depth and limiting water losses 
via seepage and leakage [121, 240]. The bunds must be prepared as soon as possible after 
sowing, including compacting and plastering any holes or cracks. After CE, the following 
four broad water management options are available: (1) continuous flooding; (2) frequent 
irrigation, that is, DSR with safe alternate wetting and drying (AWD), which involves 
flooding the field with shallow depth (5 cm) and reirrigating a few days after water disap-
pearance; (3) infrequent irrigation where scarcity of water limits rice yields; and (4) no 
irrigation under rainfed conditions [87].

Given the aim of achieving high yields of dry-DSR with less water, option 2 is pre-
ferred, but this is subject to the availability of irrigation water. Like CT-TPR, dry-DSR can 
also be irrigated using safe AWD to economize in water use. However, knowledge regard-
ing optimal soil water status to implement safe AWD in dry-DSR is still limiting. Nev-
ertheless, farmers and researchers provide many anecdotal reports indicating that a safe 
AWD irrigation interval in dry-DSR is longer than that in CT-TPR because of less soil 
cracking in the former than in the latter [87].

In a 6-year study on sandy-loam soil conducted in Modipuram, India, it was observed that 
dry-DSR could be irrigated safely at the appearance of soil hairline cracks [22, 69]. This study 
recorded an average savings of 9% irrigation water when irrigation took place on the appearance 
of soil hairline cracks. Another study conducted by Sudhir-Yadav [228, 229] in Punjab, India, 
on clay loam soil observed 33–53% irrigation water saving in dry-DSR with AWD compared 
with CT-TPR without compromising grain yield. Moreover, dry-DSR with residue mulch would 
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require appropriate irrigation scheduling and water management as residue mulch would influ-
ence evaporation, infiltration, and transpiration very differently from conventional practice. A 
climate-smart approach for water management under different crop establishment methods is 
crucial to reduce water footprint in agriculture [134].

Weed Management

The success of DSR depends mainly on effective weed management, especially the inte-
grated approach — that targets different phases of the weed cycle, as a single method may 
not provide adequate control and long-term sustainability. Integrated weed management 
(IWM) is pivotal for effective and sustainable weed control in dry-DSR [185, 186]. IWM 
can be categorized broadly into (a) cultural, (b) mechanical, (c) chemical, and (d) biologi-
cal methods for weed control.

Cultural Methods

Hand weeding to control weedy rice can be very effective for minimizing the infestation of 
weedy rice, especially if it is performed after the seedling stage because weedy rice can be 
more easily identified than rice cultivar. It is usually taller, has more tillers, and its leaves 
have different colors. However, this method has its disadvantages: it is a slow, tedious, and 
time-consuming process, which may also induce damage to rice seedlings and mistaken 
removal of rice seedlings. It has been estimated that 150 to 200 labor days/ha are required 
to keep rice crops free of weeds, and then its economic profitability directly depends on the 
labor cost [101].

Proper land preparation and tillage helps in reducing weed infestation. Precise land lev-
eling helps in better crop establishment [96] and controlling weeds through precise water 
control and improved herbicide efficiency [39]. It can reduce weed population up to 40%, 
labor requirement for weeding purposes by 75%, and weeding cost by 40% [190]. Tillage 
determines the vertical distribution of weed seeds in the soil profile, which affects seed-
ling establishment that depends on seed predation, seed dormancy, seed longevity, and the 
potential of seedlings to emerge from a given depth [38]. Therefore, when weed load is 
high and control is suboptimal, conventional tillage may be a more suitable option as it can 
bury weed seeds below the germination zone and reduce weed problems. Zero tillage can 
be helpful at places where annual weeds (which reproduce primarily by seeds) are preva-
lent, assuming that reduced tillage does not increase weed seed production. In the case of 
perennial weeds, which reproduce vegetatively or through underground tubers, e.g., sedges 
weeds can be controlled by a non-selective herbicide such as glyphosate before crop plant-
ing. Often, land leveling is overlooked as an option for managing weeds, but it can be cru-
cial. Therefore, more work in this area is required to clarify the exact role of land leveling 
in weed dynamics and composition.

Stale Seedbed Technique

The stale seedbed technique can decrease weed seed bank from the soil where a particu-
lar cropping system is followed year after year. This could be very useful in IGP, where 
rice–wheat is the major cropping system. It depletes 5–10% of weed seeds present in 
soil [207]. In this technique, single irrigation is applied 15  days before rice sowing to 
facilitate weed germination and emergence. After that, soil moisture is maintained at an 
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optimum level. A nonselective herbicide (glyphosate or paraquat) or mechanical method 
kills emerged weeds. This helps reduce weed emergence and the number of weed seeds 
in the soil seed bank [185, 186]. Singh [218] reported that the stale seedbed technique in 
DSR reduced weed density by 53% over control. Chauhan and Johnson [37] observed bet-
ter weed control when the stale seedbed technique was used with paraquat and zero-till 
because weed seeds placed deeper than 1 cm do not emerge. In large-scale farmer partici-
patory trials in India, combined use of stale seedbed and pendimethalin gave effective con-
trol of weeds in DSR [222]. However, the economic impacts of the stale seedbed technique 
are ambiguous because delayed planting shortens the season and reduces the yield [74]. 
Moreover, it has adverse effects on the environment since it requires fuel energy, water, and 
herbicide.

Mulching

Applying mulch on soil is another way of controlling weeds in DSR. Mulching has 
multiple benefits, viz., conserves moisture, suppresses weeds, prevents soil erosion, 
adds organic matter to soils, improves soil health, and decreases fluctuations in diur-
nal temperature [183]. Water savings of about 20–90% were achieved from mulch-
ing done in China and India [245]. Mulches suppress weeds by providing a physical 
obstruction to germinating weeds [141, 142, 144], blocking sunlight, and releasing 
allele-chemicals in the soil [42, 248].

Kumar [115] reported that problematic weeds of DSR such as Echinochloa crusgalli, E. 
colona, Dactyloctenium aegyptium, and Eclipta alba were sensitive to wheat straw when 
used as mulch. Singh [219] also found that wheat residue mulch of 4 t/ha reduced the emer-
gence of grass weeds by 44–47% and of broadleaf weeds by 56–72% in dry drill–seeded 
rice. This reduction in weed emergence resulted in 17–22% higher grain yield hence eco-
nomic returns in mulched plots compared to control. Crop residue retention has also been 
advocated in the intensive rice–wheat system in the region because of increasing concern 
about decreasing soil organic matter and environmental pollution caused by the burning of 
crop residues [76]. Straw mulch from previous crops and post-emergence herbicides could 
be a promising strategy to control weeds in direct-seeded rice. Combining straw and plastic 
mulches with the direct-seeded rice system will help achieve the desired targets. Instead 
of straw burning that leads to soil health degradation and environmental pollution, resi-
due recycling offers organic matter build-up and temporal improvement in soil health [132, 
137]. This brings in the concept of circularity also in rice production systems.

Brown Manuring (Sesbania Co‑culture)

In DSR, brown manuring with Sesbania can be another good option to control weeds, 
improve soil health, and yield higher. Sesbania is a legume used as green manure in rice 
cultivation either as pre-rice or inter or mixed crop with rice [218]. Seeds of Sesbania are 
sown at 25 kg/ha together with rice. When it is about 30–40 cm tall, after 25–30 days of 
growth, it is killed with 2,4-D ethyl ester at 0.50 kg/ha to produce brown manure.

Nawaz [152] evaluated five different rice–wheat cropping systems and found brown 
manuring with Sesbania in DSR decreased weed density by 41–56% and weed biomass 
by 62–75% sole DSR. Sesbania co-culture reduced broadleaf and grass weed density by 
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76–83% and 20–33%, respectively, and total weed biomass by 37–80% compared with a 
sole rice crop [219].

Sesbania followed by 2,4-D was more effective in suppressing broadleaves and sedges 
and less effective on grasses. Therefore, to further enhance the effectiveness of this tech-
nique, it is recommended to use pendimethalin as a pre-emergence herbicide to overcome 
the problem of grasses, which is otherwise difficult to control.

Other benefits of Sesbania co-culture include atmospheric nitrogen fixation and crop 
emergence in areas where soil crust formation is a problem [73, 218]. Despite all these 
benefits, Sesbania co-culture may pose risks of competition with rice if 2,4-D applications 
are delayed due to continuous rain or ineffective, hence increasing the cost of production. 
Moreover, some herbicides may also kill Sesbania. Sesbania co-culture may limit herbicide 
use and positively impact soil nitrogen build-up.

Selection of Cultivar

Weed-competitive cultivars can be a low cost but effective strategy to get higher yields and 
economic returns [4]. Varieties having good mechanical strength of coleoptile for rapid 
germination and higher seedling vigor to compete with weeds are best suited for direct 
seeding [94,256].

Better developed roots, high leaf area index, and tillering capacity were associated with 
weed suppressive rice cultivars [63]. Gealy and Moldenhauer [70] reported that weed-sup-
pressive rice cultivars have twice root biomass than those of non-suppressive types. Due to 
higher root biomass and root proliferation, weed-suppressive cultivars competed better for 
resources with weeds and reduced weed loss by 44% and weed prevalence by 30% com-
pared to non-suppressive cultivars [70]. PR 115 variety of coarse rice and Pusa Basmati 
1121, Punjab Mehak 1, CSR 30, Pusa basmati 1, and Taraori basmati varieties are most 
suitable for direct seeding basmati rice in Haryana and Punjab.

Crop Rotation and Crop Covers

Crop rotation can be one of the most promising strategies in weed management if the crop 
rotation system design is based on sound agronomic knowledge, as weed population den-
sity and biomass production can be reduced significantly using a temporal diversification 
scheme [162]. By changing the cropping system, weed flora shifts, due to which some 
weeds disappear and new weeds emerge. Crop rotation helps to diversify weed manage-
ment programs, decreasing the selection pressure that supports the dominance of a few 
weedy species in a given field [154]. Change in composition of weeds, weed density, and 
weed dry weight when rice–wheat cropping sequence is changed was studied by Singh 
[216]. They recorded minimum weed density in rice–wheat-green gram sequence followed 
by rice–wheat, rice-chickpea, and rice-pea sequence.

Changing rice–wheat rotation also helps in the identification of weedy rice. Singh [214] 
reported that by rotating rice with soybean, mungbean, Kharif maize, or cotton, weedy 
rice could be controlled because other herbicides and cultural practices can be used which 
otherwise are not used in rice. Chokkar [41] reported that introducing potato and pea in 
between rice and wheat could also improve weed control without herbicide applications. 
The results from a 2-year experimental study done by He [82] showed that increasing agri-
cultural diversity through rotations, particularly potato-rice rotation, significantly increased 
rice production’s social, economic, and ecological benefits.
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Cover crops can be planted when the main crop is not cultivated and become part of a 
rotation system. They reduce weed proliferation during fallow; indeed, thick cover crop 
stands to compete well with weeds during the cover crop growth period and reducing light 
transmittance to weed seeds prevents most germinated weed seeds from completing their 
life cycle and reproducing. Another possible advantage is that some cover crops may also 
improve soil fertility through nitrogen fixation, reducing synthetic fertilizers [207].

Crop Rotation‑Sustainable and Circular

When rotation sequences include crops that differ in planting and maturation dates, com-
petitive and allelopathic characteristics, and associated management practices (e.g., tillage, 
cultivation, mowing, and grazing), weeds can be confronted with an unstable and frequent 
inhospitable environment that prevents their proliferation. Crop rotation is based on grow-
ing a series of different types of crops in the same area in sequential seasons. The planned 
rotation may increase to a few years or even more extended periods. Farmers usually do not 
follow one specific crop rotation plan. They choose alternate crops based on their require-
ments, possibilities, environmental conditions, and budget. By rotating the rice crop with 
other crops, such as soybean or cotton, it breaks the cycle of the weedy rice seeds. Such 
a method is widely used by rice farmers in Asia and Brazil, where HR rice varieties are 
widely grown [11].

Complexity and Uncertain Profitability

Although crop rotation is efficient, sustainable, and consistent with the bioeconomy, its 
adoption remains lower than expected [82, 176]. Two main reasons explain this situation. 
On the one hand, monoculture requires fewer farm implements, knowledge, and practi-
cal experience and is more straightforward than crop rotation. Moreover, some countries, 
e.g., Malaysia, are not self-sufficient in rice production; then, arable lands are reserved and 
monocropped with rice to ensure food security [191]. On the other hand, the impacts of 
crop rotation on economic returns are not clearly established. They depend on the time 
horizon (short- vs. long-term), how the rotation is organized (crop, pasture, fallow), the 
market price of the crops that rotated, and the various costs incurred to produce these 
crops. Crop rotation involves risk as in crop rotation, investing in a season consists of the 
input of much money to buy different seedlings of the various crops to be planted. In addi-
tion, pests and diseases from other crops can spread and infect more crops. There is also 
the risk of a specific crop yield not being successful. Improper implementation can cause 
much more harm than good. It is obligatory crop diversification because crop diversifica-
tion also requires investment in different planting techniques for each unique crop that costs 
time and money. After all, each crop needs a different type of attention. Another limitation 
is that specific locations and climates are more favorable for monocultures. Other crops 
cannot grow well within that particular type of temperature and soil conditions other than 
that particular crop.

Some studies conclude that compared to monoculture, economic returns are lower in the 
short term (e.g., 176], while others demonstrate that crop rotation significantly increases 
rice’s social, economic, and ecological benefit production [82]. These various conclusions 
show that even though crop rotation is a well-known and long-used method for maintaining 
or increasing crop yields, more research is needed to understand factors affecting its eco-
nomic impacts and weed demography in different rotation systems.
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Manual and Mechanical Methods

Controlling weeds through any physical activity that hinders the growth of weeds comes 
under mechanical control.

Mowing Mowing is removing or cutting shoots of weeds by using a sickle or mower. 
It successfully controls annual weeds while less practiced in perennial weeds because 
they have stored food in below-ground parts (rhizomes, stolons) and come in several 
flushes. Mowing must be done before flowering or seed setting to prevent the disper-
sal of seeds. Weed thus obtained should be buried deep or burnt to remove the viabil-
ity of weed seeds [129].

Mechanical Weeder In most situations, relying only on the manual wedding is not eco-
nomical or practical. The mechanical methods control weeds and yield at par with chemical 
control, provided they are correctly done. Mechanical weeding is not practiced in IGP due 
to labor and economic constraints. In DSR, rotary weeders and cono weeders for mechan-
ical weeding have been effective in controlling weeds. Rao [185, 186] and Singh [218] 
have reviewed manual and mechanical methods of weed control. Singh [213] reported from 
Pantnagar, India, that pendimethalin at 1.0 kg/ha along with farm waste as mulch (7.5 t/ha) 
supplemented with one hand weeding (HW) at 45 DAS decreased weed count, weed bio-
mass with highest weed control efficiency (91.3%) which was comparable with HW thrice 
at 30, 60, and 90 DAS (farmers’ practice).

Chemical Methods

Labor scarcity, high labor wages, and the demand to raise yield and maintain profit on 
a limited land base have been the major drivers for farmers to seek alternatives to man-
ual weeding. Herbicides are one such alternative. Effective weed management practices 
are essential in DSR culture, with herbicide application seemingly indispensable [15]. 
The trend for increased herbicide use has been reinforced by the spread of DSR [153]. 
Chemical control measures are generally more focused on the early stage of weed emer-
gence and growth when weed control is more accessible. Once weeds become big, they 
are difficult to control [19]. In dry direct drill–seeded rice, the “critical period” of weed 
competition has been reported to be 15–45 days after seeding [185, 212, 253]. If weeds 
are suppressed effectively during this period, minimal yield losses occur. It is crucial 
to select the right herbicide depending upon the weed flora present in a given field. In 
addition, the right rate, timing, and application techniques should be used.

Preplant/Burndown Herbicides.
Preplant/burndown herbicides control existing annual and perennial weeds before 

rice sowing, especially under the ZT system. Glyphosate 0.5–1.0% by volume and para-
quat 0.5% by volume are recommended for burndown application [76]. Glyphosate is a 
systemic nonselective herbicide, and it controls most annual and perennial weeds. To be 
effective, it should be applied when weeds are growing actively so that the herbicide is 
absorbed and translocated into the entire plant system. For the same reason, grazing of 
fields should be avoided. Light irrigation before spraying glyphosate is recommended 
in a situation where the weeds are under stress. Paraquat is a nonselective contact 
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herbicide, and it should be used in fields infested with annual weeds. This herbicide 
should be avoided when areas are infested with perennial weeds.

Pre‑emergence Herbicides

Different pre-emergence herbicides are used to control weeds in India’s direct-seeded rice. 
Pendimethalin, oxadiargyl, and pyrazosulfuron have been reported as effective pre-emer-
gence herbicides to control weeds in dry direct–seeded rice [73, 76, 185, 218]. Good soil 
moisture is essential for the activation of pre-emergence herbicides. Some common pre-
emergence herbicides used in DSR are pendimethalin, butachlor, oxadiargyl, pyrazosul-
fron, penoxsulam, pretilachlor, thiobencarb, flufenacet, anilofos. These herbicides, along 
with recommended dose, are listed in the table. Singh [220] evaluated three pre-emergence 
herbicides pendimethalin 1.0  kg/ha, butachlor 1.0  kg/ha, and oxadiargyl 0.09  kg/ha and 
found weed density after application of these herbicides were 10–13, 15, and 16–23 plants/
m2, respectively, compared to 51 plants/m2 in weedy check at Taraori location. Kaur [105] 
evaluated seven pre-emergences (pendimethalin 0.75 g/ha, butachlor 1.50 kg/ha, thioben-
carb 1.50 kg/ha, anilofos 0.375 kg/ha, pretilachlor 0.75 kg/ha, oxadiargyl 0.09 kg/ha, and 
pyrazosulfuron-ethyl 0.015 kg/ha) herbicides for their efficacy against weeds in DSR.

Post‑emergence Herbicides

In DSR, more than one flush of weeds occurs during crop duration. Pre-emergence her-
bicides gave effective control during the early stage of crop growth and post-emergence 
herbicides during the second flush of weeds. If weeds are not controlled properly, they can 
cause a significant qualitative and quantitative loss in grain yield. A single herbicide can-
not give effective weed control throughout the crop growth period, so sequential herbicide 
application is made. Some common post-emergence herbicides used in DSR are bispyri-
bac-sodium, fenoxaprop-p-ethyl, ethoxysulfuron, chlorimuron-ethyl, metsulfuron-metyl, 
and acifluorfer, 2,4-D. These herbicides, along with recommended dose, are listed in the 
table. Continuous use of a single herbicide on a long-term basis should be avoided; rather, 
it should be rotated with another herbicide with a different mode of action to prevent/delay 
resistance development. Tank mixtures of herbicides can be used when two or more her-
bicides are compatible with broadening the weed control spectrum so that each herbicide 
controls the weeds missed by the other one Table 1.

From Chemical to Biotechnological Method: Herbicide (IMI) — Resistant Rice 
Varieties

In countries where DSR is widely adopted, herbicide use increased steadily, resulting in 
resistance in weeds against certain herbicides. Selective control of weedy rice was never 
achieved satisfactorily with herbicides, such as the application of non-selective herbicides 
before and after the emergence of weedy rice, but before planting rice. Indeed, the appli-
cation of pre-emergence (antigerminative) herbicides provides weedy rice control, but it 
is phytotoxic if applied less than 15 days before crop sowing. Moreover, the physiologi-
cal similarity of weedy rice to cultivated rice makes it challenging to use post-emergence 
herbicides in rice fields. Rather than an IWM, herbicide-resistant (HR after that) rice tech-
nologies offer opportunities for selective control of weedy rice [36, 50, 71, 214]. Two non-
genetically modified herbicide-resistant rice cultivars are commercialized; the Clearfield 
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rice and the Provisia rice systems, both developed by BASF, were launched in the early 
2000s and 2018.

Clearfield rice is a group of cultivars that encompasses imidazolinone-resistant rice 
(IMI-rice). Imidazolinone is a broad-spectrum group of herbicides that can be applied 
pre- or post-emergence. It inhibits some enzymes (ALS) involved in producing amino 
acids when applied. Without the latter, the plant cannot synthesize proteins and slowly 
dies. Since Clearfield adoption from the early 2000s (e.g., in the USA, Europe, Brazil, 
and Malaysia), weedy rice infestation has decreased, and increases in rice production have 
been reported, for instance, up to 50% in Brazil [131]. In Malaysia, this system introduced 
in 2010 has increased yield production by 5 to 8 times [138]. HR weeds are an ongoing 
challenge worldwide, and Provisia™ Rice System provides a tool to weedy rice becoming 
resistant to the Clearfield technology. The system allows farmers to safely apply the broad-
spectrum Provisia herbicide for post-emergence control of a wide range of weeds, includ-
ing weedy rice. It complements the Clearfield production system for rice because farmers 
can rotate different herbicide modes of action for sustainable management of resistant rice 
types and annual grasses. However, weedy rice — as most weeds — evolves to become 
herbicide-resistant, according to the usual “treadmill of herbicide resistance.” Since weedy 
rice is now resistant to Clearfield, it will inevitably become resistant to Provisia in the 
future [50].

Biological Method (Allelopathy)

Studies have shown that rice plants and weeds also compete through allelopathy. Kato-
Noguchi [103] identified 3-hydroxy-β-ionone and 9-hydroxy-4-megastigmen-3-one as 
main allelochemicals in Kartik-shail and BR 17, two high-yielding rice cultivars of Bang-
ladesh. The allelopathic potential of 111 rice cultivars on weeds in the Philippines was 
studied by Olofsdotter [157] who reported that the dry weight of weeds reduced up to 34% 
after 8  weeks of seeding. The reduction in weed’s dry weight is due to allelochemicals 
released by these rice cultivars [158].

Table 1  List of Pre-emergence and Post-emergence herbicide spray and recommended doses

Sl. No Pre- emergence herbicides Post- emergence herbicides

Name Dose (kg/ha) Name Dose (kg/ha) Time of applicaton 
(DAS)

1 Pendimethalin 0.75 -1.0 Bispyribac-sodium 0.025 25–30
2 Oxadiargyl 0.09—0.1 Fenoxaprop-pethyl 0.06–0.075 25–30
3 Pyrazosulfron 0.015–0.020 Ethoxysulfron 0.015–0.0175 25–30
4 Butachlor 1.0–1.50 Chlorimuronethyl +  

metsulfron-methyl
0.002–0.004 25–30

5 Penoxsulam 0.03 Acifluorfer 0.6 20–30
6 Pretilachlor 0.40–0.75 2,4-D 1 30
7 Thiobencarb 1.25
8 Flufenacet 0.08
9 Anilofos 0.375
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The allelopathic potential of many rice cultivars like BR17 against Echinochloa crus-
galli and E. colo-num had already been reported in various studies [59, 60, 93]. Several 
rice cultivars through the release of allelochemical had been found to suppress predomi-
nant weeds of rice, such as E. crus-galli [97, 198], Cyperus difformis [198], and Sagittaria 
montevidensis [198, 199].

Seal and Pratley [198] evaluated the allelopathic multi-weed suppression of 27 different 
rice cultivars against five major aquatic weeds of Australia and found that cultivar Amaroo 
inhibited Alisma-taceae weeds by an average of 97%, whereas Echinochloa crus-galli was 
inhibited by 72%.

Not much work is done in India to exploit the rice’s allelopathic property for weed con-
trol in DSR. Cultivars with improved allelopathic potential can be developed, competing 
better with weeds and lowering herbicides’ dependence. So, there is a broad scope to iden-
tify, develop, and exploit cultivars with higher allelopathic potential in proper cropping 
systems.

It can be summarized that the components of integrated strategies for weed control in 
DSR are crucial for the adoption and scaling of this technology in South Asia.

Assessment of Weed Management Sustainability in Rice

The Sustainable Rice Platform (SRP 2015) is a multi-stakeholder partnership (estab-
lished in 2011 and co-convened by UN Environment and the International Rice 
Research Institute) to promote resource-use efficiency and sustainability both on-
farm and throughout the rice value chain. It is developing a range of tools to promote 
sustainable rice cultivation, including standards [225] related to priorities defined in a 
set of 12 performance indicators [226].

Standards are based on 41 requirements under eight significant themes: integrated pest 
management (IPM). The latter includes one provision (no. 18.1) about weed management, 
which impacts 4 of the 12 performance indicators: profitability, productivity, biodiversity, 
and food safety. Requirement no. 18.1 “weed management” lists standard preventive weed 
control methods and the conditions for appropriate use of herbicides that all belong to what 
is usually called IWM. The SRP Standard seeks to encourage IWM that combines pre-
ventive weed control actions and punctual curative weed control actions when preventive 
methods are not effective on their own [225]. Preventive control methods help manage con-
ditions to avoid weed build-up and include resistant varieties, crop rotation, or intercrop-
ping. Curative weed control methods help treat weed build-up and can consist of mechani-
cal control, biological control, and chemical control (e.g., synthetic herbicides). Herbicides 
are used only if and when action thresholds are exceeded, and the severity of the weed is 
expected to cause significant damage or loss.

Fertilizer Management

Not much work on fertilizer management has been done for DSR than CT-PTR. Due to 
aerobic conditions and alternate wet and dry cycles, there is less availability of several 
micronutrients such as Zn and Fe and other nutrients including N [179]. Also, nitrogen 
losses are higher in dry-DSR than in CT-PTR due to nitrification/denitrification, volatiliza-
tion, and leaching [46, 150, 175, 211].

General recommendations for NPK fertilizers are similar to those in PTR, except that 
a slightly higher N (22.5–30 kg/ha) dose is suggested in DSR [69]. This is to balance the 
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higher losses and lower availability of N from soil mineralization at the early stage and 
the longer duration of the crop in the main field in dry-DSR. Earlier studies conducted 
in Korea indicated that 40–50% more N fertilizer should be applied in dry-DSR than in 
CT-TPR [170, 255], although higher N application also leads to disease susceptibility and 
crop lodging. Split applications of N are recommended to maximize grain yield, increase 
N uptake, and reduce N losses. It ensures the supply of N to match crop demand at critical 
growth stages. Since more N is applied in dry-DSR than in CT-PTR and losses are higher, 
more efficient N management for dry-DSR is needed.

Slow-release (SRF) or controlled-release N fertilizers (CRFs) offer options to reduce N 
losses because of their delayed-release pattern, which may match crop demand in a better 
way [206]. The one-shot application also reduces the labor cost. CRF improves N use effi-
ciency and yield compared to untreated urea [61], but their use is limited because of their 
high cost. They are four to eight times costlier than conventional fertilizers [204].

Split application of K has also been suggested for direct seeding in medium-textured 
soil [177]. Deficiency of Zn and Fe is more common in aerobic/non-flooded rice systems 
than in flooded rice systems [202, 208, 210, 223a, 44, 163, 254, 216]. Therefore, micro-
nutrient management is critical in dry-DSR. A total of 25–50  kg/ha zinc sulfate is rec-
ommended [5–9]. For iron, it has been observed that foliar application is superior to soil 
application [6–9, 45].

Significance of DSR in Circular Economy

Due to the early maturity of DSR, it gives the chance to include an additional crop in the 
system, which can help economically and help in crop rotation and improve soil fertility 
and help reduce weeds. As far as the circular economy is considered, DSR harvest can 
reach markets about 15 days early. This market can give incentives to reuse post-harvest 
products like straw, husk, and bran, adding value to the circularity. Instead of burning the 
straw, it can be used, which farmers usually burn to clear land for the next crop. This will 
help reduce carbon dioxide emissions and preserve soil microbiology. So, it is a win–win 
situation both for farmers and the environment. These crop residues can be used to pro-
duce, for instance, new bio-fertilizer through composting new materials for healthy build-
ings and energy (e.g., biofuels). The rice, duck, and fish-integrated farming is another well-
known system for which circular principles are present. All agricultural practices, such as 
tillage, pesticide application, harvesting, threshing, can potentially be concerned by the 
circular economy. Weed management in rice that should easily fit the sustainability criteria 
and the circularity principles but require additional research and development. Bioherbi-
cides seem to be a sustainable option to fulfill the circularity principle. Eco-friendly, cost-
effective DSR package offers sustainable rice production systems with fewer resources and 
low emissions.

Conclusions

This study identified that DSR is feasible both technically and economically compared to 
PTR. Moreover, with proper conservation and management strategies, DSR adoption will 
likely increase in the coming future, provided weed control in DSR, especially the control 
of weedy rice, should be at the center of any strategy aiming to improve the sustainability 
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of rice production in the long run. Eco-friendly, cost-effective DSR package offers sustain-
able rice production systems with fewer resources and low emissions.

A few important conclusions that have emerged from this review are as follows.

• First, DSR is a more resource-efficient, climate-resilient, and sustainable alterna-
tive agricultural system, but many agronomic DSR practices have become inefficient 
because of the lack of mechanization, precision application, and proper education. So, 
adopting adequate management practices is very important.

• The primary bottleneck experienced with direct seeding is the infestation of weeds. 
Pre-emergence and post-emergence herbicides can be vital in controlling weeds, but 
environment friendlier weed control methods must be sought and substantially reduce 
the cost of weed management for farmers. Techniques like stale bed technique, mulch-
ing, crop rotation, Sesbania co-culture, seed priming, and systematic weed monitoring 
program will help to reduce weeds. However, a single weed control method is not via-
ble, so an integrated approach based on climatic conditions, edaphic factors, and weed 
flora are critical. Furthermore, given the drawbacks associated either with IWM or the 
use of herbicide-resistant rice varieties, development of competitive and allelopathic 
rice varieties for increased rice competitiveness must be targeted.

• The selection of a proper cultivar is very crucial. As DSR is aerated rice, dry and wet 
conditions responsive rice varieties should be promoted.

• Poor stand establishment is another hindrance in the wide-scale adoption of DSR. More 
practical seed priming techniques can help to solve the issue.

• Effective management strategies, well-developed biotechnological and genetic 
approaches, and a better understanding of pest and disease dynamics will help resolve 
blast and root-knot nematode infestation in DSR [136].

• New resource conservation technologies (RCTs) like laser land leveling, short-duration 
cultivars, irrigation scheduling based on soil matric potential (SMP), crop diversifica-
tion and raised bed planting should be recommended based on sites and soils.

Future Research Outlook

• On the research front, new and improved rice varieties suitable for DSR are required.
• Despite many integrated approaches, additional research on weed management, espe-

cially weedy rice control, is required for comprehensive spectrum weed control.
• More efforts are needed to study the nutrient dynamics in soils under DSR as the avail-

ability of micronutrients, mainly Fe and Zn, reduces DSR. Also, research is required on 
soil ecology in rice soils.

• According to the climatic edaphic factors and resources available locally, there is a need 
to develop a site-specific package of production technologies for different rice produc-
tion systems. Anticipatory research and development strategies need to be framed for a 
place where DSR will be practiced.

• To combat higher  N2O emissions in DSR, there is a need to monitor GHG emissions. 
However, not many studies quantify the emissions and study the combined effect of all 
three GHGs  (CO2,  CH4, and  N2O) in rice systems. Therefore, baseline data to develop 
better management strategies is lacking. Furthermore, more approaches like nitrifica-
tion inhibitors and deep urea placement can be worked out to reduce the emissions 
hence, global warming.
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• Intense convincing has to be done to the various stakeholders in rice production. They 
include the policymakers and farmers. Their understanding of the benefits will enhance 
its wide spread. Another green revolution in direct-seeded rice with better management 
techniques is the need of the hour.
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