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Abstract
In the first part of this note we give a rather short proof of a generalization of

Stenger’s lemma about the compression A0 to H0 of a self-adjoint operator A in

some Hilbert space H ¼ H0 � H1. In this situation, S :¼ A \ A0 is a symmetry in H0

with the canonical self-adjoint extension A0 and the self-adjoint extension A with

exit into H. In the second part we consider relations between the resolvents of A and

A0 like M.G. Krein’s resolvent formula, and corresponding operator models.
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1 Introduction

Let A be a closed densely defined operator with nonempty resolvent set qðAÞ in a

Hilbert space H which is the orthogonal sum of the two Hilbert spaces H0 and

H1 : H ¼ H0 � H1; PH0
denotes the orthogonal projection in H onto H0. We study

the compression A0 :¼ PH0
A
�
�
H0\ domA

of A to H0. Our starting point is the block

matrix representation of the resolvent of A:

ðA� zÞ�1 ¼
SðzÞ LðzÞ
MðzÞ DðzÞ

� �

; z 2 qðAÞ:

Under the assumption that D(z) in H1 is boundedly invertible (meaning that DðzÞ�1

exists and is defined on all of H1 and bounded) we show (see Theorem 1) that the

compression A0 is also a closed densely defined operator with nonempty resolvent

set. Since D(z) for z 2 qðAÞ n rpðA0Þ is injective (see Lemma 1), it is boundedly

invertible e.g. if dimH1\1. Hence Theorem 1 implies the well-known results of

Stenger [11] and Nudelman [10] about self-adjointness or maximal dissipativity of

finite-codimensional compressions of a self-adjoint or maximal dissipative operator

as well as corresponding results for maximal symmetric operators and dilations.

If A and also its compression A0 are self-adjoint, then S :¼ A \ A0 is a symmetric

operator in H0 with equal defect numbers. Clearly, A0 in H0 is a canonical self-

adjoint extension of S, and A in H is a self-adjoint extension of S with exit from H0

into the larger Hilbert space H. So if we choose for S and its canonical self-adjoint

extension A0 a corresponding c-field and Q-function, M.G. Krein’s resolvent

formula connects the compressed resolvent of A with the resolvent of the

compression A0 through a parameter which is a (matrix or operator) Nevanlinna

function (see the Appendix). If the c-field and the Q-function are chosen properly

and kerLðzÞ ¼ f0g, this parameter is the function TðzÞ ¼ z I. In the general case this
parameter is considered in Theorem 3. Finally, in Theorem 4 we extend Krein’s

resolvent formula for A and A0 to a model for the resolvent of A.
This note is a continuation of our studies in Refs. [3–5], but it can be read

independently.

About notation: sometimes also for (single valued) operators T we use the

relation or subspace notation, that is the operator is described by its graph in the

product space: instead of y ¼ Tx we write fx; yg 2 T . Let T be a densely defined

operator on a Hilbert space H with inner product h � ; � iH . T is called dissipative if

Im hTf ; f iH � 0 for all f 2 dom T , the domain of T, and maximal dissipative if it is

dissipative and not properly contained in another dissipative operator in H. If T is

dissipative, then it is maximal dissipative if and only if C� \ qðTÞ 6¼ ;, and then

C� � qðTÞ. The operator T is called symmetric if T � T�, the adjoint of T in H, and

then the upper/lower defect number n�ðTÞ is

n�ðTÞ :¼ dimð ran ðT � zÞÞ? ¼ dimðkerðT� � z�ÞÞ; z 2 C�:

T is called maximal symmetric if it is symmetric and not properly contained in

another symmetric operator in H. If T is symmetric, then it is maximal symmetric if

W. Stenger’s and M.A. Nudelman’s results and resolvent formulas... 937



and only if at least one of its defect numbers equals zero. Finally, T is called self-
adjoint if T ¼ T� and this holds if and only if T is symmetric and its defect numbers

are zero. We assume that the reader is familiar with the spectral properties of such

operators. We denote by qðTÞ the resolvent set, by rðTÞ the spectrum, and by rpðTÞ
the point spectrum of T. An operator A in a Hilbert space K is called a dilation of T,

if H is a subspace of K, qðAÞ \ qðTÞ 6¼ ; and PHðA� zÞ�1jH ¼ ðT � zÞ�1
for z 2

qðAÞ \ qðTÞ (see [8]); here PH is the projection in K onto H. The dilation A is called

minimal if for some w 2 qðAÞ

span
n�

I þ ðz� wÞðA� zÞ�1
�

h : z 2 qðAÞ; h 2 H
o

¼ K:

Finally we recall the Schur factorization of a 2	 2 block operator matrix of a

bounded operator on a Hilbert space H ¼ H0 � H1 in which D is boundedly

invertible:

A B

C D

� �

¼ I BD�1

0 I

� �
A� BD�1C 0

0 D

� �
I 0

D�1C I

� �

:
H0

H1

� �

!
H0

H1

� �

:

The entry A� BD�1C is called the first Schur complement of the matrix on the left.

2 A general Stenger–Nudelman result

Let A be a closed densely defined operator in a Hilbert space H with a nonempty

resolvent set qðAÞ and resolvent operator RðzÞ :¼ ðA� zÞ�1
, z 2 qðAÞ. We

decompose H into two orthogonal subspaces H0 and H1: H ¼ H0 � H1. Then the

resolvent R(z) can be decomposed as a 2	 2 block operator matrix:

RðzÞ ¼
SðzÞ LðzÞ
MðzÞ DðzÞ

� �

:
H0

H1

� �

!
H0

H1

� �

; z 2 qðAÞ: ð1Þ

It follows that, written as a relation,

A¼
(

SðzÞf0þLðzÞf1
MðzÞf0þDðzÞf1

� �

;
f0

f1

� �

þ z
SðzÞf0þLðzÞf1
MðzÞf0þðzÞf1

� �� �

: f0 2 H0; f1 2 H1

)

:

ð2Þ

Recall that the compression A0 of A to the space H0 is the operator defined by

A0 :¼ PH0
A
�
�
H0\ domA0

¼
n	

SðzÞf0 þ LðzÞf1; f0 þ zðSðzÞf0 þ LðzÞf1Þ



:

MðzÞf0 þ DðzÞf1 ¼ 0; f0 2 H0; f1 2 H1

o

:

ð3Þ

Lemma 1 If z 2 qðAÞnrpðA0Þ, then D(z) is injective.
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Proof Assume DðzÞf1 ¼ 0 for some f1 2 H1. Then with f0 ¼ 0 from the relation (3)

we obtain fLðzÞf1; zLðzÞf1g 2 A0. The assumption z 62rpðA0Þ implies LðzÞf1 ¼ 0 and

hence

RðzÞ
0

f1

� �

¼
LðzÞf1
DðzÞf1

� �

¼ 0:

Apply A� z to both sides of this equality to obtain f1 ¼ 0. h

Theorem 1 If z 2 qðAÞ and D(z) in (1) is boundedly invertible, then A0 is a closed
densely defined operator in H0 given by

A0 ¼
n	

ðSðzÞ�LðzÞDðzÞ�1MðzÞÞf0;

f0 þ zðSðzÞ � LðzÞDðzÞ�1MðzÞÞf0



: f0 2 H0

o

:

ð4Þ

Moreover, z 2 qðA0Þ and

R0ðzÞ :¼ ðA0 � zÞ�1 ¼ SðzÞ � LðzÞDðzÞ�1MðzÞ: ð5Þ

The relation (5) means that the resolvent of the compression A0 of A is the first

Schur complement of the block operator matrix of the resolvent R(z) of A in (1).

Proof of Theorem 1 The relation (4) follows from (3). It implies that A0 is closed

and the equalities

domA0 ¼ ran
�

SðzÞ � LðzÞDðzÞ�1MðzÞ
�

ð6Þ

and (5). The latter relation implies that ðA0 � zÞ�1
is a bounded operator on H0 and

hence z 2 qðA0Þ. The Schur factorization of R(z) takes the form

RðzÞ ¼ UðzÞ SðzÞ � LðzÞDðzÞ�1MðzÞ 0

0 DðzÞ

 !

VðzÞ

with

UðzÞ ¼ I LðzÞDðzÞ�1

0 I

 !

; VðzÞ ¼
I 0

DðzÞ�1MðzÞ I

� �

:

To show that domA0 is dense in H0 we assume that an element g0 2 H0 is

orthogonal to ran
�

SðzÞ � LðzÞDðzÞ�1MðzÞ
�

. Then we have in the inner product of

H ¼ H0 � H1 that for all f0 2 H0 and f1 2 H1
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�

RðzÞ
f0

f1

� �

;UðzÞ�� g0

0

� ��

H

¼
�

UðzÞ SðzÞ � LðzÞDðzÞ�1MðzÞ 0

0 DðzÞ

 !

VðzÞ
f0

f1

� �

;UðzÞ�� g0

0

� ��

H

¼
� �

SðzÞ � LðzÞDðzÞ�1MðzÞ
�

f0

MðzÞf0 þ DðzÞf1

 !

;
g0

0

� ��

H

¼ 0:

Since ranRðzÞ is dense in H, UðzÞ�� g0
0

� �

¼ 0 and hence g0 ¼ 0. By (6), this

proves that domA0 is dense in H0. h

The first and the third of the following corollaries of Theorem 1 contain the

results of Nudelman [10] and Stenger [11] (see also [1, Section 3], [2, Sections 3

and 4] and [6, Theorem 3.3]), and the fourth corollary contains the operator case of

[2, Theorem 5.3]. These references concern the case dimH1\1. Under this

assumption Lemma 1 assures the invertibility of D(z).

Corollary 1 Assume that T is a densely defined maximal dissipative operator in the
space H ¼ H0 � H1 with the block matrix representation (1) of its resolvent. If, for
some z 2 C�, D(z) is boundedly invertible, then the compression T0 of T to H0 is
densely defined and maximal dissipative in H0.

Corollary 2 Assume that S is a densely defined maximal symmetric operator with
lower defect number n�ðSÞ ¼ 0 (upper defect number nþðSÞ ¼ 0Þ in H ¼ H0 � H1.
Suppose that the block matrix representation of the resolvent of S is given by the
right-hand side of (1). If D(z) is boundedly invertible for some z 2 C� ðz 2 CþÞ,
then the compression S0 of S to H0 is a densely defined maximal symmetric operator
with n�ðS0Þ ¼ 0 ðnþðS0Þ ¼ 0Þ in H0.

Corollary 3 Assume that A is a densely defined self-adjoint operator in H ¼
H0 � H1 with the block matrix representation (1) of the resolvent. If D(z) is
boundedly invertible for some z 2 qðAÞ, then the compression A0 of A to H0 is a
densely defined self-adjoint operator in H0 and z 2 qðA0Þ.

As to the proof of Corollary 3, by the observation preceeding the relation (11)

below, D(z) is boundedly invertible on an open subset of qðAÞ around z and z�. By
Theorem 1, this set is also contained in qðA0Þ. Hence the symmetric operator A0 is

in fact self-adjoint.

Corollary 4 Assume that T is a densely defined maximal dissipative operator in the
space H ¼ H0 � H1 with the block matrix representation (1) of its resolvent in
which D(z) is boundedly invertible for some z 2 C�. If the operator A in the Hilbert
space K is a minimal self-adjoint dilation of T, then its compression A0 to the space
K
 H1 is a minimal self-adjoint dilation of the compression T0 of T to the space
H0.
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3 Resolvent formulas based on the compression of a self-adjoint
operator

3.1 A first decomposition

In this subsection let A be a self-adjoint operator in the Hilbert space H ¼ H0 � H1.

With respect to this decomposition of the space H we write again

RðzÞ :¼ ðA� zIÞ�1 ¼
SðzÞ LðzÞ
MðzÞ DðzÞ

� �

; z 2 qðAÞ: ð7Þ

The relation RðzÞ� ¼ Rðz�Þ implies

SðzÞ� ¼ Sðz�Þ; DðzÞ� ¼ Dðz�Þ; LðzÞ� ¼ Mðz�Þ; z 2 qðAÞ: ð8Þ

Moreover, the resolvent equation

RðzÞ � RðwÞ�

z� w� ¼ RðwÞ�RðzÞ; z; w 2 qðAÞ;

is equivalent to the relations

SðzÞ � SðwÞ�

z� w� ¼ SðwÞ�SðzÞ þ Lðw�ÞMðzÞ; z; w 2 qðAÞ;

LðzÞ � Lðw�Þ
z� w� ¼ SðwÞ�LðzÞ þ Lðw�ÞDðzÞ; z; w 2 qðAÞ;

ð9Þ

DðzÞ � DðwÞ�

z� w� ¼ DðwÞ�DðzÞ þ LðwÞ�LðzÞ; z; w 2 qðAÞ: ð10Þ

Now we assume that D(z) is boundedly invertible for some z 2 qðAÞ. As an analytic

function of z it is also boundedly invertible in a neighborhood of z and because of

(8) also for z�. For those points z, w the relation (10) implies

DðwÞ�� � DðzÞ�1

z� w� ¼ I þ
�

LðwÞDðwÞ�1
��
LðzÞDðzÞ�1: ð11Þ

We introduce the operator functions

QðzÞ :¼ �DðzÞ�1 � z; CðzÞ :¼ LðzÞDðzÞ�1: ð12Þ

Then (5) and (8) imply that R0ðzÞ ¼ ðA0 � zÞ�1
is given by

R0ðzÞ ¼ SðzÞ þ LðzÞðQðzÞ þ zÞLðz�Þ� ¼ SðzÞ þ CðzÞðQðzÞ þ zÞ�1Cðz�Þ�: ð13Þ

Theorem 2 Let A be a self-adjoint operator in the Hilbert space H ¼ H0 � H1 with
the block matrix representation (1) of the resolvent. Suppose that for some z 2 qðAÞ
the operator D(z) is boundedly invertible. Then, with the operator functions Q(z)
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and CðzÞ from (12) and the compression A0 ¼ PH0
A
�
�
H0\ domA

, the matrix

representation (7) takes the form

ðA� zÞ�1¼
ðA0 � zÞ�1� CðzÞðQðzÞ þ zÞ�1Cðz�Þ� � CðzÞðQðzÞ þ zÞ�1

�ðQðzÞ þ zÞ�1Cðz�Þ� � ðQðzÞ þ zÞ�1

 !

¼
ðA0 � zÞ�1

0

0 0

 !

�
CðzÞ

I

 !

ðQðzÞ þ zÞ�1 Cðz�Þ� Ið Þ:

ð14Þ

The functions Q(z) and CðzÞ satisfy the relations

QðzÞ � QðwÞ�

z� w� ¼ CðwÞ�CðzÞ; ðA0 � wÞ�1CðzÞ ¼ CðzÞ � CðwÞ
z� w

; z; w 2 qðA0Þ:

ð15Þ

Proof The equality (14) follows from (7), (12) and (13). It remains to prove the

relations (15). The first relation follows from (11) and (12). To prove the second

one, we use (9), (13) and (11) to obtain

LðzÞ � Lðw�Þ
z� w� ¼ R0ðw�ÞLðzÞ � Lðw�ÞðQðwÞ þ wÞLðwÞ�LðzÞ þ Lðw�ÞDðzÞ

¼ R0ðw�ÞLðzÞ þ Lðw�ÞDðwÞ��LðwÞ�LðzÞ þ Lðw�ÞDðzÞ
¼ R0ðw�ÞLðzÞþLðw�Þ

�

DðwÞ��LðwÞ�LðzÞDðzÞ�1
�

DðzÞ
þ Lðw�ÞDðzÞ

¼ R0ðw�ÞLðzÞ þ Lðw�ÞDðwÞ
�� � DðzÞ�1

z� w� DðzÞ

¼ R0ðw�ÞLðzÞ þ Lðw�ÞDðwÞ��DðzÞ � Lðw�Þ
z� w� :

This implies

LðzÞ
z� w� ¼ R0ðw�ÞLðzÞ þ Lðw�ÞDðwÞ��DðzÞ

z� w� ;

or

R0ðw�ÞLðzÞDðzÞ�1 ¼ LðzÞDðzÞ�1 � Lðw�ÞDðw�Þ�1

z� w� ;

which yields the second equality in (15). h

The left upper corner in the first matrix in (14) is in general not yet the right-hand

side of a Krein resolvent formula (see the Appendix) since CðzÞ may have a

nontrivial kernel. In the next subsection we replace CðzÞ by Cz being injective.
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3.2 Krein’s resolvent formula

In the following we establish a connection between (14) with Krein’s resolvent

formula (see the Appendix). Assume that the conditions of Theorem 2 are satisfied.

The second equality in (15) implies that the kernel kerCðzÞ of CðzÞ is independent
of z. We decompose H1 ¼ H1;1 � H1;2 with H1;2 :¼ kerCðzÞ. Then CðzÞ and Q(z)

have the block matrix representation

CðzÞ ¼ Cz 0ð Þ :
H1;1

H1;2

 !

! H0 ð16Þ

with kerCz ¼ f0g, and

QðzÞ ¼
Q11ðzÞ Q12

Q�
12 Q22

� �

:
H1;1

H1;2

 !

!
H1;1

H1;2

 !

: ð17Þ

By the first equality in (15), the entry Q11ðzÞ in the representation of Q(z) is a

bounded operator function satisfying

Q11ðzÞ � Q11ðwÞ�

z� w� ¼ C�
wCz; ð18Þ

the other two entries Q12 and Q22 are bounded operators independent of z, and
Q22 ¼ Q�

22.

Theorem 3 In the situation of Theorem 2, the operator S :¼ A0 \ A ¼ A \ H2
0 is

symmetric in H0 with equal defect numbers dimH1;1. For the canonical self-adjoint

extension A0 of S in H0 and the self-adjoint extension A of S in H the following
formula holds:

PH0
ðA� zÞ�1

�
�
H0

¼ ðA0 � zÞ�1 � CzðQ11ðzÞ þ TðzÞÞ�1C�
z� ð19Þ

with the Nevanlinna function

TðzÞ :¼ z� Q12ðQ22 þ zÞ�1Q�
12: ð20Þ

Here Cz is a c-field and Q11ðzÞ is a corresponding Q-function for the symmetric
operator S and its canonical self-adjoint extension A0.

Clearly, (19) is a Krein resolvent formula, where the function T(z) plays the role
of the parameter. In the particular case kerCðzÞ ¼ f0g, that is ker LðzÞ ¼ f0g, this
parameter becomes TðzÞ ¼ z I. Formally, in Krein’s resolvent formula, on the left-

hand side A is often replaced by the minimal self-adjoint operator in H which

contains the restriction of A to H0 \ domA.

Proof of Theorem 3 Since A is a self-adjoint operator, S is a closed symmetric

operator in H0. From (2) we obtain that

S ¼ A \ H2
0 ¼

	

fSðzÞf0; f0 þ zSðzÞf0g : MðzÞf0 ¼ 0; f0 2 H0




¼ A \ A0:

W. Stenger’s and M.A. Nudelman’s results and resolvent formulas... 943



From S � A0 ¼ A�
0 it follows that S has equal defect numbers.

By Theorem 2, ran ðS� zÞ ¼ kerMðzÞ ¼ kerCðz�Þ�. The decomposition (16)

implies that the defect numbers are equal to the dimension of the space H1;1:

kerðS� � zÞ ¼
�

ran ðS� z�Þ
�? ¼

�

kerCðzÞ�
�? ¼ ran CðzÞ ¼ ran Cz ¼ H1;1:

ð21Þ

The relations TðzÞ� ¼ Tðz�Þ and

Im TðzÞ
Im z

¼ I þ Q�
12ðQ22 þ z�Þ�1ðQ22 þ zÞ�1Q12 � 0; z 2 CnR;

show that T(z) in (20) is an operator Nevanlinna function. The equality (19) is

obtained from Theorem 2, the relation (16) and the relation

CðzÞ
�

QðzÞ þ z
��1

Cðz�Þ� ¼ Cz

�

Q11ðzÞ þ z� Q12ðQ22 þ zÞ�1Q�
12

��1
C�
z�

¼ Cz

�

Q11ðzÞ þ TðzÞ
��1

C�
z� ;

which follows from the form of the inverse of the 2	 2 block matrix for QðzÞ þ z.
To prove the last statement we only need to show (see the Appendix), that Cz

maps H1;1 into kerðS� � zÞ and has zero kernel, Cz ¼ ðI þ ðz� wÞðA0 � zÞ�1ÞCw

and Q11ðzÞ � Q11ðwÞ� ¼ ðz� w�ÞC�
wCz, z;w 2 CnR. But this follows from (21), the

second equality in (15) and (18). h

We end this subsection with a simple example. Let the self-adjoint operator A in

C3 be given by the symmetric matrix

A ¼
1 1 0

1 0 1

0 1 1

0

B
@

1

C
A :

H0

H1;1

H1;2

0

B
@

1

C
A!

H0

H1;1

H1;2

0

B
@

1

C
A with H0 ¼ H1;1 ¼ H1;2 ¼ C:

Then, with dðzÞ :¼ ðz� 1Þð�z2 þ zþ 2Þ,

LðzÞ ¼ Mðz�Þ� ¼ 1

dðzÞ z� 1 1ð Þ; DðzÞ ¼ 1

dðzÞ
ðz� 1Þ2 z� 1

z� 1 z2 � z� 1

 !

:

Hence

DðzÞ�1 ¼ �ðQðzÞ þ zÞ with QðzÞ ¼
1

1� z
� 1

�1 � 1

0

@

1

A;

CðzÞ ¼ LðzÞDðzÞ�1 ¼ 1

z� 1
0

� �

; Cz ¼
1

z� 1
:

and

1

1� z
¼ ðA0 � zÞ�1 ¼ SðzÞ � 1

dðzÞ :
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3.3 A refined decomposition

In analogy to [4, Theorem 2.4] and [5, Proposition 3.3], the formulas in Theorem 2

and Theorem 3 can be given a more symmetric form, which is at the same time a

refinement with respect to the self-adjoint parts of the operator A in H1. To this end

with the function T(z) in (20):

TðzÞ ¼ z� Q12ðQ22 þ zÞ�1Q�
12

ð22Þ

we associate the following operator model:

(i) HT is the Hilbert space HT ¼ H1;1 � bH1;2 � H1 where

bH1;2 ¼ span
	

ðQ22 þ zÞ�1Q�
12f11 : f11 2 H1;1; z 2 CnR




� H1;2;

(ii) BT is the self-adjoint relation in HT with resolvent

RTðzÞ :¼ ðBT � zÞ�1 ¼
0 0

0 � ðQ22 þ zÞ�1

� �

:
H1;1

bH1;2

 !

!
H1;1

bH1;2

 !

; z 2 CnR;

(iii) dz is the operator function

dz ¼
I

�ðQ22 þ zÞ�1Q�
12

� �

: H1;1 !
H1;1

bH 1;2

 !

; z 2 CnR:

Note that bH1;2 contains ranQ�
12 and that Q22 maps bH 1;2 to bH1;2 and is bounded.

The proof of the following proposition is straightforward and therefore omitted.

Proposition 1 The operator Nevanlinna function T(z) from (22) in the space H1;1

has the representation

TðzÞ ¼ TðwÞ� þ ðz� w�Þd�w
�

I þ ðz� w�ÞðBT � zÞ�1
�

dw� ; z; w 2 CnR;

which is minimal in the sense that

HT ¼ span
	

dzh11 : h11 2 H1;1; z 2 CnR



: ð23Þ

Moreover, for z; w 2 CnR

TðzÞ � TðwÞ�

z� w� ¼ d�wdz; dz ¼
�

I þ ðz� wÞðBT � zÞ�1
�

dw:
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In the following we set H0
1;2 :¼ H1;2 
 bH1;2. From the inclusion ranQ�

1;2 � bH 1;2

it follows that Q1;2H
0
1;2 ¼ f0g. Since Q22 maps bH1;2 to bH1;2 and is self-adjoint on

H1;2, Q22 has a diagonal form with respect to the decomposition H1;2 ¼ bH1;2 � H0
1;2:

Q22 ¼
bQ22 0

0 Q0
22

 !

:
bH1;2

H0
1;2

 !

!
bH 1;2

H0
1;2

 !

:

This implies that the resolvent RTðzÞ can be written as

RTðzÞ :¼
0 0

0 ð� bQ22 � zÞ�1

� �

:
H1;1

bH1;2

 !

!
H1;1

bH1:2

 !

; z 2 C n R:

The theorem below shows that in general A need not be H0-minimal with respect to

the decomposition H ¼ H0 � H1 in the sense that for some w 2 CnR

H ¼ span
n�

I þ ðz� wÞðA� zÞ�1
� h0

0

� �

: h0 2 H0; z 2 CnR
o

:

In fact the theorem implies that the gap H 
 ðH0 � HTÞ ¼ H0
1;2 between the space

on the right-hand side and H is an invariant subspace for A on which A coincides

with the self-adjoint operator �Q0
22.

Theorem 4 Under the conditions of Theorem 2 and with respect to the decompo-

sition H ¼ H0 � HT � H0
1;2 the resolvent ðA� zÞ�1

, z 2 C n R, has the 3	 3 block

matrix representation

ðA� zÞ�1 ¼

R0ðzÞ�Cz DðzÞ�1C�
z� � Cz DðzÞ�1d�z� 0

�dz DðzÞ�1C�
z� RTðzÞ � dz DðzÞ�1d�z� 0

0 0 ð�Q0
22�zÞ�1

0

B
B
B
@

1

C
C
C
A

¼

R0ðzÞ 0 0

0 RTðzÞ 0

0 0 ð�Q0
22 �zÞ�1

0

B
B
@

1

C
C
A
�

Cz

dz

0

0

B
B
@

1

C
C
A
DðzÞ�1 C�

z� d�z� 0
� �

;

ð24Þ

where DðzÞ :¼ Q11ðzÞþTðzÞ. Moreover, for each w 2 CnR

span
n�

I þ ðz� wÞðA� zÞ�1
� h0

0

� �

: h0 2 H0; z 2 CnR
o

¼
H0

HT

� �

; ð25Þ

and under the identification of H 
 ðH0 � HTÞ with H0
1;2 the restriction of the

operator A to H 
 ðH0 � HTÞ coincides with the self-adjoint operator �Q0
22 on

H0
1;2.
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Proof The first equality in (24) follows from Theorem 2, the decompositions (16)

and (17) and the inverse of the Schur factorization of QðzÞ þ z. We find relative to

the decomposition H1 ¼ H1;1 � H1;2 and with XðzÞ :¼ Q12ðQ22 þ zÞ�1
the relation

�DðzÞ ¼
Q11ðzÞ þ z Q12

Q�
12 Q22 þ z

� ��1

¼ DðzÞ�1 DðzÞ�1XðzÞ
Xðz�Þ�DðzÞ�1 Xðz�Þ�DðzÞ�1XðzÞ þ ðQ22 þ zÞ�1

 !

:

Now we write H1;2 ¼ bH1;2 � H0
1;2 and use that, since the operator Xðz�Þ� ¼

ðQ22 þ zÞ�1Q�
12 maps H1;1 to bH1;2 � H1;2,

XðzÞH0
1;2 ¼ Q12ðQ22 þ zÞ�1

H0
1;2 ¼ f0g;

to obtain with respect to the decomposition H1 ¼ H1;1 � bH 1;2 � H0
1;2

�DðzÞ ¼
DðzÞ�1 DðzÞ�1XðzÞ 0

Xðz�Þ�DðzÞ�1 Xðz�Þ�DðzÞ�1XðzÞ þ ð bQ22 þ zÞ�1
0

0 0 ðQ0
22 þ zÞ�1

0

B
@

1

C
A:

A straightforward calculation shows that the left upper 2	 2 block matrix in this

3	 3 matrix is the block matrix representation of the operator

dz DðzÞ�1d�z� � RTðzÞ : HT ! HT

relative to the decomposition HT ¼ H1;1 � bH1;2. Hence relative to this decompo-

sition of HT we have

DðzÞ ¼
RTðzÞ � dz DðzÞ�1d�z� 0

0 � ðQ0
22 þ zÞ�1

 !

:

In a similar way we find that

LðzÞ ¼ Mðz�Þ� ¼ �Cz DðzÞ�1 d�z� 0
� �

;

and that SðzÞ ¼ PH0
ðA� zÞ�1jH0

is as in (19). The second equality in (24) follows

from the first one. As to the equality (25), it holds if and only if

span
n

dzDðzÞ�1C�
z�

h0

0

� �

: h0 2 H0; z 2 CnR
o

¼ HT :

Denote the space on the left-hand side by G. Then, by (23), G � HT . We prove the

reverse inclusion. For fixed z 2 CnR the range of C�
z� is dense in H1;1, and therefore

DðzÞ�1C�
z�H0 is also dense in H1;1. Since dz is continuous, we see that dzH1;1 belongs

to G for every z 2 CnR. By (23), HT � G. This proves the third equality.
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We prove the last statement using the identification of the space H 
 ðH0 � HTÞ
with the space H0

1;2. Let h 2 H0
1;2 and set g ¼ ð�Q0

22 � zÞh. Then g 2 H0
1;2. If we

apply both sides of the equality (24) to g then we obtain

ðA� zÞ�1g ¼ ð�Q0
22 � zÞ�1g ¼ h:

Hence h 2 domA and Ah ¼ �Q0
22h. h
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Appendix

In the following we recall Krein’s resolvent formula from Refs. [7] and [9] as

needed in this paper. Let S be a closed densely defined symmetric operator in a

Hilbert space H0 with equal defect numbers n ¼ n�ðSÞ ¼ nþðSÞ�1. Let A0 be a

self-adjoint extension of S in H0. Let G be a Hilbert space with dimG ¼ n. Fix a

point z0 2 qðA0Þ, a bijection Cz0 : G ! kerðS� � z0Þ and define the so called c-field

Cz :¼ ðI þ ðz� z0ÞðA0 � zÞ�1ÞCz0 ; z 2 qðA0Þ:

Then Cz is a bounded bijection from G onto kerðS� � zÞ and satisfies the relation

Cz ¼ ðI þ ðz� wÞðA0 � zÞ�1ÞCw; z; w 2 qðA0Þ:

Associate with Cz a so called Q-function Q(z). It is a bounded operator on G,

defined for z 2 qðA0Þ and it satisfies the relation

QðzÞ � QðwÞ�

z� w� ¼ C�
wCz; z; w 2 qðA0Þ:

This relation uniquely defines Q(z) up to an additive bounded self-adjoint operator

onG. Let A be a self-adjoint extension of S in a Hilbert space H � H0. The function

PH0
ðA� zÞ�1jH0

;

where PH0
is the projection in H onto H0, is defined for z 2 qðAÞ and is a bounded

operator on H0. It is called a generalized resolvent of S. Krein’s resolvent formula
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PH0
ðA� zÞ�1jH0

¼ ðA0 � zÞ�1 � CzðQðzÞ þ TðzÞÞ�1C�
z�

establishes a one-to-one correspondence between the generalized resolvents of S
corresponding to self-adjoint extensions A of S satisfying A \ A0 ¼ S and the op-

erator Nevanlinna functions T(z) on G. The latter are bounded operators on G,

defined for and holomorphic in z 2 CnR and satisfy the relations

Tðz�Þ ¼ TðzÞ�; TðzÞ � TðzÞ�

z� z�
� 0; z 2 CnR:

For example Q(z) is a Nevanlinna function with the property

QðzÞ � QðzÞ�

z� z�
[ 0; z 2 C n R:

If in Krein’s formula the assumption A \ A0 � S holds, then the operator Nevan-

linna functions T(z) have to be replaced by relation Nevanlinna functions, see Ref.

[9].
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