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Abstract
In this paper we present L2 and Lp versions of the geometric Hardy inequalities in 
half-spaces and convex domains on stratified (Lie) groups. As a consequence, we 
obtain the geometric uncertainty principles. We give examples of the obtained 
results for the Heisenberg and the Engel groups.

Keywords Stratified groups · Geometric Hardy inequality · Half-space · Convex 
domain

Mathematics Subject Classification 35A23 · 35H20

1 Introduction

In the Euclidean setting, a geometric Hardy inequality in a (Euclidean) convex 
domain Ω has the following form
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for u ∈ C∞
0
(Ω) with the sharp constant 1/4. There is a number of studies related to 

this subject, see e.g. [1–3, 5, 6, 13].
In the case of the Heisenberg group ℍ , Luan and Yang [12] obtained the following 

Hardy inequality on the half space ℍ+ ∶= {(x1, x2, x3) ∈ ℍ, | x3 > 0} for u ∈ C∞
0
(ℍ+)

Moreover, the geometric Lp-Hardy inequalities for the sub-Laplacian on the convex 
domain in the Heisenberg group was obtained by Larson [11] which also generalises 
the previous result in [12]. In this note by using the approach in [11] we obtain the 
geometric Hardy type inequalities on the half-spaces and the convex domains on 
general stratified groups, so our results extend known results of Abelian (Euclidean) 
and Heisenberg groups.

Thus, the main aim of this paper is to prove the geometric Hardy type inequalities 
on general stratified groups. As consequences, the geometric uncertainty principles are 
obtained. In Sect. 2 we present L2 and Lp versions of the subelliptic geometric Hardy 
type inequalities on the half-space. In Sect. 3, we show subelliptic L2 and Lp versions of 
the geometric Hardy type inequalities on the convex domains.

1.1  Preliminaries

Let 𝔾 = (ℝn, ◦, ��) be a stratified Lie group (or a homogeneous Carnot group), with 
dilation structure �� and Jacobian generators X1,… ,XN , so that N is the dimension of 
the first stratum of � . We denote by Q the homogeneous dimension of � . We refer to [9], 
or to the recent books [4, 8] for extensive discussions of stratified Lie groups and their 
properties.

The sub-Laplacian on � is given by

We also recall that the standard Lebesque measure dx on ℝn is the Haar measure for 
� (see, e.g. [8, Proposition 1.6.6]). Each left invariant vector field Xk has an explicit 
form and satisfies the divergence theorem, see e.g. [8] for the derivation of the exact 
formula: more precisely, we can formulate

with x = (x�, x(2),… , x(r)) , where r is the step of � and x(l) = (x
(l)

1
,… , x

(l)

Nl
) are the 

variables in the lth stratum, see also [8, Section 3.1.5] for a general presentation. The 
horizontal gradient is given by

(1.1)�
Ω

|∇u|2dx ≥ 1

4 �
Ω

|u|2
dist(x, �Ω)2

dx,

(1.2)�
ℍ+

|∇
ℍ
u|2dx ≥ �

ℍ+

|x1|2 + |x2|2

x2
3

|u|2dx.

(1.3)L =

N∑

k=1

X2

k
.

(1.4)Xk =
�

�x�
k

+

r∑

l=2

Nl∑

m=1

a
(l)

k,m

(
x�,… , x(l−1)

) �

�x(l)m
,
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and the horizontal divergence is defined by

We now recall the divergence formula in the form of [14, Proposition 3.1]. Let 
fk ∈ C1(Ω)

⋂
C(Ω), k = 1,… ,N . Then for each k = 1,… ,N, we have

Consequently, we also have

2  Hardy type inequalities on half‑space

2.1  L2‑Hardy inequality on the half‑space of �

In this section we present the geometric L2-Hardy inequality on the half-space of 
� . We define the half-space as follows

where � ∶= (�1,… , �r) with �j ∈ ℝ
Nj , j = 1,… , r, is the Riemannian outer unit nor-

mal to ��+ (see [10]) and d ∈ ℝ . The Euclidean distance to the boundary ��+ is 
denoted by dist(x, ��+) and defined as follows

Moreover, there is an angle function on ��+ which is defined by Garofalo in [10] as

Theorem 2.1 Let �+ be a half-space of a stratified group � . Then for all � ∈ ℝ we 
have

∇
�
∶= (X1,… ,XN),

div
�
v ∶= ∇

�
⋅ v.

(1.5)∫
Ω

Xkfkdz = ∫�Ω

fk⟨Xk, dz⟩.

(1.6)∫
Ω

N�

k=1

Xkfkdz = ∫�Ω

N�

k=1

fk⟨Xk, dz⟩.

�
+ ∶= {x ∈ � ∶ ⟨x, 𝜈⟩ > d},

(2.1)dist(x, ��+) = ⟨x, �⟩ − d.

(2.2)W(x) =

����
N�

i=1

⟨Xi(x), �⟩2.

(2.3)
�
�+

�∇
�
u�2dx ≥ C1(�)�

�+

W(x)2

dist(x, ��+)2
�u�2dx

+ � �
�+

N�

i=1

Xi⟨Xi(x), �⟩
dist(x, ��+)

�u�2dx,



1045Subelliptic geometric Hardy type inequalities...

for all u ∈ C∞
0
(�+) and where C1(�) ∶= −(�2 + �).

Remark 2.2 If � has step r = 2 , then for i = 1,… ,N we have the following left-
invariant vector fields

where as
m,i

 are the group constants (see, e.g. [7, Formula (2.14)] for the definition). 
Also we have x ∶= (x�, x��) with x� = (x�

1
,… , x�

N
) , x�� = (x��

1
,… , x��

N2

) , and also 
� ∶= (��, ���) with �� = (��

1
,… , ��

N
) and ��� = (���

1
,… , ���

N2

).

Corollary 2.3 Let �+ be a half-space of a stratified group � of step r = 2 . For all 
� ∈ ℝ and u ∈ C∞

0
(�+) we have

where C1(�) ∶= −(�2 + �) and K(a, �, �) ∶= �
∑N2

s=1

∑N

i=1
as
i,i
���
s
.

Proof of Theorem 2.1 To prove inequality (2.3) we use the method of factorization. 
Thus, for any W ∶= (W1,… ,WN), Wi ∈ C1(�+) real-valued, which will be chosen 
later, by a simple computation we have

(2.4)Xi =
�

�x�
i

+

N2∑

s=1

N∑

m=1

as
m,i
x�
m

�

�x��
s

,

(2.5)
�
�+

|∇
�
u|2dx ≥ C1(�)�

�+

W(x)2

dist(x, ��+)2
|u|2dx

+ K(a, �, �)�
�+

|u|2
dist(x, ��+)

dx,

0 ≤ �
�+

|∇
�
u + �Wu|2dx = �

�+

|(X1u,… ,XNu) + �(W1,… ,WN)u|2dx

= �
�+

|(X1u + �W1u,… ,XNu + �WNu)|2dx

= �
�+

N∑

i=1

|Xiu + �Wiu|2dx

= �
�+

N∑

i=1

[
|Xiu|2 + 2Re�WiuXiu + �2W2

i
|u|2

]
dx

= �
�+

N∑

i=1

[
|Xiu|2 + �WiXi|u|2 + �2W2

i
|u|2

]
dx

= �
�+

N∑

i=1

[
|Xiu|2 − �(XiWi)|u|2 + �2W2

i
|u|2

]
dx.
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From the above expression we get the inequality

Let us now take Wi in the form

where

and

Now Wi(x) can be written as

By a direct computation we have

where

Inserting the expression (2.8) in (2.6) we get

(2.6)�
�+

|∇
�
u|2dx ≥ �

�+

N∑

i=1

[(
�(XiWi) − �2W2

i

)
|u|2

]
dx.

(2.7)Wi(x) =
⟨Xi(x), �⟩

dist(x, ��+)
=

⟨Xi(x), �⟩
⟨x, �⟩ − d

,

Xi(x) = (

i

⏞⏞⏞
0,… , 1,… , 0, a

(2)

i,1
(x�),… , a

(r)

i,Nr
(x�, x(2),… , x(r−1))),

� = (�1, �2,… , �r), �j ∈ ℝ
Nj .

Wi(x) =
�1,i +

∑r

l=2

∑Nl

m=1
a
(l)

i,m

�
x�,… , x(l−1)

�
�l,m

∑r

l=1
x(l) ⋅ �l − d

.

(2.8)
XiWi(x) =

Xi⟨Xi(x), �⟩dist(x, ��+) − ⟨Xi(x), �⟩Xi

�
dist(x, ��+)

�

dist(x, ��+)2

=
Xi⟨Xi(x), �⟩
dist(x, ��+)

−
⟨Xi(x), �⟩2

dist(x, ��+)2
,

Xi(dist(x, ��
+)) = Xi

�
N�

k=1

x�
k
�1,k +

r�

l=2

Nl�

m=1

x(l)
m
�l,m − d

�

= �1,i +

r�

l=2

Nl�

m=1

a
(l)

i,m

�
x�,… , x(l−1)

�
�l,m

= ⟨Xi(x), �⟩.
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The proof of Theorem 2.1 is finished.   ◻

As consequences of Theorem 2.1, we have the geometric Hardy inequalities on 
the half-space without an angle function, which seems an interesting new result 
on �.

Corollary 2.4 Let �+ be a half-space of a stratified group � . Then we have

for all u ∈ C∞
0
(�+).

Proof of Corollary 2.4 Let x ∶= (x�, x(2),… , x(r)) ∈ � with x� = (x�
1
,… , x�

N
) and 

x(j) ∈ ℝ
Nj , j = 2,… , r . By taking � ∶= (��, 0,… , 0) with �� = (��

1
,… , ��

N
), we have 

that

we have

and

Inserting the above expressions in inequality (2.3) we arrive at

For optimisation we differentiate the right-hand side of integral with respect to � , 
then we have

which implies

�
�+

�∇
�
u�2dx ≥ − (�2 + �)�

�+

N�

i=1

⟨Xi(x), �⟩2

dist(x, ��+)2
�u�2dx

+ � �
�+

N�

i=1

Xi⟨Xi(x), �⟩
dist(x, ��+)

�u�2dx.

(2.9)�
�+

|∇
�
u|2dx ≥ 1

4 �
�+

|u|2
dist(x, ��+)2

dx,

Xi(x) = (

i

⏞⏞⏞
0,… , 1,… , 0, a

(2)

i,1
(x�),… , a

(r)

i,Nr
(x�, x(2),… , x(r−1)))

N�

i=1

⟨Xi(x), �⟩2 =
N�

i=1

(��
i
)2 = ����2 = 1,

Xi⟨Xi(x), �⟩ = Xi�
�
i
= 0.

�
�+

|∇
�
u|2dx ≥ −(�2 + �)�

�+

|u|2
dist(x, ��+)2

dx.

−2� − 1 = 0,
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We complete the proof.   ◻

We also have the geometric uncertainty principle on the half-space of �+.

Corollary 2.5 Let �+ be a half-space of a stratified group � . Then we have

for all u ∈ C∞
0
(�+).

Proof of Corollary 2.5 By using (2.9) and the Cauchy–Schwarz inequality we get

  ◻

To demonstrate our general result in a particular case, here we consider the 
Heisenberg group, which is a well-known example of step r = 2 (stratified) group.

Corollary 2.6 Let ℍ+ = {(x1, x2, x3) ∈ ℍ | x3 > 0} be a half-space of the Heisenberg 
group ℍ . Then for any u ∈ C∞

0
(ℍ+) we have

where ∇
ℍ
= {X1,X2}.

Proof of Corollary 2.6 Recall that the left-invariant vector fields on the Heisenberg 
group are generated by the basis

with the commutator

� = −
1

2
.

(2.10)
(

�
�+

|∇
�
u|2dx

) 1

2

(

�
�+

dist(x, ��+)2|u|2dx
) 1

2 ≥ 1

2 �
�+

|u|2dx

�
�+

|∇
�
u|2dx�

�+

dist(x, ��+)2|u|2dx

≥ 1

4 �
�+

1

dist(x, ��+)2
|u|2dx�

�+

dist(x, ��+)2|u|2dx

≥ 1

4

(

�
�+

|u|2dx
)2

.

(2.11)�
ℍ+

|∇
ℍ
u|2dx ≥ �

ℍ+

|x1|2 + |x2|2

x2
3

|u|2dx,

X1 =
�

�x1
+ 2x2

�

�x3
,

X2 =
�

�x2
− 2x1

�

�x3
,
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For x = (x1, x2, x3) , choosing � = (0, 0, 1) as the unit vector in the direction of x3 and 
taking d = 0 in inequality (2.3), we get

and

Therefore, with W(x) as in (2.2), we have

Substituting these into inequality (2.3) we arrive at

taking � = −
1

2
 .   ◻

Let us present an example for the step r = 3 (stratified) groups. A well-known strati-
fied group with step three is the Engel group, which can be denoted by � . Topologically 
� is ℝ4 with the group law of � , which is given by

where

The left-invariant vector fields of � are generated by the basis

[X1,X2] = −4
�

�x3
.

X1(x) = (1, 0, 2x2) and X2(x) = (0, 1,−2x1),

⟨X1(x), �⟩ = 2x2, and ⟨X2(x), �⟩ = −2x1,

X1⟨X1(x), �⟩ = 0, and X2⟨X2(x), �⟩ = 0.

W(x)2

dist(x, ��+)2
= 4

|x1|2 + |x2|2

x2
3

.

�
ℍ+

|∇
ℍ
u|2dx ≥ �

ℍ+

|x1|2 + |x2|2

x2
3

|u|2dx,

x ◦ y =
(
x1 + y1, x2 + y2, x3 + y3 + P1, x4 + y4 + P2

)
,

P1 =
1

2

(
x1y2 − x2y1

)
,

P2 =
1

2

(
x1y3 − x3y1

)
+

1

12

(
x2
1
y2 − x1y1(x2 + y2) + x2y

2

1

)
.

X1 =
�

�x1
−

x2

2

�

�x3
−

(x3
2

−
x1x2

12

)
�

�x4
,

X2 =
�

�x2
+

x1

2

�

�x3
+

x2
1

12

�

�x4
,

X3 =
�

�x3
+

x1

2

�

�x4
,

X4 =
�

�x4
.
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Corollary 2.7 Let �+ = {x ∶= (x1, x2, x3, x4) ∈ � � ⟨x, 𝜈⟩ > 0} be a half-space of the 
Engel group � . Then for all � ∈ ℝ and u ∈ C∞

0
(�+) we have

where ∇
�
= {X1,X2} , � ∶= (�1, �2, �3, �4) , and C1(�) = −(�2 + �).

Remark 2.8 If we take �4 = 0 in (2.12), then we have the following inequality on � , 
by taking � = −

1

2
,

Proof of Corollary 2.7 As we mentioned, the Engel group has the following basis of 
the left-invariant vector fields

with the following two (non-zero) commutators

Thus, we have

A direct calculation gives that

(2.12)
�
�+

�∇
�
u�2dx ≥ C1(�)�

�+

⟨X1(x), �⟩2 + ⟨X2(x), �⟩2

dist(x, ��+)2
�u�2dx

+
�

3 �
�+

x2�4
dist(x, ��+)

�u�2dx,

�
�+

�∇
�
u�2dx ≥ 1

4 �
�+

⟨X1(x), �⟩2 + ⟨X2(x), �⟩2

dist(x, ��+)2
�u�2dx.

X1 =
�

�x1
−

x2

2

�

�x3
−

(x3
2

−
x1x2

12

)
�

�x4
,

X2 =
�

�x2
+

x1

2

�

�x3
+

x2
1

12

�

�x4
,

X3 = [X1,X2] =
�

�x3
+

x1

2

�

�x4
,

X4 = [X1,X3] =
�

�x4
.

X1(x) =
(
1, 0,−

x2

2
,−

(x3
2

−
x1x2

12

))
,

X2(x) =

(
0, 1,

x1

2
,
x2
1

12

)
.

⟨X1(x), �⟩ = �1 −
x2

2
�3 −

�x3
2

−
x1x2

12

�
�4,

⟨X2(x), �⟩ = �2 +
x1

2
�3 +

x2
1

12
�4,

X1⟨X1(x), �⟩ =
x2

12
�4 +

x2

4
�4 =

x2�4
3

,

X2⟨X2(x), �⟩ = 0.
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Now substituting these into inequality (2.3) we obtain the desired result.   ◻

2.2  Lp‑Hardy inequality on �+

Here we construct an Lp version of the geometric Hardy inequality on the half-space 
of � as a generalisation of the previous theorem. We define the p-version of the 
angle function by Wp , which is given by the formula

Theorem 2.9 Let �+ be a half-space of a stratified group � . Then for all � ∈ ℝ we 
have

for all u ∈ C∞
0
(�+) , 1 < p < ∞ and C2(�, p) ∶= −(p − 1)(|�|

p

p−1 + �).

Proof of Theorem 2.9 We use the standard method such as the divergence theorem to 
obtain the inequality (2.14). For W ∈ C∞(�+) and f ∈ C1(�+) , a direct calculation 
shows that

Here in the last line Hölder’s inequality was applied. For p > 1 and q > 1 with 
1

p
+

1

q
= 1 recall Young’s inequality

Let us set that

(2.13)Wp(x) =

�
N�

i=1

�⟨Xi(x), �⟩�p
� 1

p

.

(2.14)

�
�+

N�

i=1

�Xiu�pdx ≥ C2(�, p)�
�+

Wp(x)
p

dist(x, ��+)p
�u�pdx

+ �(p − 1)�
�+

N�

i=1

� �⟨Xi(x), �⟩�
dist(x, ��+)

�p−2
Xi⟨Xi(x), �⟩
dist(x, ��+)

�u�pdx

(2.15)

�
�+

div
�
(fW)�u�pdx = −�

�+

fW ⋅ ∇
�
�u�pdx

= −p�
�+

f ⟨W,∇
�
u⟩�u�p−1dx

≤ p

�

�
�+

�⟨W,∇
�
u⟩�pdx

� 1

p
�

�
�+

�f �
p

p−1 �u�pdx
� p−1

p

.

ab ≤ ap

p
+

bq

q
, for a ≥ 0, b ≥ 0.
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By using Young’s inequality in (2.15) and rearranging the terms, we arrive at

We choose W ∶= Ii , which has the following form Ii = (

i

⏞⏞⏞
0,… , 1,… , 0) and set

Now we calculate

and

We also have

Inserting the above calculations in (2.16) and summing over i = 1,… ,N , we arrive 
at

We complete the proof of Theorem 2.9.   ◻

a ∶=

�

∫
�+

�⟨W,∇
�
u⟩�pdx

� 1

p

and b ∶=

�

∫
�+

�f �
p

p−1 �u�pdx
� p−1

p

.

(2.16)�
�+

�⟨W,∇
�
u⟩�pdx ≥ �

�+

�
div

�
(fW) − (p − 1)�f �

p

p−1

�
�u�pdx.

f = �
�⟨Xi(x), �⟩�p−1

dist(x, ��+)p−1
.

div
�
(Wf ) = (∇

�
⋅ Ii)f = Xif = �Xi

� �⟨Xi(x), �⟩�
dist(x, ��+)

�p−1

= �(p − 1)

� �⟨Xi(x), �⟩�
dist(x, ��+)

�p−2

Xi

� ⟨Xi(x), �⟩
dist(x, ��+)

�

= �(p − 1)

� �⟨Xi(x), �⟩�
dist(x, ��+)

�p−2�
Xi⟨Xi(x), �⟩
dist(x, ��+)

−
�⟨Xi(x), �⟩�2

dist(x, ��+)2

�

= �(p − 1)

�� �⟨Xi(x), �⟩�
dist(x, ��+)

�p−2�
Xi⟨Xi(x), �⟩
dist(x, ��+)

�
−

�⟨Xi(x), �⟩�p

dist(x, ��+)p

�
,

�f �
p

p−1 = ���
p

p−1
�⟨Xi(x), �⟩�p

dist(x, ��+)p
.

⟨W,∇
�
u⟩ = (

i

⏞⏞⏞
0,… , 1,… , 0) ⋅

�
X1u,… ,Xiu,… ,XNu

�T
= Xiu.

(2.17)

�
�+

N�

i=1

�Xiu�pdx ≥ −(p − 1)

�
���

p

p−1 + �
�
�
�+

N�

i=1

�⟨Xi(x), �⟩�p

dist(x, ��+)p
�u�pdx

+ �(p − 1)�
�+

N�

i=1

� �⟨Xi(x), �⟩�
dist(x, ��+)

�p−2
Xi⟨Xi(x), �⟩
dist(x, ��+)

�u�pdx.
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Remark 2.10 For p ≥ 2 , since

we have the following inequality

3  Hardy inequalities on a convex domain of �

In this section, we present the geometric Hardy inequalities on the convex 
domains in stratified groups. The convex domain is understood in the sense of the 
Euclidean space. Let Ω be a convex domain of a stratified group � and let �Ω be 
its boundary. Below for x ∈ Ω we denote by �(x) the unit normal for �Ω at a point 
x̂ ∈ 𝜕Ω such that dist(x,Ω) = dist(x, x̂) . For the half-plane, we have the distance 
from the boundary dist(x, �Ω) = ⟨x, �⟩ − d . As it is introduced in the previous sec-
tion we also have the generalised angle function

with W(x) ∶= W2(x).

3.1  Geometric L2‑Hardy inequality on a convex domain of �

Theorem 3.1 Let Ω be a convex domain of a stratified group � . Then for 𝛽 < 0 we 
have

for all u ∈ C∞
0
(Ω) , and C1(�) ∶= −(�2 + �).

(2.18)|∇
�
u|p =

(
N∑

i=1

|Xiu|2
) p

2

≥
N∑

i=1

(
|Xiu|2

) p

2 ,

(2.19)

�
�+

�∇
�
u�pdx ≥ C2(�, p)�

�+

Wp(x)
p

dist(x, ��+)p
�u�pdx

+ �(p − 1)�
�+

N�

i=1

� �⟨Xi(x), �⟩�
dist(x, ��+)

�p−2
Xi⟨Xi(x), �⟩
dist(x, ��+)

�u�pdx.

Wp(x) =

�
N�

i=1

�⟨Xi(x), �⟩�p
� 1

p

,

(3.1)
�
Ω

�∇
�
u�2dx ≥ C1(�)�

Ω

W(x)2

dist(x, �Ω)2
�u�2dx + � �

Ω

N�

i=1

Xi⟨Xi(x), �⟩
dist(x, �Ω)

�u�2dx
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Proof of Theorem 3.1 We follow the approach of Simon Larson [11] by proving ine-
quality (3.1) in the case when Ω is a convex polytope. We denote its facets by {Fj}j and 
unit normals of these facets by {�j}j , which are directed inward. Then Ω can be con-
structed by the union of the disjoint sets Ωj ∶= {x ∈ Ω ∶ dist(x, �Ω) = dist(x,Fj)} . 
Now we apply the same method as in the case of the half-space �+ for each element 
Ωj with one exception that not all the boundary values are zero when we use the par-
tial integration. As in the previous computation we have

where nj is the unit normal of �Ωj which is directed outward. Since Fj ⊂ 𝜕Ωj we 
have nj = −�j.

The boundary terms on �Ω vanish since u is compactly supported in Ω . So we 
only deal with the parts of �Ωj in Ω . Note that for every facet of �Ωj there exists 
some �Ωl which shares this facet. We denote by Γjl the common facet of �Ωj and 
�Ωl , with nk|Γjl

= −nl|Γjl
 . From the above expression we get the following inequality

Now we choose Wi in the form

and a direct computation shows that

Inserting the expression (3.3) into inequality (3.2) we get

0 ≤ �
Ωj

�∇
�
u + �Wu�2dx = �

Ωj

N�

i=1

�Xiu + �Wiu�2dx

= �
Ωj

N�

i=1

�
�Xiu�2 + 2Re�WiuXiu + �2W2

i
�u�2

�
dx

= �
Ωj

N�

i=1

�
�Xiu�2 + �WiXi�u�2 + �2W2

i
�u�2

�
dx

= �
Ωj

N�

i=1

�
�Xiu�2 − �(XiWi)�u�2 + �2W2

i
�u�2

�
dx

+ � ��Ωj

N�

i=1

Wi⟨Xi(x), nj(x)⟩�u�2dΓ�Ωj
(x),

(3.2)
�
Ωj

�∇
�
u�2dx ≥ �

Ωj

N�

i=1

��
�(XiWi) − �2W2

i

�
�u�2

�
dx

− � ��Ωj

N�

i=1

Wi⟨Xi(x), nj(x)⟩�u�2dΓ�Ωj
(x).

Wi(x) =
⟨Xi(x), �j⟩
dist(x, �Ωj)

=
⟨Xi(x), �j⟩
⟨x, �j⟩ − d

,

(3.3)XiWi(x) =
Xi⟨Xi(x), �j⟩
dist(x, �Ωj)

−
⟨Xi(x), �j⟩2

dist(x, �Ωj)
2
.
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Now we sum over all partition elements Ωj and let njl = nk|Γjl
 , i.e. the unit normal of 

Γjl pointing from Ωj into Ωl . Then we get

Here we used the fact that (by the definition) Γjl is a set with dist(x,Fj) = dist(x,Fl) . 
From

rearranging x ⋅ (�j − �l) − dj + dl = 0 we see that Γjl is a hyperplane with a nor-
mal �j − �l . Thus, �j − �l is parallel to njl and one only needs to check that 
(𝜈j − 𝜈l) ⋅ njl > 0 . Observe that njl points out and �j points into jth partition element, 
so �j ⋅ njl is non-negative. Similarly, we see that �l ⋅ njl is non-positive. This means 
we have (𝜈j − 𝜈l) ⋅ njl > 0 . In addition, it is easy to see that

which implies that

where �jl is the angle between �j and �l . So we obtain

(3.4)

�
Ωj

�∇
�
u�2dx ≥ −(�2 + �)�

Ωj

N�

i=1

⟨Xi(x), �j⟩2

dist(x, �Ωj)
2
�u�2dx

+ � �
Ωj

N�

i=1

Xi⟨Xi(x), �j⟩
dist(x, �Ωj)

�u�2dx − � �
Γjl

N�

i=1

⟨Xi(x), �j⟩⟨Xi(x), njl⟩
dist(x,Fj)

�u�2dΓjl.

�
Ω

�∇
�
u�2dx ≥ −(𝛽2 + 𝛽)�

Ω

N�

i=1

⟨Xi(x), 𝜈⟩2

dist(x, 𝜕Ω)2
�u�2dx

+ 𝛽 �
Ω

N�

i=1

Xi⟨Xi(x), 𝜈⟩
dist(x, 𝜕Ω)

�u�2dx

− 𝛽
�

j≠l �Γjl

N�

i=1

⟨Xi(x), 𝜈j⟩⟨Xi(x), njl⟩
dist(x,Fj)

�u�2dΓjl

= −(𝛽2 + 𝛽)�
Ω

N�

i=1

⟨Xi(x), 𝜈⟩2

dist(x, 𝜕Ω)2
�u�2dx

+ 𝛽 �
Ω

N�

i=1

Xi⟨Xi(x), 𝜈⟩
dist(x, 𝜕Ω)

�u�2dx

− 𝛽
�

j<l
�
Γjl

N�

i=1

⟨Xi(x), 𝜈j − 𝜈l⟩⟨Xi(x), njl⟩
dist(x,Fj)

�u�2dΓjl.

Γjl =
{
x ∶ x ⋅ �j − dj = x ⋅ �l − dl

}

|�j − �l|2 = (�j − �l) ⋅ (�j − �l) = 2 − 2�j ⋅ �l

= 2 − 2 cos(�jl),

(�j − �l) ⋅ njl =
√

2 − 2 cos(�jl),
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Here with 𝛽 < 0 and due to the boundary term signs we verify the inequality for the 
polytope convex domains.

Let us now consider the general case, that is, when Ω is an arbitrary convex 
domain. For each u ∈ C∞

0
(Ω) one can always choose an increasing sequence of con-

vex polytopes {Ωj}
∞
j=1

 such that u ∈ C∞
0
(Ω1),Ωj ⊂ Ω and Ωj → Ω as j → ∞ . Assume 

that �j(x) is the above map � (corresponding to Ωj ) we compute

Now we obtain the desired result when j → ∞ .   ◻

3.2  Lp‑Hardy’s inequality on a convex domain of �

In this section we give the Lp-version of the previous results.

Theorem 3.2 Let Ω be a convex domain of a stratified group � . Then for 𝛽 < 0 we 
have

�
Ω

�∇
�
u�2dx ≥ −(𝛽2 + 𝛽)�

Ω

N�

i=1

⟨Xi(x), 𝜈⟩2

dist(x, 𝜕Ω)2
�u�2dx

+ 𝛽 �
Ω

N�

i=1

Xi⟨Xi(x), 𝜈⟩
dist(x, 𝜕Ω)

�u�2dx

− 𝛽
�

j<l

N�

i=1
�
Γjl

�
1 − cos(𝛼jl)

⟨Xi(x), njl⟩2

dist(x,Fj)
�u�2dΓjl.

�
Ω

�∇
�
u�2dx = �

Ωj

�∇
�
u�2dx

≥ −(�2 + �)�
Ωj

N�

i=1

⟨Xi(x), �j⟩2

dist(x, �Ωj)
2
�u�2dx

+ � �
Ωj

N�

i=1

Xi⟨Xi(x), �j⟩
dist(x, �Ωj)

�u�2dx

= −(�2 + �)�
Ω

N�

i=1

⟨Xi(x), �j⟩2

dist(x, �Ωj)
2
�u�2dx

+ � �
Ω

N�

i=1

Xi⟨Xi(x), �j⟩
dist(x, �Ωj)

�u�2dx

≥ −(�2 + �)�
Ω

N�

i=1

⟨Xi(x), �j⟩2

dist(x, �Ω)2
�u�2dx

+ � �
Ω

N�

i=1

Xi⟨Xi(x), �j⟩
dist(x, �Ω)

�u�2dx
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for all u ∈ C∞
0
(Ω) , and C2(�, p) ∶= −(p − 1)(|�|

p

p−1 + �).

Proof of Theorem 3.2 Let us assume that Ω is the convex polytope as in the p = 2 
case. Thus, we consider the partition Ωj as the previous case. For f ∈ C1(Ωj) and 
W ∈ C∞(Ωj) , a simple calculation shows that

In the last line Hölder’s inequality was applied. Recall again Young’s inequality for 
p > 1 , q > 1 and 1

p
+

1

q
= 1 , we have ab ≤ ap

p
+

bq

q
, for a ≥ 0, b ≥ 0. We now take 

q ∶=
p

p−1
 and

By using Young’s inequality in (3.6) and rearranging the terms, we arrive at

We choose W ∶= Ii as a unit vector of the ith component and let

As before a direct calculation shows that

(3.5)

�
Ω

N�

i=1

�Xiu�pdx ≥ C2(�, p)�
Ω

Wp(x)
p

dist(x, �Ω)p
�u�pdx

+ �(p − 1)�
Ω

N�

i=1

��⟨Xi(x), �⟩�
dist(x, �Ω)

�p−2�
Xi⟨Xi(x), �⟩
dist(x, �Ω)

�
�u�pdx,

(3.6)

�
Ωj

div
�
(fW)�u�pdx = −p�

Ωj

f ⟨W,∇
�
u⟩�u�p−1dx + ��Ωj

f ⟨W, nj(x)⟩�u�pdΓ�Ωj
(x)

≤ p

�

�
Ω

�⟨W,∇
�
u⟩�pdx

� 1

p

�

�
Ωj

�f �
p

p−1 �u�pdx
� p−1

p

+ ��Ωj

f ⟨W, nj(x)⟩�u�pdΓ�Ωj
(x).

a ∶=

�

∫
Ω

�⟨W,∇
�
u⟩�pdx

� 1

p

and b ∶=

�

∫
Ω

�f �
p

p−1 �u�pdx
� p−1

p

.

(3.7)
�
Ωj

�⟨W,∇
�
u⟩�pdx ≥ �

Ω

�
div

�
(fW) − (p − 1)�f �

p

p−1

�
�u�pdx

− ��Ωj

f ⟨W, nj(x)⟩�u�pdΓ�Ωj
(x).

f = �
�⟨Xi(x), �j⟩�p−1

dist(x,Fj)
p−1

.
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and

We also have

Inserting the above calculations into (3.7) and summing over i = 1,N , we arrive at

Now summing up over Ωj , and with the interior boundary terms we have

div
�
(Wf ) = Xif = �Xi

��⟨Xi(x), �j⟩�
dist(x, �Fj)

�p−1

= �(p − 1)

��⟨Xi(x), �j⟩�
dist(x, �Fj)

�p−2

Xi

� ⟨Xi(x), �j⟩
dist(x, �Fj)

�

= �(p − 1)

��⟨Xi(x), �j⟩�
dist(x, �Fj)

�p−2
�
Xi⟨Xi(x), �j⟩
dist(x, �Fj)

−
�⟨Xi(x), �j⟩�2

dist(x, �Fj)
2

�

= �(p − 1)

���⟨Xi(x), �j⟩�
dist(x, �Fj)

�p−2�
Xi⟨Xi(x), �j⟩
dist(x, �Fj)

�
−

�⟨Xi(x), �j⟩�p

dist(x, �Fj)
p

�
,

�f �
p

p−1 = ���
p

p−1

�⟨Xi(x), �j⟩�p

dist(x,Fj)
p
.

⟨W,∇
�
u⟩ =

i�
⏞⏞⏞
0,… , 1,… , 0

�
⋅

�
X1u,… ,Xiu,… ,XNu

�T
= Xiu.

(3.8)

�
Ωj

N�

i=1

�Xiu�pdx ≥ −(p − 1)(���
p

p−1 + �)�
Ωj

N�

i=1

�⟨Xi(x), �j⟩�p

dist(x, �Fj)
p
�u�pdx

+ �(p − 1)�
Ωj

N�

i=1

��⟨Xi(x), �j⟩�
dist(x, �Fj)

�p−2�
Xi⟨Xi(x), �j⟩
dist(x, �Fj)

�
�u�pdx

− � ��Ωj

N�

i=1

��⟨Xi(x), �j⟩�
dist(x,Fj)

�p−1

⟨Xi(x), nj(x)⟩�u�pdΓ�Ωj
(x).
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As in the earlier case if the boundary term is positive we can discard it, so we want 
to show that

Noting the fact that njl =
�j−�l√

2−2 cos(�jl)
 and dist(x,Fj) = dist(x,Fl) on Γjl , we arrive at

Here we have used the equality (a − b)(ap−1 − bp−1) = ap − ap−1b − bp−1a + bp−1 
with a = �⟨Xi(x), �j⟩� and b = �⟨Xi(x), �l⟩� . From the above expression we note that 
the boundary term in Ω is positive and 𝛽 < 0 . By discarding the boundary term we 
complete the proof.   ◻

Remark 3.3 For p ≥ 2 , since

�
Ω

N�

i=1

�Xiu�pdx ≥ −(p − 1)(�𝛽�
p

p−1 + 𝛽)

N�

i=1
�
Ω

�⟨Xi(x), 𝜈⟩�p

dist(x, 𝜕Ω)p
�u�pdx

+ 𝛽(p − 1)

N�

i=1
�
Ω

��⟨Xi(x), 𝜈⟩�
dist(x, 𝜕Ω)

�p−2�
Xi⟨Xi(x), 𝜈⟩
dist(x, 𝜕Ω)

�
�u�pdx

− 𝛽
�

j≠l

N�

i=1
�
Γjl

��⟨Xi(x), 𝜈j⟩�
dist(x,Fj)

�p−1

⟨Xi(x), njl(x)⟩�u�pdΓjl

= −(p − 1)(�𝛽�
p

p−1 + 𝛽)

N�

i=1
�
Ω

�⟨Xi(x), 𝜈⟩�p

dist(x, 𝜕Ω)p
�u�pdx

+ 𝛽(p − 1)

N�

i=1
�
Ω

��⟨Xi(x), 𝜈⟩�
dist(x, 𝜕Ω)

�p−2�
Xi⟨Xi(x), 𝜈⟩
dist(x, 𝜕Ω)

�
�u�pdx

− 𝛽
�

j<l

N�

i=1
�
Γjl

���⟨Xi(x), 𝜈j⟩�
dist(x,Fj)

�p−1

⟨Xi(x), njl(x)⟩

−

��⟨Xi(x), 𝜈l⟩�
dist(x,Fl)

�p−1

⟨Xi(x), njl(x)⟩
�
�u�pdΓjl

���⟨Xi(x), �j⟩�
dist(x,Fj)

�p−1

⟨Xi(x), njl(x)⟩ −
��⟨Xi(x), �l⟩�

dist(x,Fl)

�p−1

⟨Xi(x), njl(x)⟩
�
≥ 0.

1

2 − 2 cos(�jl)

���⟨Xi(x), �j⟩�
dist(x,Fj)

�p−1

⟨Xi(x), �j − �l⟩ −
��⟨Xi(x), �l⟩�

dist(x,Fl)

�p−1

⟨Xi(x), �j − �l⟩
�

=
�⟨Xi(x), �j⟩�p − �⟨Xi(x), �j⟩�p−1⟨Xi(x), �l⟩ − �⟨Xi(x), �l⟩�p−1⟨Xi(x), �j⟩ + �⟨Xi(x), �l⟩�p

(2 − 2 cos(�jl))dist(x,Fj)
p−1

=

�
�⟨Xi(x), �j⟩� − �⟨Xi(x), �l⟩�

��
�⟨Xi(x), �j⟩�p−1 − �⟨Xi(x), �l⟩�p−1

�

(2 − 2 cos(�jl))dist(x,Fj)
p−1

≥ 0.
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we have the following inequality
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2
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(
|Xiu|2

) p

2 ,

(3.10)

�
Ω

�∇
�
u�pdx ≥ C2(�, p)�

Ω

Wp(x)
p

dist(x, �Ω)p
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dist(x, �Ω)

�
�u�pdx.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1061Subelliptic geometric Hardy type inequalities...

 11. Larson, S.: Geometric Hardy inequalities for the sub-elliptic Laplacian on convex domain in the 
Heisenberg group. Bull. Math. Sci. 6, 335–352 (2016)

 12. Luan, J.W., Yang, Q.H.: A Hardy type inequality in the half-space on ${{\mathbb{R}}}^n$ and 
Heisenberg group. J. Math. Anal. Appl. 347, 645–651 (2008)

 13. Opic, B., Kufner, A.: Hardy-Type Inequalities. Pitman Research Notes in Mathematics Series, vol. 
219 (1990)

 14. Ruzhansky, M., Suragan, D.: Layer potentials, Kac’s problem, and refined Hardy inequality on 
homogeneous Carnot groups. Adv. Math. 308, 483–528 (2017)


	Subelliptic geometric Hardy type inequalities on half-spaces and convex domains
	Abstract
	1 Introduction
	1.1 Preliminaries

	2 Hardy type inequalities on half-space
	2.1 -Hardy inequality on the half-space of 
	2.2 -Hardy inequality on 

	3 Hardy inequalities on a convex domain of 
	3.1 Geometric -Hardy inequality on a convex domain of 
	3.2 -Hardy’s inequality on a convex domain of 

	Acknowledgements 
	References




