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Abstract
Property (UW�), introduced in Berkani andKachad (Bull KoreanMath Soc 49:1027–
1040, 2015) and studied more recently in Aiena and Kachad (Acta Sci Math (Szeged)
84:555–571, 2018) may be thought as a variant of Browder’s theorem, or Weyl’s
theorem, for bounded linear operators acting on Banach spaces. In this article we
study the stability of this property under some commuting perturbations, as quasi-
nilpotent perturbation and, more in general, under Riesz commuting perturbations.
We also study the transmission of property (UW�) from T to f (T ), where f is an
analytic function defined on a neighborhood of the spectrum of T . Furthermore, it is
shown that this property is transferred from aDrazin invertible operator T to its Drazin
inverse S.

Keywords Property (UW�) · SVEP

Mathematics Subject Classification 47A53 · 47A10; 47A11

1 Introduction and preliminaries

Let T ∈ L(X) be a bounded linear operator on an infinite-dimensional complex
Banach spaces X , and denote by α(T ) and β(T ) the dimension of the kernel N (T )

and the codimension of the range R(T ) = T (X), respectively. Let �+(X) := {T ∈
L(X : α(T ) < ∞, T (X) is closed} be the class of all upper semi-Fredholm operators
and �−(X) := {T ∈ L(X) : β(T ) < ∞} the class of all lower semi-Fredholm
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operators. If T ∈ �+−(X) := �+(X)∪�−(X), the index of T is defined by ind(T ) :=
α(T )−β(T ). If�(X) := �+(X)∩�−(X), denotes the set of all Fredholm operators,
the class of Weyl operators is defined by

W (X) = {T ∈ �(X) : ind(T ) = 0},

the class of upper semi-Weyl operators is defined by

W+(X) = {T ∈ �+(X) : ind(T ) � 0},

while the class lower semi-Weyl operators is defined by

W−(X) = {T ∈ �−(X) : ind(T ) � 0}.

Evidently, W (X) = W−(X) ∩ W+(X). If T ∗ denotes the dual of T ∈ L(X), it is well
known that T ∈ W+(X) (respectively, T ∈ W−(X)) if and only if T ∗ ∈ W−(X∗)
(respectively, T ∗ ∈ W+(X∗)). The classes of operators above defined generate the
following spectra: the Weyl spectrum, defined by

σw(T ) := {λ ∈ C : λI − T /∈ W (X)},

the upper semi-Weyl spectrum, defined by

σuw(T ) := {λ ∈ C : λI − T /∈ W+(X)},

and the lower semi-Weyl spectrum, defined by

σlw(T ) := {λ ∈ C : λI − T /∈ W−(X)}.

Two classical quantities in operator theory are defined as follows. The ascent of
an operator T , is the smallest non-negative integer p := p(T ) such that N (T p) =
N (T p+1). If such integer does not exist we put p(T ) = ∞. Analogously, the descent
of T , is the smallest non-negative integer q := q(T ) such that R(T q) = R(T q+1),

and if such integer q does not exist we put q(T ) = ∞. It is well known that if
p(T ) and q(T ) are both finite then p(T ) = q(T ), see [1, Theorem 1.20]. Moreover,
0 < p(λI − T ) = q(λI − T ) < ∞ exactly when λ is a pole of the resolvent of T ,
see [14, Proposition 50.2]. The class of all Browder operators is defined

B(X) := {T ∈ �(X) : p(T ) = q(T ) < ∞, },

while the class of all upper semi-Browder operators is defined

B+(X) := {T ∈ �+(X) : p(T ) < ∞, }.

Obviously, B(X) ⊆ W (X) and B+(X) ⊆ W+(X), see [1, Chapter 3]. If σb(T )

and σub(T ) denote the Browder spectrum and the upper semi-Browder spectrum,
respectively, then σw(T ) ⊆ σb(T ) and σuw(T ) ⊆ σub(T ).
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In [6,8,10] Berkani et al. generalize semi-Fredholm operators in the following way:
for every T ∈ L(X) and a nonnegative integer n let us denote by T[n] the restriction
of T to T n(X) viewed as a map from the space T n(X) into itself (we set T= T[0]).
T ∈ L(X) is said to be semi B-Fredholm,(respectively, B-Fredholm, upper semi B-
Fredholm, lower semi B-Fredholm) if, for some integer n, the range T n(X) is closed
and T[n] is a semi-Fredholm operator (resp. Fredholm, upper semi-Fredholm, lower
semi-Fredholm). If T[n] is a semi-Fredholm operator, then T[n] is a semi-Fredholm
operator for all m � n ( [10]), with the same index of T[n]. This enables one to define
the index of a semi-B-Fredholm as ind(T ) = ind(T[n]). Analogously, a bounded
operator T ∈ L(X) is said to be B-Weyl (respectively, upper semi B-Weyl, lower
semi B-Weyl) if for some integer n � 0 the range T n(X) is closed and T[n] is Weyl
(respectively, upper semi-Weyl, lower semi-Weyl ). Analogous definitions are given
for semi B-Browder operators. The B-Weyl spectrum is defined as

σbw(T ) := {λ ∈ C : λI − T is not B − Weyl},

and analogously, the upper semi B-Weyl spectrum of T is defined by

σubw(T ) := {λ ∈ C : λI − T is not upper semi B − Weyl}.

The concept of Drazin invertibility has been introduced in a more abstract setting than
operator theory. In the case the Banach algebra L(X), an operator T ∈ L(X) is said
to be Drazin if p(T ) = q(T ) < ∞. Evidently, if T is Drazin invertible then either
λI − T is invertible or λ is a pole of the resolvent of T . An operator T ∈ L(X) is said
to be left Drazin invertible if p = p(T ) < ∞ and R(T p+1) is closed. The Drazin
spectrum is then defined as

σd(T ) := {λ ∈ C : λI − T is not Drazin invertible},

while the left Drazin spectrum is defined as

σld(T ) := {λ ∈ C : λI − T is not left Drazin invertible}.

In the sequel we denote by σa(T ) the approximate point spectrum, defined by σa(T ) =
{λ ∈ C : λI − T is not bounded below}, where an operator is said to be bounded
below if it is injective and has closed range. The classical surjective spectrum of T is
denoted by σs(T ).

The following property has a fundamental role in local spectral theory. An operator
T ∈ L(X) is said to have the single valued extension property at λ0 ∈ C (abbreviated
SVEP at λ0), if for every open neighborhood U of λ0, the only analytic function
f : U −→ X which satisfies the equation (T − λI ) f (λ) = 0 for all λ ∈ U is the
function f ≡ 0. An operator T ∈ L(X) is said to have the SVEP if T has this property
at every λ ∈ C. (See [1] and [15] for more details about this concept). Evidently, an
operator T ∈ L(X) has SVEP at every point of the resolvent ρ(T ) = C \ σ(T ), and
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both T and T ∗ have SVEP at the isolated points of the spectrum. Note that

p(λI − T ) < ∞ 
⇒ T has SVEP at λ, (1)

and dually,

q(λI − T ) < ∞ 
⇒ T ∗ has SVEP at λ, (2)

see [1, Chapter 2]. Furthermore, if acc F denote the set of all cluster points of F ⊆ C,
we have:

λ /∈ acc σa(T ) 
⇒ T has SVEP at λ, (3)

and dually,

λ /∈ acc σs(T ) 
⇒ T ∗ has SVEP at λ, (4)

see [1, Chapter 2].

Remark 1.1 In [1, Chapter 2] it is shown that the implications above are equivalences
if λI − T semi B-Fredholm, in particular semi-Fredholm.

2 Property (UW5)

Denote by p00(T ) := σ(T ) \ σb(T ) the set of all poles of T having finite rank, by
�(T ) = σ(T ) \ σd(T ) the set of all poles of T , and by pa00(T ) = σa(T ) \ σub(T ) the
set of all left poles of T having finite rank. It is easy to check that p00(T ) ⊆ pa00(T ) for
all T ∈ L(X), and obviously every point of p00(T ) is an isolated point of σ(T ), and
hence an isolated point of σa(T ) (since every isolated point of the spectrum belongs
to σa(T )). Set

	(T ) := σ(T ) \ σw(T ) and 	a(T ) := σa(T ) \ σuw(T ).

Let �a(T ) := σa(T ) \ σld(T ) be the set of all left poles of the resolvent of T .
Obviously, p00(T ) ⊆ 	a(T ), since each point of p00(T ) is an eigenvalue of T and
every Browder operator is upper semi-Weyl.

Hereafter, the symbol
⊔

stands for disjoint union.

Definition 2.1 A bounded operator T ∈ L(X) is said to satisfy:

(i) Browder’s theorem if σw(T ) = σb(T ) or equivalently σ(T ) \ σw(T ) = p00(T ),
([13]).

(ii) a-Browder’s theorem if σuw(T ) = σub(T ) or equivalently 	a(T ) = pa00(T ),
([13], [1, Chapter 5]).

(iii) Property (UW�) if 	a(T ) = �(T ), or equivalently σa(T ) = σuw(T )
⊔

�(T ),
( [2,9]).
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Remark 2.2 a-Browder’s theorementailsBrowder’s theorem.Furthermore,a-Browder’s
theorem is equivalent to generalized a-Browder’s theorem, i.e., a-Browder’s theorem
is equivalent to saying that the equality σubw(T ) = σld(T ) holds, where σubw(T )

denotes the upper semi B-Weyl spectrum, see [5].

Property (UW�) may be characterized as follows ([2]):

Theorem 2.3 Let T ∈ L(X). Then the following assertions are equivalent:

(i) T satisfies property (UW�);
(ii) T satisfies a-Browder’s theorem, and pa00(T ) = �(T );
(iii) T ∗ has SVEP at every λ ∈ 	a(T ) and σb(T ) = σd(T ).

Property (UW�) entails some relevant equalities between parts of the spectrum:

Theorem 2.4 Suppose that T satisfies property (UW�). Then we have:

(i) σw(T ) \ σuw(T ) = σ(T ) \ σa(T ).
(ii) σuw(T ) \ σubw = �a(T ) \ �(T ).
(iii) σ(T ) \ σw(T ) = �(T ).

Proof Ifλ ∈ σw(T )\σuw(T ) thenα(λI−T ) < ∞ and (λI−T )(X) is closed. Suppose
that 0 < α(λI − T ). Then λ ∈ σa(T ) \ σuw(T ) = �(T ). Hence, p(λI − T ) =
q(λI − T ) < ∞ and consequently, by [1, Theorem 1.22], λI − T is Browder, in
particular λ /∈ σw(T ), a contradiction. Hence α(λI − T ) = 0, so λ /∈ σa(T ), and
consequently λ ∈ σ(T ) \ σa(T ).

Conversely, if λ ∈ σ(T )\σa(T ) then λ /∈ σuw(T ), since σuw(T ) ⊆ σa(T ). Suppose
that λ /∈ σw(T ). Then α(λI − T ) = β(λI − T ), and since α(λI − T ) = 0 we have
λ /∈ σ(T ), a contradiction. Hence λ ∈ σw(T ) \ σuw(T ).

(ii) Suppose that T has property (UW�). Then a-Browder’s theorem holds for T ,
or equivalently generalized a-Browder’s theorem holds for T . If λ ∈ σuw(T ) \ σubw
then λ /∈ σubw(T ) = σld(T ), and λ ∈ σa(T ), since σuw(T ) ⊆ σa(T ). Hence, λ ∈
�a(T ). Since a-Browder’s theorem holds for T we then have λ ∈ σub(T ), hence
λ /∈ σa(T ) \ σub(T ) = πa

00, and hence λ /∈ �(T ), by Theorem 2.3.
Conversely, suppose that λ ∈ �a(T ) \ �(T ). Then λ ∈ �a(T ) and hence λ /∈

σld(T ) = σubw(T ), since generalized a-Browder’s theorem holds for T . On the other
hand, λ /∈ �(T ) = pa00(T ), by Theorem 2.3, and since λ ∈ σa(T ), then λ ∈ σub(T ) =
σuw(T ).

(iii) Write σ(T ) = σ(T ) \ σa(T )
⊔

σa(T ). Since σa(T ) = σuw(T )
⊔

�(T ), by
part (i) we then have

σ(T ) = σw(T ) \ σuw(T )
⊔

σa(T )

= σw(T ) \ σuw(T )
⊔

σuw(T )
⊔

�(T ) = σw(T )
⊔

�(T ),

so σ(T ) \ σw(T ) = �(T ). �
The following variant of Weyl’s theorem and Browder’s theorem has been intro-

duced recently by Zariouh [19]. An operator T ∈ L(X) is said to satisfies property
(Z�a ) if 	(T ) := σ(T ) \ σw(T ) coincides with the set �a(T ) of left poles of T .
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The next theorem improves a result of [2], which was proved by assuming that T ∗
has SVEP.

Theorem 2.5 If T ∈ L(X) satisfies property (UW�), then T satisfies property (Z�a).

Proof Suppose that T satisfies property (UW�), i.e. σa(T ) = σuw(T )
⊔

�(T ). By
part (i) and part (iii) of Theorem 2.4 we have

σ(T ) = σw(T )
⊔

�(T ) = (σw(T ) \ σuw(T ))
⊔

σuw(T )
⊔

�(T )

= (σ (T ) \ σa(T ))
⊔

σuw(T )
⊔

�(T )

= (σ (T ) \ σa(T ))
⊔

[(σuw(T ) \ σubw(T ))
⊔

σubw(T )]
⊔

�(T ).

From part (ii) of Theorem 2.4 we then obtain

σ(T ) = (σw(T ) \ σuw(T ))
⊔

(�a(T ) \ �(T ))
⊔

σubw(T )
⊔

�(T )

= (σw(T ) \ σuw(T ))
⊔

�a(T )
⊔

σubw(T ).

Since σubw(T ) ⊆ σuw(T ) then

σ(T ) ⊆ (σw(T ) \ σuw(T ))
⊔

�a(T )
⊔

σuw(T ) = σw(T )
⊔

�a(T ).

Trivially, σw(T )
⊔

�a(T ) ⊆ σ(T ) Consequently, σ(T ) = σw(T )
⊔

�a(T ) and
hence property (Z�a) holds for T . �

The converse of Theorem2.5 holds if T ∗ has SVEP, see [2]. The precise relationship
between property (UW�) and property (Z�a) is described by the following theorem.

Theorem 2.6 Let T ∈ L(X). Then the following statements are equivalent:

(i) T satisfies property (UW�);
(ii) T satisfies property (Z�a) and σw(T ) \ σuw(T ) = σ(T ) \ σa(T );
(iii) T satisfies property (Z�a) and 	a(T ) ∩ σw(T ) = ∅.
Proof (i) ⇐⇒ (ii) Suppose that T satisfies property (UW�). Then T has property
(Z�a) and, by Theorem 2.4, we have σw(T ) \ σuw(T ) = σ(T ) \ σa(T ). Conversely,
if T has property (Z�a) and σw(T ) \ σuw(T ) = σ(T ) \ σa(T ), we have σ(T ) =
σw(T )

⊔
�a(T ). Our assumption σw(T ) \ σuw(T ) = σ(T ) \ σa(T ) entails that

σ(T ) = [σ(T ) \ σa(T )]⊔[σuw(T )
⊔

�a(T )], hence σa(T ) = σuw(T )
⊔

�a(T ).

From [19, Lemma 2.9] we have that �a(T ) = �(T ), so σa(T ) = σuw(T )
⊔

�(T ),

hence T satisfies property (UW�).

(i)⇐⇒ (iii) Suppose that T satisfies property (UW�). Then T has property (Z�a).
Let λ ∈ 	a(T ) = �(T ). Then λI − T ∈ W+(X) and since p(λI − T ) = q(λI −
T ) < ∞ it follows, from [1, Theorem 1.22] that λI − T ∈ B(X) and in particular
λI − T ∈ W (X), so λ /∈ σw(T ).

Conversely, suppose that T satisfies property (Z�a) and 	a(T ) ∩ σw(T ) = ∅. If
λ ∈ 	a(T ) then λ /∈ σw(T ) and hence λ /∈ σuw(T ). This implies that λ ∈ 	a(T ) =
�a(T ) = �(T ), always by [19, Lemma 2.9]. Therefore T has property (UW�). �
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3 Property (UW5) and perturbations

An operator R ∈ L(X) is called a Riesz operator if λI − R is Fredholm for all nonzero
λ ∈ C. Evidently, quasi-nilpotent operators and compact operators areRiesz operators.
Also every operator K for which, for some n ∈ N, Kn is finite-dimensional is a Riesz
operator. Indeed, Kn is a Riesz operator and hence K is a Riesz operator, see [14].
The spectrum of a Riesz operator is either a finite set or a sequence of eigenvalues
which clusters at 0. It is known that if T ∈ L(X) then σb(T + R) = σb(T ) for every
Riesz operator R commuting with T , see [1, Chapter 2], and σuw(T + R) = σuw(T )

see [17].

• Every Riesz operator T having infinite spectrum has property (UW�). To see this,
observe first that σa(T ) = σ(T ), since T ∗ has SVEP. Further, σuw(T ) = σd(T ) =
{0}, so 	a(T ) = �(T ).

• An operator T ∈ L(X) is said to be algebraic if there exists a nontrivial
complex polynomial h such that h(T )=0. Examples of algebraic operators are
idempotent operators, nilpotent operators and every operator K such that Kn

is finite-dimensional for some n ∈ N.If T is algebraic then σ(T ) is a finite
set of poles [1, Chapter 3], say {λ1, . . . , λn}. Therefore, σd(T ) = ∅ and hence
�(T ) = {λ1, . . . , λn}. Moreover, σa(T ) = σ(T ), since a pole is always an eigen-
value and σuw(T ) �= ∅ for every operator T ∈ L(X). Therefore, for an algebraic
operator we have 	a(T ) �= �(T ), i.e., for every algebraic operator property
(UW�) fails.

• A Riesz operator which has finite spectrum may fail property (UW�). Indeed,
every finite-dimensional operator K does not satisfy this property, since K is
algebraic.

• If Q be a quasi-nilpotent operator, then

Q has property (UW�) ⇐⇒ 0 /∈ σd(Q).

Indeed, if 0 is not a pole then {0} = σ(Q) = σuw(Q) = σa(Q) = σd(Q), since
both σuw(Q) and σa(Q) are non-empty. Therefore 	a(Q) = �(Q) = ∅, so Q
has property (UW�). Conversely, if Q has property (UW�) then, we have ∅ =
σa(Q)\σuw(Q) = �(T ) and since σ(Q) = {0} it then follows that σd(Q) = {0}.

• It should be noted that if Kn is finite-dimensional for some n ∈ N and KT = T K
then

σd(T ) = σd(T + K ),

see [21], or [1, Chapter 3] for an alternative proof. Moreover, if acc F denotes the
set of all cluster points of F ⊆ C, then

acc σ(T ) = acc σ(T + K ) and acc σa(T ) = acc σa(T + K )

see [20].
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Theorem 3.1 Suppose that T ∈ L(X) has property (UW�) and T ∗ has SVEP. If
K ∈ L(X) commutes with T and Kn is finite-dimensional for some n ∈ N, then
T + K has property (UW�).

Proof Since T has property (UW�), by Theorem 2.3 we have σb(T ) = σd(T ). The
spectrumσb(T ) is invariant underRiesz commuting perturbations, and being K aRiesz
operator, we then have σb(T + K ) = σb(T ), while the equality σd(T + K ) = σd(T ),
has been already observed. Therefore, σb(T + K ) = σd(T + K ) . Now, K is a Riesz
operator and hence also K ∗ is a Riesz operator. Consequently, T ∗ + K ∗ has SVEP,
see [1, Chapter 2]. By Theorem 2.3 it then follows that T + K has property (UW�).

�
Corollary 3.2 Suppose that Q ∈ L(X) is a quasi-nilpotent such that α(Q) < ∞. If
K ∈ L(X) commutes with Q and Kn is finite-dimensional for some n ∈ N, then
Q + K satisfies property (UW�).

Proof If α(Q) < ∞ then 0 ∈ σd(Q), otherwise, by [1, Theorem 1.22], we would
have 0 /∈ σb(Q), hence σb(Q) = ∅, and this is impossible. Therefore, 0 is not a pole
of the resolvent of T and, as noted before, Q has property (UW�). Theorem 3.1 then
applies, since Q∗ has SVEP. �

Property (UW�) is also transmitted to T + K if we assume that the approximate-
point spectrum σa(T ) has no isolated points:

Theorem 3.3 Suppose that T , K ∈ L(X) commute, and Kn is finite-dimensional for
some n ∈ N. If iso σa(T ) = ∅ and T has property (UW�), then T + K has property
(UW�).

Proof Observe that if iso σa(T ) = ∅ then iso σ(T ) = ∅, since iso σ(T ) ⊆ iso σa(T ).
Therefore,

σ(T ) = iso σ(T ) ∪ acc σ(T ) = acc σ(T ),

and, similarly,σa(T ) = acc σa(T ). Since acc σa(T ) = accσa(T+K ), and acc σ(T ) =
acc σ(T +K ) see [20], we then have σa(T +K ) = σa(T ) and σ(T +K ) = σ(T ). Also
the spectrum σuw(T ) is invariant under Riesz commuting perturbations, so σuw(T +
K ) = σuw(T ). Hence,

	a(T + K ) = σa(T + K ) \ σuw(T + K ) = σa(T ) \ σuw(T ) = 	a(T ).

As observed before, σd(T + K ) = σd(T ), so

�(T + K ) = σ(T + K ) \ σd(T + K ) = σ(T ) \ σd(T ) = �(T ).

Therefore, 	a(T + K ) = �(T + K ) = �(T ) = 	a(T ). �
Theorem 3.3 applies to nilpotent commuting perturbations. However, in this case

no assumption on the spectrum is required. It is well-known that σ(T ) and σa(T ) are
invariant under commuting quasi-nilpotent perturbations.
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Theorem 3.4 Let T ∈ L(X) and let N be a nilpotent operator which commutes with
T . If T has property (UW�), then T + N has property (UW�).

Proof Wehave that σ(T +N ) = σ(T ), σa(T +N ) = σa(T ) and σd(T +N ) = σd(T ),
so 	a(T + N ) = 	a(T ) = �(T ) = �(T + N ). �

The following example shows that the result of Theorem 3.4 cannot be extended to
quasi-nilpotent commuting perturbations:

Example 3.5 Let Q ∈ L(X) denote an injective quasi-nilpotent operator (for instance
the Volterra integral operator defined on the space of all continuous function C[a, b]).
Then 	a(Q) = σa(Q) \ σuw(Q) = ∅. Since α(Q) = 0, the point 0 cannot be a pole
of the resolvent, i.e. σd(Q) = {0}, otherwise the condition p(Q) = q(Q) < ∞would
implies α(Q) = β(Q) = 0 and hence 0 /∈ σ(Q)). Therefore, Q has property (UW�).

On the other hand, 0 = Q − Q does not have property (UW�) since 	a(0) = ∅,
while σd(0) = ∅ and σ(0) = {0}, hence �(0) = {0}.
Theorem 3.6 Suppose that T ∈ L(X) has property (UW�). If iso σb(T ) = ∅, or
iso σub(T ) = ∅, then T +Q has property (UW�) for every commuting quasi-nilpotent
operator Q.

Proof The spectra σ(T ), σa(T ) and σuw(T ) are invariant under a commuting quasi-
nilpotent perturbation Q, so, if T has property (UW�), then T + Q has property
(UW�) exactly when σd(T +Q) = σd(T ). Each one of the assumptions iso σb(T ) =
∅, or iso σub(T ) = ∅, entails the equality σd(T + Q) = σd(T ), see [11, Proposition
2.7]. �

The result of Corollary 3.2 may be strongly improved if we consider injective
quasi-nilpotent perturbations. To see this we need a preliminary lemma.

Lemma 3.7 Let T ∈ L(X) be such that α(T ) < ∞. Suppose that there exists an
injective quasi-nilpotent operator Q ∈ L(X) such that T Q = QT . Then T is injective.

Proof Set Y := ker T . Clearly, Y is invariant under Q and the restriction (λI − Q)|Y
is injective for all λ �= 0. Since Y is finite-dimensional then (λI − Q)|Y is also
surjective for all λ �= 0, thus σ(Q|Y ) ⊆ {0}. On the other hand, from assumption we
know that Q|Y is injective and hence Q|Y is surjective, so σ(Q|Y ) = ∅, from which
we conclude that Y = {0}. �

Recall that T ∈ L(X) is said to be finite-isoloid (respectively, finite a-isoloid) if
every isolated point of σ(T ) (respectively, σa(T )) is an eigenvalue having finite rank.
It is easily seen that if T is finite-isoloid then σb(T ) = σd(T ). Indeed, if λ /∈ σd(T )

then λ ∈ iso σ(T ), so α(λI − T ) < ∞. Since p(λI − T ) = q(λI − T ) < ∞, then
λI − T is Browder, by [1, Chapter 1], so λ /∈ σb(T ). Therefore, σb(T ) ⊆ σd(T ), and
being the opposite inclusion true for every operator, we have σb(T ) = σd(T ).

Theorem 3.8 Suppose that T ∈ L(X) is finite-isoloid. If Q is an injective quasi-
nilpotent operator commuting with T , then both T and T + Q have property (UW�).



38 P. Aiena and M. Kachad

Proof Letλ ∈ 	a(T ) = σa(T )\σuw(T ). SinceλI−T ∈ W+(X) thenα(λI−T ) < ∞
and λI − T has closed range. Since λI − T commutes with Q it then follows, by
Lemma 3.7, that λI − T is injective, so λ /∈ σa(T ), a contradiction. Therefore, 	a(T )

is empty. Also �(T ) is empty. Indeed, suppose that λ ∈ �(T ) = σ(T ) \σd(T ). Then
λ is an isolated point of σ(T ), and since T is finite-isoloid then 0 < α(λI − T ) < ∞.
But by Lemma 3.7 we have α(λI − T ) = 0, a contradiction. Therefore �(T ) = ∅,
and hence T has property (UW�).

To show that T + Q has property (UW�), observe first that

	a(T + Q) = σa(T + Q) \ σuw(T + Q) = σa(T ) \ σuw(T ) = 	a(T ),

so, from the first part,	a(T +Q) = ∅. Also�(T +Q) is empty. Indeed, suppose that
there exists λ ∈ �(T + Q). Then λ ∈ iso σ(T + Q) = iso σ(T ), and hence, since T
is finite-isoloid, 0 < α(λI − T ) < ∞. Again by Lemma 3.7 we have α(λI − T ) = 0,
a contradiction. �

The assumption that T is finite-isoloid in Theorem 3.8 is crucial. For instance, if T
is an injective quasi-nilpotent operator Q then T is not finite-isoloid, and, as observed
before, T has property (UW�), while T − Q = 0 does not have property (UW�).

In the next result, we give a necessary and sufficient condition under which property
(UW�) is preserved under commuting Riesz perturbations.

Theorem 3.9 Let T ∈ L(X) and let R be a Riesz operator commuting with T . If T
satisfies property (UW�) then the following assertions are equivalent:

(i) T + R satisfies property (UW�);
(ii) pa00(T + R) = �(T + R).

Proof (i)⇒ (ii) Suppose that T + R satisfies property (UW�). By Theorem 2.3 we
then have pa00(T + R) = �(T + R).

(ii) ⇒ (i) Assume hat pa00(T + R) = �(T + R). Since T satisfies property (UW�)

then T satisfies a-Browder’s theorem. Hence σuw(T ) = σub(T ). Since σuw(T + R) =
σuw(T ) and σub(T + R) = σub(T ), then so σub(T + R) = σuw(T + R), and T + R
satisfies a-Browder’s theorem i.e 	a(T + R) = pa00(T + R). Since pa00(T + R) =
�(T+R), then	a(T+R) = �(T+R).Therefore T+R satisfies property (UW�).�

Property (UW�)) is transmitted under commuting Riesz perturbations in a very
special case. Recall that an operator T ∈ L(X) is said to be finitely a-polaroid if every
isolated point of σa(T ) is a pole of T having finite rank. Recall that, in general, the
equality σa(T + R) = σa(T ), for a Riesz commuting perturbation, does not hold,
even if T is a finite-rank operator.

Theorem 3.10 Suppose that T ∈ L(X) is finitely a-polaroid and let R ∈ L(X) be a
commuting Riesz operator such that σa(T + R) = σa(T ). If T has property (UW�))

then T + R has property (UW�).

Proof By Theorem 3.9 it suffices to show the equality �(T + R) = pa00(T + R). Let
λ ∈ �(T+R). Thenλ ∈ iso σa(T+R) = iso σa(T ). SinceT is finitelya-polaroid then
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λI−T is Drazin invertible and α(λI−T ) < ∞. Then λI−T ∈ B(X), see [1, Chapter
1], in particular is upper semi-Browder. This implies that λI − (T + R) ∈ B+(X), so
λ ∈ σa(T + R) \ σub(T + R) = pa00(T + R).

Conversely, suppose that λ ∈ pa00(T + R). Then

λ ∈ σa(T + R) \ σub(T + R) ⊆ σa(T + R) \ σuw(T + R)

= σa(T ) \ σuw(T ) = 	a(T ) = �(T ).

In particular, λ is an isolated point of σa(T ), and consequently, a pole of T having finite
rank. This implies that λI −T ∈ B(X), see [1, Chapter 3], and hence λI − (T + R) ∈
B(X), so λ ∈ �(T + R). �

4 Property (UW5) under functional calculus

In this sectionwe study the preservation of property (UW�) under functional calculus.
Furthermore,we show that this property is transferred fromaDrazin invertible operator
to its Drazin inverse. Let H(σ (T )) be the set of all analytic functions defined on a
neighborhood of σ(T ), and for every f ∈ H(σ (T )) let f (T ) be defined by means
of the classical functional calculus. The spectral theorem for the spectrum asserts that
σ( f (T )) = f (σ (T )) for every f ∈ H(σ (T )) and a similar equality holds for the
approximate point spectrum.

Lemma 4.1 Let T ∈ L(X) and let {λ1, · · · , λk} be a finite subset of C such that
λi �= λ j for i �= j . Assume that {ν1, · · · , νn} ⊂ N and set h(λ) := ∏n

i=1(λi − λ)νi .
Then, for the operator h(T ) := ∏n

i=1(λi I − T )νi we have

ker h(T ) =
n⊕

i=1

ker (λi I − T )νi (5)

and

h(T )(X) =
n⋂

i=1

(λi I − T )νi (X). (6)

Furthermore,

0 ∈ �(h(T )) ⇔ λi ∈ �(T ) for all i = 1, . . . , n.

Proof Aproof of the equalities (5) and (6)maybe found in [1]. Suppose thatλi ∈ �(T )

for all i = 1, . . . , n, i.e., λi ∈ σ(T ) and λi I − T Drazin invertible, for all i =
1, . . . , n. Then, for k large enough, we have ker(λi I−T )νi k = ker(λi I−T )νi (k+1) and
(λi −T )νi k(X) = (λi −T )νi (k+1)(X). This implies, by (5) and (6), that ker (h(T )k) =
ker (h(T )k+1) and h(T )k(X) = h(T )k+1(X), so h(T ) is Drazin invertible. Since
0 = h(λi ) ∈ h(σ (T )) = σ(h(T )) it then follows that 0 ∈ �(h(T )).
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Conversely, assume that λ j /∈ �(T ) for some j ∈ {1, . . . , n}. Let p j and q j denote
the ascent and the descent of λ j I − T , respectively. We have either λ j /∈ σ(T ) or
λ j ∈ σ(T ). In the case where λ j /∈ σ(T ), then 0 = h(λ j ) /∈ h(σ (T )) = σ(h(T )),
so 0 /∈ �(T ). Consider the other case λ j ∈ σ(T ). Since λ j /∈ �(T ) then λ j I − T
is not Drazin invertible, so either p j = ∞, i.e. ker (λ j I − T )k is properly contained
in ker (λ j I − T )k+1 for every k ∈ N, or q j = ∞, i.e., (λ j I − T )k+1(X) is properly
contained in (λ j I − T )k(X) for every k ∈ N. If p j = ∞, being ker (λi I − T )νi ∩
ker (λ j I − T )ν j = ∅ for all i �= j , it then follows that p(h(T )) = ∞. Analogously,
if q j = ∞ then q(h(T )) = ∞. Therefore, also in this case 0 /∈ �(T ). �
Remark 4.2 If T ∈ L(X) is invertible and S ∈ L(X) commutes with T then
N (Sn) = N ((T S))n and (T S)n(X) = Sn(X) for all n ∈ N. Consequently, T S is
Drazin invertible if and only if S is Drazin invertible, while 0 ∈ �(T S) if and only if
0 ∈ �(S).

In the sequel we need the following lemma.

Lemma 4.3 For every T ∈ L(X), X a Banach space, and f ∈ H(σ (T )) we have

σa( f (T )) \ �( f (T )) ⊆ f (σa(T ) \ �(T )) . (7)

Furthermore, if T is a-isoloid then

σa( f (T )) \ �( f (T )) = f (σa(T ) \ �(T )) . (8)

Proof Suppose that λ0 ∈ σa( f (T )) \ �( f (T )). We consider two cases.
Case (I). Suppose first that λ0 /∈ iso f (σa(T )) = iso σa( f (T )). In this case λ0 /∈

�( f (T )), since each point of �( f (T )) is an isolated point of σ( f (T )) and hence an
isolated point of σa( f (T )). Let (λn) ⊂ f (σa(T )) = σa( f (T )) be a sequence such
that λn → λ0 and let (μn) ∈ σa(T ) be such that f (μn) = λn . Then (μn) admits a
subsequence which converge to some μ0 ∈ σa(T )). There is no harm if we assume
that μn → μ0. Then f (μn) → f (μ0) = λ0. Evidently, μ0 /∈ �(T ), since μ0 is a
cluster point of σa(T ). Hence

λ0 = f (μ0) ∈ f (σa(T ) \ �(T )) .

Case (II). Suppose that λ ∈ iso f (σa(T )) = iso σa( f (T )). Define g(λ) := λ0 −
f (λ), Since g(λ) is analytic then g has only a finite number of zeros in σ(T ), say
{λ1, . . . , λn}. Write

g(λ) = h(λ)k(λ) and h(λ) =
k∏

i=1

(λi − λ)νi , (9)

where k(λ) has no zero in σ(T ). Then

g(T ) = λ0 I − f (T ) = h(T )k(T ),
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where k(T ) invertible, and h(T ) := ∏k
i=1(λi I − T )νi .

Now, λ0 /∈ �( f (T ) implies that λ0 I − f (T ) is invertible, or λ0 I − f (T ) is not
Drazin invertible. In the first case g(T ) is invertible, so 0 /∈ �(g(T )). If λ0 I − f (T ) is
not Drazin invertible, we have either p(g(T )) = p(λ0 I − f (T )) = ∞ or q(g(T )) =
q(λ0 I − f (T )) = ∞, so also in this case 0 /∈ �(g(T )). According Remark 4.2 then
0 /∈ �(h(T )). By Lemma 4.1 it then follows that λ j /∈ �(T ) for some j . Thus,
λ j ∈ σa(T ) \ �(T ), and hence λ0 = f (λ j ) ∈ f (σa(T ) \ �(T )) .

To show the equality (8), assume that T is a-isoloid.
To show the equality (8) we need only to prove the inclusion ⊇. Let λ0 ∈

f (σa(T ) \ �(T )) be arbitrary given. Since λ0 ∈ f (σa(T )) = σa( f (T )) ⊆ σ( f (T ))

it then suffices to prove that λ0 /∈ �( f (T )). To do this, suppose that λ0 ∈ �( f (T )).
Then 0 ∈ �(h(T ), and by Lemma 4.1 it then follows that λi ∈ �(T ) for all
i = 1, . . . , n. Thus, λi /∈ σa(T ) \ �(T ) for all i . Since 0 = g(λi ) = λ0 − f (λi ), we
have λ0 = f (λi ) /∈ f (σa(T ) \ �(T )), a contradiction. Therefore, λ0 /∈ �( f (T )),
and hence

λ0 ∈ σa( f (T )) \ �( f (T )),

as desired. �
Recall that, in general, the spectral theorem does not hold for σuw(T ), see [1,

Chapter 3].

Theorem 4.4 Let T ∈ L(X) be a-isoloid and f ∈ H(σ (T )). If T satisfies property
(UW�)) then the following are equivalent:

(i) f (T ) satisfies property (UW�);
(ii) f (σuw(T )) = σuw( f (T )).

Proof (i) → (ii) Observe first that the spectral mapping theorem holds for σub(T ),
i.e., f (σub(T )) = σub( f (T )) for every f ∈ H(σ (T )), see [1, Chapter 3]. Since f (T )

satisfies property (UW�), then both T and f (T ) satisfies a-Browder’s theorem, by
Theorem 2.3, so σuw(T ) = σub(T ) and σuw( f (T )) = σub( f (T )). Then we have

f (σuw(T )) = f (σub(T )) = σub( f (T )) = σuw( f (T )).

(ii) → (i) Since T satisfies property (UW�)) we have σuw(T ) = σa(T ) \ �(T ). By
Lemma 4.3 it then follows that

σuw( f (T )) = f (σuw(T )) = f (σa(T ) \ �(T )) = σa( f (T )) \ �( f (T )),

so f (T ) satisfies property (UW�). �
It is known that the spectral theorem for σuw(T ) holds if T or T ∗ has SVEP ( [1,

Chapter 3], or if f is injective ( [18]. Consequently, property (UW�)) is transmitted
from T to f (T ) if T is a-isoloid and T or T ∗ has SVEP. In the case, that T ∗ has SVEP,
then we can require that T is isoloid, since in this case σa(T ) = σ(T ) and hence the
properties of being a-isoloid and isoloid coincide.
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Lemma 4.5 Suppose that for a bounded operator T ∈ L(X) there exists λ0 ∈ C such
that K (λ0 I − T ) = {0} and ker (λ0 I − T ) = {0}. Then σp(T ) = ∅.

Proof For all complex λ �= λ0 we have ker (λI −T ) ⊆ K (λ0 I −T ), so that ker (λI −
T ) = {0}, for λ �= λ0. Since ker (λ0 I−T ) = {0}we then conclude that ker (λI−T ) =
{0} for all λ ∈ C. �

Theorem 4.6 Let T ∈ L(X) be such that there exists λ0 ∈ C such that

K (λ0 I − T ) = {0} and ker (λ0 I − T ) = {0}. (10)

Then property (UW�) holds for f (T ) for all f ∈ H(σ ( f (T )).

Proof We know from Lemma 4.5 that σp(T ) = ∅, so T has SVEP. We show that
also σp( f (T )) = ∅. Let μ ∈ σ( f (T )) and write μ − f (λ) = p(λ)g(λ), where g is
analytic on an open neighborhood U containing σ(T ) and without zeros in σ(T ), p a
polynomial of the form p(λ) = �n

k=1(λk − λ)νk , with distinct roots λ1, . . . , λn lying
in σ(T ). Then

μI − f (T ) = �n
k=1(λk I − T )νk g(T ).

Since g(T ) is invertible, σp(T ) = ∅ implies that ker (μI − f (T )) = {0} for allμ ∈ C,
so σp( f (T )) = ∅. Since T has SVEP then f (T ) has SVEP, see [1, Chapter 2], so that
a-Browder’s theorem holds for f (T ) ( [1, Chapter 5]). To prove that property (UW�)

holds for f (T ), by Theorem 2.3 it then suffices to prove that

pa00( f (T )) = �( f (T )).

Obviously, the condition σp( f (T )) = ∅ entails that �( f (T )) = ∅, since every point
of �( f (T )) is an eigenvalue of f (T ). On the other hand, if λ ∈ pa00( f (T )) then
λ ∈ σa( f (T )) and λ /∈ σub( f (T ), so λI − f (T ) has closed range, since it is a
upper semi-Browder operator. This implies that α(λI − f (T )) > 0 and we get a
contradiction, since σp( f (T )) = ∅. �

The conditions of Theorem 4.6 are satisfied by any injective operator for which the
hyperrange T∞(X) := ⋂

T n(X) is {0}. In fact, K (T ) ⊆ T∞(X) for all T ∈ L(X),
so that K (T ) = {0}. In particular, the conditions of Theorem 4.6 are satisfied by
a semi-shift T , i.e. T is an isometry for which T∞(X) = {0}, see [15] for details
on this class of operators. Clearly, a semi-shift T on a non-trivial Banach space is a
non-invertible isometry.

The following result applies to several operator, in particular to shift operators.

Lemma 4.7 Suppose that for T ∈ L(X) we have iso σa (T ) = ∅. If K ∈ L(X)

commutes with T and Kn is finite-dimensional for some n ∈ N, then iso σa(T + K ) =
∅. Consequently, σa(T + K ) = σa(T ).
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Proof By Lemma 4.7 we have

σa(T ) = iso σa (T ) ∪ acc σa (T ) = acc σa (T )

= acc σa (T + K ) ⊆ σa(T + K ).

On the other hand, if σa(K ) = {λ1, λ2, . . . λn} we have

iso σa(T + K ) ⊆ iso (σa(T ) + σa(K )) = iso
n⋃

k=1

(λk + σa(T )) = ∅,

hence,

σa(T + K ) = iso σa(T + K ) ∪ acc σa(T + K ) = acc σa(T + K )

= acc σa(T ) = σa(T ),

so σa(T + K ) = σa(T ) holds.
�

Theorem 4.8 Let T ∈ L(X) be a semi-shift and suppose that K ∈ L(X) is such that
K n is finite-dimensional for some n ∈ N and that T K = KT . Then property (UW�)

holds for f (T ) + K for all f ∈ H(σ ( f (T )).

Proof Since T is a non-invertible isometry, the aproximate point spectrum σa(T ) is
the closed unit circle of C, see [15, Proposition 1.6.2]. Hence iso σa(T ) = ∅. From
Lemma 4.7 and Theorem 3.3 then property (UW�) holds for f (T ) + K . �

Recall that an operator T ∈ L(X) is Drazin invertible if and only if there exists an
operator S ∈ L(X) and n ∈ N such that

T S = ST , ST S = S, T nST = T n, (11)

see [16, Chap.3, Theorem 10]. The operator S is called the Drazin inverse of T . From
[16, Chap. 3, Theorem 10] we also know that if T ∈ L(X) is Drazin invertible if and
only if there exist two closed invariant subspaces Y and Z such that X = Y ⊕ Z and,
with respect to this decomposition,

T = T1 ⊕ T2, with T1 := T |Y nilpotent and T2 := T |Z invertible. (12)

Note that the Drazin inverse S of an operator, if it exists, is uniquely determined (
[12]), and with respect to the decomposition X = Y ⊕ Z , the Drazin inverse S may
be represented as the directed sum

S := 0 ⊕ S2 with S2 := T2
−1. (13)

From the decomposition (13) it is obvious that the Drazin inverse S is also Drazin
invertible. Evidently, if T is invertible then S = T−1, while 0 ∈ σ(T ) if and only if
0 ∈ σ(S).
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The decompositions (12) and (13) are very useful in order to study the spectral
properties of a Drazin invertible operator, see [3] and [4], in particular the decomposi-
tion (13) shows that the Drazin inverse S is itself Drazin invertible, since is the direct
sum of the nilpotent operator 0 and the invertible operator S2. It should be noted that if
0 ∈ σ(T ) then 0 is a pole of the first order of the resolvent of S, see [18]. Furthermore,
the following relationship of reciprocity holds for the spectra of S and T :

σ(S) \ {0} =
{
1

λ
: λ ∈ σ(T ) \ {0}

}

, (14)

see [1, Chapter 1].
We also have,

σa(S) \ {0} =
{
1

λ
: λ ∈ σa(T ) \ {0}

}

,

and

σuw(S) \ {0} =
{
1

λ
: λ ∈ σuw(T ) \ {0}

}

,

see [4]. By [4, Theorem 2.8] we also have

�(S) \ {0} =
{
1

λ
: λ ∈ �(T ) \ {0}

}

.

Lemma 4.9 Suppose that T ∈ L(X) is Drazin invertible with Drazin inverse S. Then
T ∈ W+(X) if and only if S ∈ W+(X).

Proof (i) If 0 /∈ σ(T ) then T is invertible and the Drazin inverse is S = T−1 so the
assertion is trivial in this case. Suppose that 0 ∈ σ(T ) and that T is upper semi-Weyl.
Since p(λI − T ) = q(λI − T ) < ∞ then, see [1, Chapter 1], T is Browder. Then 0 is
a pole of the resolvent of T and is also a pole (of the first order) of the resolvent of S.
Let X = Y ⊕ Z such that T = T1 ⊕ T2, T1 = T |Y nilpotent and T2 = T |Z invertible.
Observe that

ker T = ker T1 ⊕ ker T2 = ker T1 ⊕ {0}, (15)

and, analogously, since S = 0 ⊕ S2 with S2 = T2−1, we have

ker S = ker 0 ⊕ ker S2 = Y ⊕ {0}. (16)

Since T is upper semi-Weyl we have α(T ) = dim ker T < ∞, and from the inclusion
ker T1 ⊆ ker T we obtain α(T1) < ∞. Consequently, α(T n

1 ) < ∞ for all n ∈ N.
Let T ν

1 = 0. Since Y = ker T ν
1 the subspace Y is finite-dimensional, and hence

ker S = Y ⊕ {0} is finite-dimensional, i.e. α(S) < ∞. Now, S is Drazin invertible,
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so p(S) = q(S) < ∞ and hence, see [1, Chapter 1], α(S) = β(S) < ∞. Hence S is
Browder, and in particular upper semi-Weyl.

Conversely, suppose that S is upper semi-Weyl. Then α(S) < ∞ and hence by (16)
the subspaceY is finite-dimensional, fromwhich it follows that also ker T1 = ker T |Y
is finite-dimensional. From (15) we then have that α(T ) < ∞ and since p(T ) =
q(T ) < ∞ we then conclude that α(T ) = β(T ), see [1, Chapter 1]. Therefore, T is a
Browder operator, in particular upper semi-Weyl. �

In [4] it is shown that several Browder type theorems and Weyl type theorems are
transferred from a Drazin invertible operator to its Drazin inverse. We show now that
the same happens for property (UW�).

Theorem 4.10 Suppose that T ∈ L(X) is Drazin invertible with Drazin inverse S.
Then T satisfies property (UW�) if and only if S satisfies property (UW�).

Proof Suppose that T satisfies property (UW�). Consider first the case that T is
invertible. Then S = T−1. Suppose that λ ∈ σa(T−1). Then λ �= 0, and hence
1
λ

∈ σa(T ) = σuw(T )
⊔

�(T ). If 1
λ

∈ σuw(T ) then λ ∈ σuw(T−1, while if 1
λ

∈ �(T )

then λ ∈ σuw(T−1. This shows that σa(T−1) ⊆ σuw(T−1)
⊔

�(T−1), and since the
opposite inclusion always holds we then have

σa(T
−1) = σuw(T−1)

⊔
�(T−1),

i.e., property (UW�) holds for T−1. The proof that property (UW�) for T−1 implies
property (UW�) for T is similar.

Consider the case that T is not invertible. Then 0 ∈ σ(T ), as well as 0 ∈ σ(S),
and in this case 0 is a pole of both T and S. Let λ ∈ σa(S). If λ = 0 we have
already observed that 0 ∈ �(S) and 0 ∈ �(T ). Since T has property (UW�) then
σa(T ) = σuw(T )

⊔
�(T ), so 0 /∈ σuw(T ). But p(T ) = q(T ) < ∞, so, by [1,

Chapter 1], T is Browder, and in particular is upper semi-Weyl. By Lemma 4.9,
S is upper semi-Weyl, so 0 /∈ σuw(S). Therefore, 0 ∈ σuw(T )

⊔
�(T ). Suppose

that λ �= 0. Then 1
λ

∈ σa(T ), and hence 1
λ

∈ σuw(T )
⊔

�(T ). This implies that
either λ ∈ σuw(S) or λ ∈ �(S), so λ ∈ σuw(T )

⊔
�(T ). We have shown that

σa(S) ⊆ σuw(T )
⊔

�(T ) and since the reverse inclusion holds we then have σa(S) ⊆
σuw(T )

⊔
�(T ).

Conversely, suppose that S has property (UW�). The Drazin inverse of S is
U := T 2S = T ST and the Drazin inverse of U is T , see [1, Chapter 1]. There-
fore, from the first part, U inherits property (UW�) from S and property (UW�) is
then transferred from U to T . �
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