
Vol:.(1234567890)

Marine Life Science & Technology (2022) 4:356–372
https://doi.org/10.1007/s42995-022-00132-3

1 3

REVIEW

Chemical and biological diversity of new natural products from marine 
sponges: a review (2009–2018)

Li‑Li Hong1 · Ya‑Fang Ding1,2 · Wei Zhang3 · Hou‑Wen Lin1

Received: 10 August 2021 / Accepted: 2 May 2022 / Published online: 1 August 2022 
© The Author(s) 2022

Abstract
Marine sponges are productive sources of bioactive secondary metabolites with over 200 new compounds isolated each 
year, contributing 23% of approved marine drugs so far. This review describes statistical research, structural diversity, and 
pharmacological activity of sponge derived new natural products from 2009 to 2018. Approximately 2762 new metabolites 
have been reported from 180 genera of sponges this decade, of which the main structural types are alkaloids and terpenoids, 
accounting for 50% of the total. More than half of new molecules showed biological activities including cytotoxic, antibac-
terial, antifungal, antiviral, anti-inflammatory, antioxidant, enzyme inhibition, and antimalarial activities. As summarized 
in this review, macrolides and peptides had higher proportions of new bioactive compounds in new compounds than other 
chemical classes. Every chemical class displayed cytotoxicity as the dominant activity. Alkaloids were the major contributors 
to antibacterial, antifungal, and antioxidant activities while steroids were primarily responsible for pest resistance activity. 
Alkaloids, terpenoids, and steroids displayed the most diverse biological activities. The statistic research of new compounds 
by published year, chemical class, sponge taxonomy, and biological activity are presented. Structural novelty and signifi-
cant bioactivities of some representative compounds are highlighted. Marine sponges are rich sources of novel bioactive 
compounds and serve as animal hosts for microorganisms, highlighting the undisputed potential of sponges in the marine 
drugs research and development.
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Introduction

Marine sponges are the oldest metazoan group with approxi-
mately 15,000 species having been described, of which 
8553 species were accepted (Thomas et al. 2010; Van Soest 

et al. 2012). Under extreme marine environments, sponges 
continue to produce novel bioactive metabolites to protect 
them from threats of predators, competitors, and pathogens 
(Paul et al. 2006; Wu et al. 2021a). Their chemical arsenal 
encompasses terpenoids, alkaloids, polyketides, peptides, 
steroids, and so on. Starting with the isolation of nucleoside 
derivatives from sponge Tectitethya crypta, the discovery of 
sponge-derived natural products experienced a rapid growth 
period, followed by a stable period. Up to now, more than 
18,149 new compounds have been isolated from sponges 
with an increasing number of over 200 new compounds iso-
lated yearly (Carroll et al. 2021; Hu et al. 2015). Many of 
these molecules demonstrated diverse biological activities, 
such as anticancer, antibacterial, antifungal, anti-inflamma-
tory, antiviral, antioxidant, antimalarial, and pest resistance 
properties (Abraham et al. 2021; Carroll et al. 2020; 2021). 
For this reason, sponges continue to be an attractive subject 
for natural product chemists based on the large number of 
compounds produced, the diversity of structures encoun-
tered, and the therapeutic potential of molecules.
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This review summarizes sponge-derived 2762 new com-
pounds with 1419 bioactive from 878 original research 
papers during 2009–2018. These new compounds in terms 
of published year, chemical class, sponge taxonomy, and 
biological activity are classified, analyzed, and evaluated. 
Structural novelty and excellent pharmacological activities 
of some representative compounds are highlighted.

Statistical research of new compounds

The data are based on the literature search in the SciFinder 
database with marine sponge as the key word, English as 
the language, and the time limit of 2009–2018. Approxi-
mately 2762 new metabolites have been reported from 
sponges between 2009 and 2018, more than half of which 
showed pharmacological activity. As shown in Fig. 1A, the 
number of new compounds gradually decreased in a three 
or 4-year cycle, probably because research on MNPs from 
sponges gradually shifted to sponge-derived microorganisms 
due to increasing evidence that symbiotic microorganisms 
rather than sponges were likely to be the real producers of 
bioactive compounds (Liu et al. 2019; Zhang et al. 2017). 
In addition, microorganisms have the ability to reproduce 
indefinitely and to easily be mined genomically to obtain 
target metabolites (Cao and Wang 2020; Meng et al. 2021; 

Peng et al. 2021; Zhang et al. 2021). The proportion curve of 
new bioactive compounds compared to total new compounds 
showed that the proportion fluctuated in a small range each 
year. This may indicate that the rate of bioactivity screening 
research and discovery of new natural products was rela-
tively stable. In addition, sampling methods, extraction and 
separation techniques, structure identification technology, 
and biological screening methods have reached a relatively 
mature level.

Notably, the compounds are counted only once when they 
are analyzed by bioactivity or inactivity. However, multi-active 
compounds are counted multiple times when they are classi-
fied according to the following ten bioactivity groups. Fig-
ure 2 shows percentage distribution of new compounds with 
different bioactivities for 2009–2018. Obviously, nearly half 
of the new bioactive compounds showed anticancer/cytotoxic 
activity with the number of 808 (49.1% of the total new bio-
active compounds). The main reasons of this result are likely 
the long term and large amount of scientific research funds 
supporting cancer drug discovery, big programs with the 
aim to discover anticancer drugs, and rapid development of 
effective detection technology for cytotoxicity such as MTT, 
XTT, and SRB assays (Hu et al. 2015). This was followed by 
antibacterial activity at 215 (13.1%), enzyme inhibition activ-
ity at 135 (8.2%), antifungal activity at 103 (6.3%), and anti-
malarial activity at 67 (4.1%). These results were consistent 
with the previous reviews where the two major bioactivities 
reported by compounds from sponges were cytotoxicity fol-
lowed by antimicrobial (antifungal and antibacterial) activity 
(Abdelaleem et al. 2020). It is worth noting that this does not 
mean major bioactivities of sponge-derived compounds are 
cytotoxicity and antimicrobial activities. The difficulty of the 
biological screening model may affect this result to a certain 
extent. For instance, viruses are underrepresented as targets in 

Fig. 1  A Temporal trends in the number and proportion of new bioac-
tive compounds for 2009–2018. B The number and proportion of new 
bioactive compounds in each chemical class for 2009–2018

Fig. 2  Percentage distribution of new compounds with different bio-
activities for 2009–2018
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pharmacological screening efforts due to the requirement of 
biochemical assay counter screens and inherent complexity of 
cell-based assays of viruses, making them expensive and time 
consuming (O’rourke et al. 2018).

The new compounds are divided into nine chemical classes 
including alkaloids, terpenoids, hydroxybenzene/quinones, 
lipids, macrolides, polyketides, peptides, steroids, and oth-
ers. However, it is noteworthy that macrolides and steroids 
are often classified as polyketides and lipids, respectively. 
Here we list macrolides and steroids separately because of 
their significant pharmacological activity and large quantities, 
respectively. Figure 1B shows the number and proportion of 
new bioactive compounds in each chemical class. 823 and 693 
new compounds belonged to alkaloids and terpenoids, respec-
tively, adding up to more than half of the total. Similarly, these 
two classes contributed 50% of all new bioactive compounds. 
Although the number of bioactive alkaloids and terpenoids 
was the largest, the highest proportion of bioactives belonged 
to macrolides with 84.0% followed by peptides with 64.3%. 
Two recent reviews summarized marine-derived macrolides 
with therapeutic potential, which displayed a wide range of 
bioactivities including cytotoxic, antifungal, antiviral, anti-
bacterial, antimitotic, and other activities (Wu et al. 2021b; 
Zhang et al. 2021). Peptides were promising drug candidates 
due to their reduced size, stability, low immunogenicity, and 
diversity of bioactivities including anti-proliferative, antivi-
ral, anti-coagulant, antioxidant, antiobesity, antidiabetic, anti-
hypertensive, and calcium-binding activities (Gogineni and 
Hamann 2018; Hu et al. 2015). This was then followed by 
steroids with 62.6%, hydroxybenzene/quinones with 49.0%, 
alkaloids with 48.1%, and terpenoids with 47.5%.

Figure 3A shows the proportion of different activities 
in each category of chemical compounds for 2009–2018. 
The analyzed data shows that bioactivity distribution is 
slightly affected by chemical structures. All chemical 
groups displayed cytotoxicity as the dominant activity 
with the proportion ranging from 37.0% to 97.5%. Espe-
cially for macrolides, cytotoxic compounds accounted 
for 97.5% of the total active compounds, highlighting 
that they encompass many potential antitumor drug 
leads. Regardless of cytotoxic property, alkaloids, ter-
penoids, and lipids mainly showed antibacterial activ-
ity, while hydroxybenzene/quinones, polyketides, and 
steroids displayed enzyme inhibition, antimalarial, and 
pest resistance property as major activities, respectively. 
In addition, the distribution of all types of activities but 
cytotoxicity displayed by peptides was relatively average.

As shown in Fig. 3B, the analyzed data shows that alka-
loids, terpenoids, lipids, and peptides were responsible for 
cytotoxic activity. The major contributors to antibacterial 
activity were alkaloids, terpenoids, and lipids. The most 
promising antifungal agents from sponges appear to be 

alkaloids and polyketides. A certain number of alkaloids, 
terpenoids, and peptides exhibited antimalarial activity. Only 
alkaloids and peptides were reported from sponges this dec-
ade to possess antiviral activity. The main anti-inflammatory 
metabolites were terpenoids, hydroxybenzenes/quinones, 
and peptides. Alkaloids and hydroxybenzenes/quinones were 
the primary antioxidant constituents of the sponges. Alka-
loids and terpenoids were responsible for enzyme inhibition 
activity while steroids, polyketides, alkaloids, and terpenoids 
contributed to pest resistance activity. Alkaloids, terpenoids, 
and steroids displayed the most diverse biological activities.

The World Porifera Database is utilized by the taxonomic 
classification of the sponges mentioned in the original 
research papers. According to the world porifera database, 
sponges are composed of 5 classes and 39 orders. As shown 
in Fig. 4, during 2009–2018, about 4 classes and 21 orders 
were studied for discovery of new metabolites, with the class 
Demospongiae being the most prolific producer with 2447 
new compounds reported. Orders Dictyoceratida, Haplo-
sclerida, Poecilosclerida, and Tetractinellida from the class 
Demospongiae were the most productive orders, giving 595, 
455, 406, and 327 new compounds, respectively.

Fig. 3  A Percentage distribution of new compounds with different 
bioactivities in each chemical class for 2009–2018. B Percentage dis-
tribution of new compounds with different chemical classes in each 
bioactivity for 2009–2018
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New bioactive compounds from sponges

Approximately 2762 new metabolites have been reported 
from sponges for 2009–2018, some of which possessed 
novel skeleton and showed distinguishing pharmacological 
activity. Herein, structural novelty and excellent bioactivities 
of 553 representative compounds are highlighted (Fig. 5).

Macrolides

Kabiramides J and K (1 and 2) were trisoxazole macrolides 
isolated from Pachastrissa nux. Both displayed signifi-
cant antimalarial  (IC50 = 20 and 70 nmol/L) and cytotoxic 
 (IC50 = 0.31 and 0.39 μmol/L) activities (Sirirak et al. 2011). 
Examination of P. nux resulted in the isolation of one fur-
ther antimalarial trisoxazole macrolide, kabiramide L (3) 

Fig. 4  Number of new compounds isolated from different orders for 2009–2018

Fig. 5  Structures of selected 
representative compounds 
isolated from marine sponges 
for 2009–2018
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(Sirirak et al. 2013). Two further trisoxazole macrolides, 
miuramides A (4) and B (5), were isolated from Mycale sp., 
both with strong cytotoxicity (3Y1 cells,  IC50 = 7 nmol/L) 
(Suo et  al. 2018b). Zampanolides B–E (6–9) had been 
reported from Cacospongia mycofijiensis. Zampanolides 
B–D (6–8) exhibited strong cytotoxicity against the HL-60 
cell line, were antimitotic, and induced tubulin polymeriza-
tion with zampanolide E (9) being much less active due to 
saturation at C-8/C-9 (Taufa et al. 2018). A novel macrolide, 
callyspongiolide (10), was isolated from the marine sponge 
Callyspongia sp., which featured a conjugated structurally 
unprecedented diene-ynic side chain ending at a brominated 
benzene ring. Callyspongiolide (10) exhibited strong inhi-
bition of human Jurkat J16 T and Ramos B lymphocytes 
 (IC50 = 70 and 60 nmol/L) (Pham et al. 2014). A Candi-
daspongia sp. yielded two inseparable mixture of isomers, 
precandidaspongiolides A/B (11/12) and candidaspon-
giolides A/B (13/14), which showed nanomolar activity 
to various cell lines with  IC50 values ranging from 1.6 to 
17.9 nmol/L (Whitson et al. 2011). Additional research on 
another Candidaspongia sp. yielded two new macrolides 
15 and 16 that displayed potent cytotoxicity  (IC50 = 4.7 and 
19 ng/ml) (Trianto et al. 2011). The chondropsin-type mac-
rolide poecillastrin H (17), obtained from Characella sp., 
was strongly active against 3Y1 cells  (IC50 = 4.1 nmol/L) 
(Suo et al. 2018a). Investigation of Cinachyrella enigmat-
ica yielded three novel phosphate-containing macrolides, 
enigmazole A (18), 15-O-methylenigmazole A (19), and 
13-hydroxy-15-O-methylenigmazole A (20). The enigma-
zoles were unprecedented 18-membered macrolide with an 
embedded 2,6-disubstituted 4-methylenetetrahydropyran 
moiety and a disubstituted oxazole attachment to the macro-
cyclic ring. In the NCI 60-cell antitumor assay, enigmazole 
A (18) exhibited significant cytotoxicity with a mean  GI50 
of 1.7 μmol/L (Oku et al. 2010). Fascaplysinopsis sp. was 
the source of a novel cytotoxic nitrogenous bismacrolide, 
tausalarin C (21) (Bishara et al. 2009). Fascaplysinopsis 
sp. gave seven new nitrogenous macrolides, salarins D–J 
(22–28), some of which displayed cytotoxicity against K562 
and UT-7 human leukemia cells (Bishara et al. 2010). A 
rare polyketide-derived macrolide, leiodermatolide (29), 
was isolated from a Leiodermatium sp. and exhibited potent 
and selective antimitotic activity  (IC50 < 10 nmol/L) against 
a range of human cancer cell lines by inducing G2/M cell 
cycle arrest (Paterson et al. 2011). Two further analogues, 
leiodermatolides B (30) and C (31), were isolated from Lei-
odermatium sp., both of which were cytotoxic to AsPC-1 
cells with an  IC50 of 43 nmol/L and 3.7 μmol/L, respectively 
(Wright et al. 2017). A Lissodendoryx sp. produced four 
new cyctoxic halichondrins 32–35 (Hickford et al. 2009). 
NMR-directed isolation from Mycale hentscheli led to the 
peloruside B (36) with potent antitumor activity, which 
promoted microtubule polymerization and arrested cells in 

the G2/M phase of mitosis as does paclitaxel (Singh et al. 
2010). Further chemical investigations on M. hentscheli 
yielded pelorusides C (37) and D (38), both of which were 
cytotoxic against the HL-60 cell line with  IC50 values of 
221 nmol/L and 2 μmol/L, respectively (Singh et al. 2011). 
An additional peloruside E (39), isolated from M. hentscheli, 
was cytotoxic against HL-6 cells and polymerized purified 
tubulin (Hong et al. 2018). Pipestela candelabra gave pipes-
telides A–C (40–42) with pipestelide A (40) being more 
cytotoxic to the KB Cell Line  (IC50 = 0.1 μmol/L) (Sor-
res et al. 2012). Poecillastrins E–G (43–45) were isolated 
from Poecillastra sp. and had potent cytotoxicity against rat 
embryonic fibroblast 3Y1 cells with the  IC50 values of 6.7, 
1.2, and 5.0 ng/ml, respectively (Irie et al. 2018). Theonella 
swinhoei yielded swinholide J (46), strongly cytotoxic to KB 
cells  (IC50 = 6 nmol/L) (De Marino et al. 2011a). Additional 
research on T. swinhoei obtained the new dimeric mac-
rolides isoswinholide B (47) and swinholide K (48). Both 
compounds showed cytotoxicity to HepG2 cells with  IC50 
values of 1.5 μmol/L and 15 nmol/L, respectively (Sinisi 
et al. 2013). The structures of compounds 1–48 are shown 
as supplementary Fig. S1.

Peptides

Chemical investigation of Citronia astra gave citronamides 
A (49) and B (50) with citronamide A (49) being moder-
ately active against Saccharomyces cerevisiae (Carroll et al. 
2009). Yaku’amides A (51) and B (52) were obtained from 
Ceratopsion sp., both of which displayed strong cytotoxic 
activity against P388 cells with  IC50 values of 14 and 4 ng/
ml, respectively (Ueoka et al. 2010). Investigation of Ecione-
mia acervus yielded a novel class of cyclic depsiundecapep-
tides, stellatolides A–G (53–59), containing various non-
natural amino acids. All but stellatolide G (59) exhibited 
significant cytotoxicity towards A-549, HT-29, and MDA-
MB-231 cell lines with  GI50 values of 0.08–2.7 μmol/L 
(Martin et al. 2014). Lipodiscamides A–C (60–62) from 
Discodermia kiiensis were the first example of lipopeptides 
bearing 4S-hydroxy-trans-2-enoate and noncanonical amino 
acids, E-dehydronorvaline (Denor), D-citrulline (Cit), and 
L-3-ureidoalanine (Uda). All three compounds showed weak 
to moderate cytotoxicity against P388 and HeLa cells (Tan 
et al. 2014). Examination of T. swinhoei revealed a mixture 
of nazumazoles A–C (63–65) as an inhibitor of P388 cells 
 (IC50 = 0.83 μmol/L), which featured one residue each of 
alanine-derived oxazole and α-keto-β-amino acid residue 
(Fukuhara et al. 2015). Further investigation of T. swin-
hoei yielded nazumazoles D–F (66–68) that were inhibi-
tors of proteases with  IC50 values of 2, 3, and 10 μmol/L, 
respectively (Fukuhara et al. 2016). Three additional pro-
tease inhibitors, cyclotheonellazoles A–C (69–71), were 
obtained from Theonella aff. Swinhoei (Issac et al. 2017). 
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Perthamides C–K (72–80) were also sourced from T. swin-
hoei. Perthamides C (72), D (73), H (77), I (78), and K 
(80) reduced carrageenan-induced paw oedema both in the 
early and in the late phases while perthamides C (72) and 
E (74) inhibited TNF-a and IL-8 release (Festa et al. 2009, 
2011b, 2012a). Two novel anti-inflammatory cyclopeptides, 
solomonamides A (81) and B (82), were isolated from the 
marine sponge T. swinhoei (Festa et al. 2011c). Characella 
pachastrelloides gave characellides A–D (83–86), four rare 
lipoglycotripeptides which contained unprecedented struc-
tural features including a core tripeptide (O-Me-Tyr-Asp-
Thr) and long unusual alkyl chains and sugar units con-
nected to the terminal threonine (Afoullouss et al. 2019). 
Two different species of Theonella sp. yielded a new sulfated 
cyclic depsipeptide, mutremdamide A (87), and six new lin-
ear or cyclic highly N-methylated peptides, koshikamides 
C–H (88–94), of which only koshikamide H (94) displayed 
cytotoxicity toward HCT-116 cells  (IC50 = 10 μmol/L). In 
addition, cyclic koshikamides F (92) and H (94) inhibited 
HIV-1 entry with  IC50 values of 2.3 and 5.5 μmol/L while 
their linear counterparts were inactive (Plaza et al. 2010). 
Siliquariaspongia mirabilis was the source of six new dep-
sipeptides, celebesides A–C (95–97) and theopapuamides 
B–D (98–100). Celebesides A–C (95–97) exhibited cyto-
toxic and antifungal activities, of which celebeside A (95) 
also displayed inhibition of HIV-1 in a neutralization assay 
(Plaza et al. 2009). Stelletta clavosa produced four new 
depsipeptides, mirabamides E–H (101–104), which neutral-
ized HIV-1 with  IC50 values of 121, 62, 68, and 41 nmol/L, 
respectively (Lu et al. 2011). Investigation of another Stel-
letta sp. gave two cyclic depsipeptides, stellettapeptins A 
(105) and B (106), both of which potently inhibited HIV-
1RF infection in human T-lymphoblastoid cells with  EC50 
values of 23 and 27 nmol/L, respectively (Shin et al. 2015). 
A Petrosia sp. produced three new structurally related dep-
sipeptides, halicylindramides F–H (107–109), of which hali-
cylindramide F (107) showed antagonistic activities towards 
hFXR  (IC50 = 6.0 μmol/L) (Hahn et al. 2016). The structures 
of compounds 49–109 are shown as supplementary Fig. S2.

Alkaloids

Monamphilectine A (110) was a diterpenoid β-lactam alka-
loid isolated from Hymeniacidon sp. and displayed potent 
antimalarial activity with an  IC50 value of 0.60 μmol/L 
(Aviles and Rodriguez 2010). Of the baculiferins A–O 
(111–115) isolated from Iotrochota baculifera, baculiferins 
C (113), E–H (115–118), and K–N (121–124) were potently 
active against the HIV-1 IIIB virus (Fan et al. 2010). Bio-
assay-guided fractionation of an antimalarial extract from 
Plakortis lita yielded thiazine-derived alkaloids, thiapla-
kortones A–D (125–128). All compounds displayed sig-
nificant antimalarial activity  (IC50 < 651 nmol/L) (Davis 

et al. 2013). Nagelamides X–Z (129–131) were dimeric 
bromopyrrole alkaloids from Agelas sp., all with some 
degree of antimicrobial activity. Nagelamides X (129) and 
Y (130) possessed a new carbon skeleton including ami-
noimidazolidine and spiro-bonded tetrahydrobenzamino-
imidazole moieties (Tanaka et al. 2013b). Another Agelas 
sp. gave two additional unprecedent dimeric bromopyrrole 
alkaloids with antibacterial activity, agelamadins A (132) 
and B (133), which possessed agelastatin-like tetracyclic 
and oroidin-like linear moieties (Kusama et al. 2014a). 
Further investigation of Agela sp. yielded additional 
agelamadins C–E (134–136), all of which were unusual 
3-hydroxykynurenine/oroidin hybrids connected through a 
dihydro-1,4-oxazine moiety (Kusama et al. 2014b). HPLC-
UV-ELSD-MS-directed fractionation of the anti-parasitic 
extract of Monanchora arbuscula gave six new guanidine 
and pyrimidine alkaloids, of which monalidine A (137) was 
active against against Trypanosoma cruzi and Leishmania 
infantum (Santos et al. 2015b). Fascaplysinopsis reticulata 
was the source of a pair of unusual bisheterocyclic quinoli-
neimidazole alkaloids, (+)- and (−)-spiroreticulatine (138). 
The racemate and both enantiomers were significantly active 
against IL-2 production (Wang et al. 2015a). Lanesoic acid 
(139) was a new zwitterionic alkaloid featuring an unusual 
1,4,5,6-tetrahydropyrimidine cation from Theonella sp. and 
displayed selective cytotoxic activity against pancreas tumor 
cells (Rodríguez et al. 2016). Examination of Agelas mau-
ritiana revealed five new diterpene alkaloids with (+)-age-
lasine B (140) exhibiting inhibition of several cancer cell 
lines  (IC50 = 4.49–14.07 μmol/L) and antibacterial activi-
ties against five MRSA clinical isolates  (MIC90 = 1–8 μg/
ml) (Hong et al. 2017a). Lissodendoric acids A (141) and 
B (142) were manzamine-related alkaloids from Lissoden-
doryx florida, both with potent capability to decrease the 
reactive oxygen production and somewhat increase the sur-
vival of these cells upon treatment with 6-hydroxydopamine 
(Lyakhova et al. 2017). A two-sponge association (Jaspis 
sp. and Bubaris sp.) yielded two new bromotyrosine deriva-
tives, anomoian B (143) and aplyzanzine B (144). Both com-
pounds showed moderate cytotoxic activity against several 
cancer cell lines via induction of apoptosis, which was medi-
ated neither by the generation of reactive oxygen species nor 
by the inhibition of histone deacetylases in these cell lines 
(Tarazona et al. 2017). UPLC-qTOF-MS-based fractionation 
of Geodia barretti led to three new bromoindole alkaloids, 
geobarrettins A–C (145–147). Both 146 and 147 reduced 
IL-12p40 production by DCs and DCs treated with 146 
and 147 inhibited IFN-γ secretion by co-cultured T cells, 
consequently reducing Th1 responses (Di et al. 2018). Two 
further bromopyrrole alkaloids, dioxysceptrin (148) and 
ageleste C (149), came from Agelas kosrae, of which dioxy-
sceptrin (148) moderately exhibited anti-angiogenic activ-
ity as a mixture of α-amido epimers while ageleste C (149) 
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inhibited isocitrate lyase activities (Kwon et al. 2018). Leuc-
etta chagosensis produced five new imidazole derivatives, 
among which leuchagodine B (150) and bis(pyronaamidine)
zinc (151) significantly inhibited the LPS-induced produc-
tion of IL-6 in the human acute monocytic leukemia cell 
line THP-1 (Tang et al. 2018). The structures of compounds 
110–151 are shown as supplementary Fig. S3.

Terpenoids

Phorbaketals A–C (152–154), three unprecedented sester-
terpenoids with a spiroketal of hydrobenzopyran moiety, 
were isolated from Phorbas sp., which exhibited mod-
erate to weak cytotoxicity against HT-29, HepG2, and 
A549 cell lines (Rho et al. 2009). Chemical investiga-
tion of Hamigera sp. led to the isolation of alotaketals A 
(155) and B (156), two unusual sesterterpenoids contain-
ing a spiroketal substructure, both of which activated the 
cAMP cell signaling pathway with  EC50 values of 18 and 
240 nmol/L, respectively (Forestieri et al. 2009). Nine trit-
erpenoids were isolated from Callyspongia (= Siphonoch-
alina) siphonella, of which compounds 157–162 reversed 
P-gp-mediated MDR to colchicine in resistant KB-C2 cells 
over-expressing P-gp (Jain et al. 2009). Hippospongia 
lachne was the source of eight acyclic manoalide-related 
sesterterpenes, hippolides A–H (163–168), of which hip-
polides A (163) and B (164) exhibited cytotoxic and mod-
erate PTP1B inhibitory activities while hippolides A (163) 
and E (167) showed weak anti-inflammatory activity (Piao 
et al. 2011). Further examination of H. lachne gave addi-
tional five new hippolide derivatives, of which compounds 
169 and 170 moderately inhibited PTP1B with  IC50 values 
of 5.2 and 8.7 μmol/L, respectively (Piao et al. 2014). 
Phorbasones A (171) and B (172) were isolated from the 
marine sponge Phorbas sp., with phorbasone A displaying 
an induction of osteoblast differentiation (Rho et al. 2011). 
Examination of Stylissa cf. massa yielded two new amphi-
lectane-type diterpenes, 8-isocyanato-15-formamidoam-
philect-11(20)-ene (173) and 8-isothiocyanato-15-forma-
midoamphilect-11(20)-ene (174), both with antimalarial 
activity (Chanthathamrongsiri et al. 2012). Rhabdastrella 
globostellata afforded nine new isomalabaricane-type 
triterpenoids, globostelletins J–R, with globostelletins K 
(175) and L (176) moderately and selectively inhibiting 
ALK, FAK, Aurora-B, IGF-1R, SRC, and VEGF-R2 of 
16 human tumor-related protein kinases (Li et al. 2012). 
Halichonadins K (177) and L (178) were sesquiterpene 
homodimers from Halichondria sp., with halichonadin K 
(177) displaying moderate cytotoxicity to the KB cell line 
(Tanaka et al. 2012). A Phorbas sp. marine sponge yielded 
ansellone B (179), phorbadione (180), secoepoxyansellone 
A (181), and alotaketal C (182), with alotaketal C (182) 
activating cAMP signaling in HEK cells. Ansellone B 

(179) possessed an unusual heterocyclic skeleton bearing 
an oxocane ring while secoepoxyansellone A (181) had 
the first degraded “secoansellane” carbon skeleton (Daoust 
et  al. 2013). Homoscalarane sesterterpenes (183–186) 
showed different degrees of cytotoxicity with 183 and 
184 being the most potent  (IC50 = 0.26 and 0.28 μmol/L) 
(Harinantenaina et al. 2013). Phorbas gukhulensis were 
the source of diterpenoid pseudodimers, gukulenins C–F 
(187–190), all of which demonstrated significant cytotox-
icity against K562 and A549 cell lines with  IC50 values in 
the range of 0.04–0.55 μmol/L (Jeon et al. 2013). Clath-
ria gombawuiensis produced three unprecedent tetracyclic 
sesterterpenes, gombaspiroketals A–C (191–193), all with 
moderate cytotoxic and antibacterial activities (Woo et al. 
2014). Eleven new scalarane sesterterpenoids, carteri-
ofenones A–K, were isolated from Carteriospongia folia-
scens, of which carteriofenone D (194) showed cytotox-
icity against the P388 cell line  (IC50 = 0.96 μmol/L) (Cao 
et al. 2015). Of eight new 4,9-friedodrimane-type sesquit-
erpenoids from a mixture of three sponges (Smenospon-
gia aurea, Smenospongia cerebriformis, and Verongula 
rigida), compounds 195–198 suppressed β-catenin 
response transcription through degrading β-catenin and 
displayed cytotoxicity against colon cancer cells (Hwang 
et  al. 2015). Niphateolide A (199) was isolated as an 
inseparable stereoisomeric mixture at C-17 from Niphates 
olemda, which was an inhibitor of p53-Hdm2 interaction 
(Kato et al. 2015). Spongia ceylonensis afforded seven 
new spongian diterpenes, ceylonamides A–F and 15α,16-
dimethoxyspongi-13-en-19-oic acid, with ceylonamides 
A (200) and B (201) exhibiting RANKL-induced oste-
oclastogenesis with  IC50 values of 13 and 18 μmol/L, 
respectively (El-Desoky et al. 2016). Darwinolide (202), 
an unprecedented rearranged spongian diterpene, was 
isolated as an inhibitor of MRSA biofilm from Dendrilla 
membranosa (von Salm et al. 2016). Three new furanoses-
terterpene tetronic acids, sulawesins A–C (203–205), 
were isolated from Psammocinia sp., all with inhibition 
of USP7 with  IC50 values ranging from 2.7 to 4.6 μmol/L 
(Afifi et  al. 2017). Hipposponlachnins A (206) and B 
(207), featuring an unusual tetracyclo [9.3.0.02,8.03,7] 
tetradecane carbon skeleton, were isolated from H. lachne 
and inhibited β-hexosaminidase release in anti-murine 
DNP-IgE-stimulated RBL-2H3 cells (Hong et al. 2017b). 
Further examination of H. lachne led to the isolation of 
a pair of unprecedented enantiomeric sesterterpenoids, 
( ±)-hippolide J (208), both with potent antifungal activ-
ity with  MIC50 values in the range of 0.125–0.25 μg/ml 
(Jiao et al. 2017). Dysiarenone (209), featuring an unusual 
carbon skeleton, was isolated as an inhibitor of COX-2 
expression and prostaglandin E2 production from Dysidea 
arenaria (Jiao et al. 2018). The structures of compounds 
152–209 are shown as supplementary Fig. S4.
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Polyketides

Franklinolides A–C (210–212) were unusual polyketide 
phosphodiesters featuring a rare 3-O-methylglyceric acid 
phosphodiester moiety from a sponge complex, of which 
franklinolides A (210) and B (211) displayed potent cyto-
toxic activity against five cancer cell lines with  IC50 ranging 
from 1.1 to 2.5 μmol/L (Zhang et al. 2010). A two-sponge 
association of Plakortis halichondroides and Xestospongia 
deweerdtae produced two new ω-phenyl polyketide perox-
ides, plakinic acids K (213) and L (214), both with potent 
antifungal activity (MICs ≤ 0.5 μg/ml) (Dalisay et al. 2010). 
Bioassay (antitrypanosomal) guided fractionation of Pla-
kortis sp. identified two new cyclic polyketide peroxides, 
11,12-didehydro-13-oxo-plakortide Q (215) and 10-carboxy-
11,12,13,14-tetranor-plakortide Q (216). Both compounds 
significantly inhibited growth of Trypanosoma brucei brucei 
with  IC50 values of 49 and 940 nmol/L, respectively (Feng 
et al. 2010). Four additional polyketide endoperoxides, pla-
kortides R–U (217–220), came from Plakinastrella mamilla-
ris, of which plakortide U (220) was strongly active against 
the chloroquine-resistant FcM29 strain with an  IC50 value 
of 0.8 μmol/L (Festa et al. 2013b). Examination of Plakor-
tis cfr. Lita led to eight new endoperoxyketal polyketides, 
of which manadoperoxides F–I (221–224) and manadop-
eroxide K (225) displayed varying levels of antiprotozoal 
activity against Trypanosoma brucei rhodesiense and Leish-
mania donovani with  IC50 values ranging from 0.062 to 
5.73 μmol/L (Chianese et al. 2012). Chemical investigation 
of Plakortis simplex gave six new cyclic peroxides 226–231, 
all with cytotoxic activity against RAW264.7 cells and anti-
fungal activity against Candida albicans (Oh et al. 2013). Of 
the five new endoperoxide polyketides (232–236), obtained 
from P. simplex, all but 233 exhibited antimalarial activity 
against D10 and W2 Plasmodium falciparum strains (Chia-
nese et al. 2014). Plakortis bergquistae yielded another five 
endoperoxide polyketides, manadodioxans A–E (237–241), 
with manadodioxan E (241) being active against Escherichia 
coli (Gushiken et al. 2015). Plakortis angulospiculatus was 
the source of 242, which suppressed HCT-116 cells growth 
via inducing  G2/M phase arrest and accumulating mitotic 
figures (Santos et al. 2015a). Bioassay-directed fractiona-
tion of sponges Xestospongia testudinaria and Xestospongia 
sp. led to the isolation of xestosaprol C methylacetal (243) 
and orhalquinone (244), both with potent inhibition of yeast 
farnesyltransferase  (IC50 = 0.40 and 6.71 μmol/L) (Longeon 
et al. 2010). Simplextones A (245) and B (246), identified 
from P. simplex, featured an unprecedented carbon skeleton 
with the connection of two cyclopentanes through a single 
carbon–carbon bond, both of which showed weak cytotoxic 
activity (Liu et al. 2011). P. mamillaris gave seven new oxy-
genated polyketides with plakilactone C (247) able to selec-
tively activate PPARγ with an  EC50 value of 2 μmol/L (Festa 

et al. 2012b). Further examination of P. mamillaris led to 
the discovery of one additional oxygenated polyketide, gra-
cilioether K (248), with potent pregnane-X-receptor (PXR) 
agonistic activity (Festa et al. 2013a). P. simplex yielded a 
new plakorsin D methyl ester (249), plakilactone I (250), 
plakortone Q (251), and plakdiepoxide (252), of which plak-
diepoxide (252) was a selective ligand of PPAR-γ (Chianese 
et al. 2016). Six butyrate-derived polyketides, simplexolides 
A–E (253–257) and plakorfuran A (258), were identified 
from P. simplex. Simplexolides B (254) and E (257) showed 
weak to moderate antifungal activity while simplexolide B 
(254) also displayed moderate cytotoxic and weak antileis-
manial activities (Liu et al. 2012). Another investigation of 
P. simplex gave further five polyketides, plakortoxides A 
(259) and B (260), simplextones C (261) and D (262), and 
plakorsin D (263), of which compound 3 was significantly 
active against c-Met kinase (Zhang et al. 2013). Woodylides 
A–C (264–266) were sourced from P. simplex, of which 
woodylides A (264) and C (266) showed moderate cytotoxic 
and antifungal activity and woodylide C (266) displayed 
moderate PTP1B inhibitory activity (Yu et al. 2012). Plakor-
tis cfr. Lita yielded two new endoperoxyketal polyketides, 
12-isomanadoperoxide B (267) and manadoperoxidic acid 
B (268), both with strong antitrypanosomal  (IC50 = 11 ng/
ml and 1.87 μg/ml) and moderate cytotoxic  (IC50 = 3.80 and 
7.12 μg/ml) activities (Chianese et al. 2013). PM050489 
(269) and PM060184 (270) were unusual polyketides from 
Lithoplocamia lithistoides with potent cytotoxic activity 
 (IC50 ≤ 0.61 μmol/L), excellent antimitotic properties, and 
distinct inhibition mechanisms on microtubules (Martín 
et al. 2013). Examination of H. lachne yielded hippolach-
nin A (271), possessing an unprecedented four-membered 
ring moiety, which showed potent antifungal activity with 
an MIC value of 0.41 μmol/L (Piao et al. 2013). Plakortinic 
acids A (272) and B (273) were inseparable endoperoxide 
polyketides with a bicyclo[4.2.0]octene unit from a symbi-
otic association Plakortis halichondrioides–X. deweerdtae, 
which was strongly active against DU-145 prostate and ver-
sus A2058 melanoma cancer cells with  IC50 values of 0.5 
and 0.3 μmol/L, respectively (Jimenez-Romero et al. 2017). 
Petrosaspongia sp. was the source of biakamides A–D 
(274–277). All compounds showed selective cytotoxic activ-
ities against PANC-1 cells cultured under glucose-deficient 
conditions  (IC50 = 0.5–4.0 μmol/L) via inhibiting complex I 
in the mitochondrial electron transport chain (Kotoku et al. 
2017). The structures of compounds 210–277 are shown as 
supplementary Fig. S5.

Hydroxybenzenes/Quinones

Examination of Dysidea sp. gave a new sesquiterpene amino-
quinone, dysideamine (278), having neuroprotective effects 
and inhibiting production of ROS in the IAA-treated HT22 
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cells (Suna et al. 2009). Nakijiquinones J–R (279–287) were 
sesquiterpenoid quinones from an unidentified sponge, some 
of which exhibited inhibitory activities against EGFR and 
HER2 tyrosine kinases (Takahashi et al. 2010). Chemical 
investigation of Dactylospongia elegans yielded three new 
sesquiterpene benzoxazoles/quinones, nakijinol B (288) 
and smenospongines B–C (289–290), which showed weak 
to moderate cytotoxicity against a panel of human tumor 
cell lines (Ovenden et al. 2011). Diplopuupehenone (291) 
was a new unsymmetrical puupehenone-related dimer 
from Dysidea sp. with moderate DPPH radical scaveng-
ing activity (Utkina et al. 2011). Tedania ignis was the 
source of two new strained cyclic diarylheptanoids, tedar-
enes A (292) and B (293), with tedarene A (292) inhibit-
ing LPS-induced  NO2

− production (Costantino et al. 2012). 
Bioassay-guided fractionation of Petrosia alfiani yielded 
three new xewstoquinones, 14-hydroxymethylxestoqui-
none (294), 15-hydroxymethylxestoquinone (295), and 
14,15-dihydroxestoquinone (296). All compounds showed 
different degrees of cytotoxicity, of which 14-hydroxym-
ethylxestoquinone (294) may act as to uncouple mitochon-
drial respiration and oxidative phosphorylation (Du et al. 
2012). Examination of Dysidea avara afforded four new 
sesquiterpene quinones, dysidavarones A–D (297–300), 
with dysidavarones A (297) and D (300) showing cytotox-
icity and inhibitory activity on PTP1B (Jiao et al. 2012). Of 
five new sesquiterpene quinone/phenols (301–305) from D. 
elegans, 5,8-diepi-ilimaquinone (301) and 4,5-diepi-dacty-
lospongiaquinone (302) featuring a 2-hydroxy-5-methoxy-
1,4-benzoquinone moiety activated HIF-1 and increased 
the expression of HIF-1 target gene VEGF in T47D cells 
(Du et al. 2013). NMR-directed fractionation of Hamigera 
tarangaensis led to the isolation of ten new hamigerans 
(306–405), all of which were active against HL-60 cells 
(Singh et al. 2013). Two merotriterpenoid hydroquinone 
sulfates, adociasulfates-13 (406) and -14 (407) were isolated 
as inhibitor of microtubule-stimulated kinesin ATPase from 
Cladocroce aculeata (Smith et al. 2013). Sarcotragus spi-
nosulus yielded one polyprenyl-1′,4′-hydroquinone deriva-
tive, hydroxyoctaprenyl-1′,4′-hydroquinone (408), which 
significantly modulated the release of acetylcholine and 
glutamate in the rat cortex and hippocampus (Bisio et al. 
2014). Of unprecedented dysideanones A–C (409–411) 
from D. avara, dysideanone B (410) showed cytotoxicity 
against HeLa and HepG2 cells  (IC50 = 7.1 and 9.4 μmol/L) 
(Jiao et al. 2014a). Of 13 new sesquiterpene aminoqui-
nones from Dysidea fragilis, dysidaminones C (412), E 
(413), H (414), and J (415), 18-aminosubstituted sesquiter-
pene quinones with exocyclic double bond (Δ4,11), showed 
cytotoxicity against several cancer cell lines and exhibited 
NF-κB inhibitory activity  (IC50 = 0.11–9.65 μmol/L) (Jiao 
et al. 2014b). Eight new sesquiterpene quinol/quinones, 
dysiquinols A–D (416–419), (5S,8S,9R,10S)-18-ethoxy-

neoavarone (420), (5S,8S,9R,10S)-19-ethoxyneoavarone 
(421), (5R,8R,9S,10R)-18-ethoxyavarone (422), and 
(5R,8R,9S,10R)-19-ethoxyavarone (423), were sourced from 
D. avara. All of them were active against NCI-H929 cells, 
but only dysiquinol D (419) displayed NF-κB inhibitory 
activity  (IC50 = 0.81 μmol/L) (Jiao et al. 2015a). Three ses-
quiterpene aminoquinones with an unusual rearranged ava-
rone skeleton, dysifragilones A–C (424–426), were isolated 
as inhibitors of NO production from D. fragilis (Jiao et al. 
2015b). Spongia sp. afforded two additional sesquiterpene 
aminoquinones, langcoquinones A (427) and B (428), both 
with antibacterial activities (Nguyen et al. 2016). Three new 
sesquiterpene hydroquinones, avapyran (429), 17-O-acetyla-
varol (430), and 17-O-acetylneoavarol (431), were obtained 
as inhibitors of PTP1B from a Dysidea sp. marine sponge 
(Abdjul et al. 2016b). S. cerebriformis afforded one new 
sesquiterpene quinone, smenohaimien F (432), with moder-
ate cytotoxic activities (Huyen et al. 2017). Spongia pertusa 
Esper produce nine new sesquiterpene quinone/hydroqui-
nones (433–441), of which compound 438 demonstrated 
CDK-2 affinity  (Kd = 4.8 μmol/L) in a surface plasmon res-
onance assay (Li et al. 2017). Of three new sesquiterpene 
aminoquinones, coquinones D–F (442–444), from Spongia 
sp., only langcoquinone D (442) exhibited cytotoxic and 
antibacterial activities (Ito et al. 2018). The structures of 
compounds 278–444 are shown as supplementary Fig. S6.

Lipids

Chemical investigation of Siliquariaspongia sp. yielded 
motualevic acids A–F (445–450) and (4E)-(R)-antazirine 
(451), of which motualevic acids A–D (445–448) were 
unprecedently glycyl conjugates of the ω-brominated 
lipid (E)-14,14-dibromotetradeca-2,13-dienoic acid, and 
motualevic acid F (450) was a rare long-chain 2H-azirine 
2-carboxylic acid. Compounds 445 and 450 showed anti-
bacterial activity against Staphylococcus aureus and MRSA 
 (MIC50 = 1.2–10.9 μg/ml) (Keffer et al. 2009). Reniochalina 
sp. produced two new acetylenic alcohols (452–453) and a 
new dihydrothiopyranone (454), with compound 452 dis-
playing significantly cytotoxicity against several human 
tumor cell lines (Lee et al. 2009). Carteriosulfonic acids 
A–C (455–457) were isolated as GSK-3β inhibitors from a 
Carteriospongia sp. marine sponge (Mcculloch et al. 2009). 
Penares sp. were the source of penasins A–E (458–462), 
with penasins C–E (460–462) isolated as an insepara-
ble mixture. All of them displayed moderate cytotoxic 
activity against HeLa cells (Ando et al. 2010). Bioassay-
guided fractionation of Spongia (Heterofibria) sp. gave 
fatty acids heterofibrins A1 (463) and B1 (466), as well as 
related actyl esters, heterofibrins A2 (464), B2 (467), A3 
(465), and B3(468), with heterofibrins A1 (463) and B1 
(466) inhibiting lipid droplet formation in A431 fibroblast 
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cells (Salim et al. 2010). Examination of Petrosia sp. led 
to isolation of six linear acetylenes, ( −)-duryne (469) and 
( −)-durynes B–F (470–474), all of which showed cyto-
toxicity against HeLa cells with  IC50 values ranging from 
0.08 to 0.50 μmol/L (Hitora et al. 2011). Spirastrella mol-
lis yielded an unprecedent long-chain chlorodibromohydrin 
amide, mollenyne A (475), with significant cytotoxicity 
against HCT-116 cells  (IC50 = 1.3 μg/ml) (Morinaka and 
Molinski 2011). Placospongia sp. afforded two unprec-
edented phosphorus-containing iodinated polyacetylenes, 
phosphoiodyns A (476) and B (477), with phosphoiodyn A 
(476) being an inhibitor of hPPARδ  (EC50 = 23.7 nmol/L) 
(Kim et al. 2013). ( −)-Petrosynoic acids A–D (478–481) 
from Petrosia sp. displayed cytotoxicity to three human 
cancer cell lines and IMR-90 quiescent human fibroblast 
cells (Mejia et al. 2013). Manzamenone O (482) was an anti-
microbial trimeric fatty acid derivative from Plakortis sp., 
which possessed a novel skeleton containing C–C bonded 
octahydroindenone, dioxabicyclo[3.3.0]octane moieties, and 
three long aliphatic chains (Tanaka et al. 2013a). Placoty-
lenes A (483) and B (484) were isolated from Placospongia 
sp., with placotylene A (483) inhibiting RANKL-induced 
osteoclast differentiation (Kim et al. 2014). An unidenti-
fied sponge led to the isolation of taurospongins B (1) and 
C (2), of which taurospongin C (2) showed weak activity 
against Cryptococcus neoformans (Kubota et al. 2014). Six 
new polyacetylenic alcohols, strongylotriols A–B (485–486), 
isopellynol A (487), and pellynols J–L (488–490), were 
sourced from Petrosia sp. and Halichondria sp., with all but 
489 showing cytotoxicity against HeLa and K562 cell lines 
with  IC50 values ranging from 0.55 to 18.1 μmol/L (Gabriel 
et al. 2015). Isopetrosynol (491) was isolated as an inhibitor 
of PTP1B  (IC50 = 8.2 ± 0.3 μmol/L) from Halichondria cf. 
panicea (Abdjul et al. 2016a). Two new prolyl amides of 
polyoxygenated fatty acids, yakushinamides A (492) and B 
(493), were isolated as inhibitors of HDACs and SIRTs from 
T. swinhoei (Takada et al. 2016). Monanchoramides A–D 
(494–497) were isolated from the sponge Monanchora clath-
rata, of which monanchoramide A (494) showed weak to 
moderate cytotoxicity against MES-SA, MCF-7, and HK-2 
cell lines (Raslan et al. 2018). Bioassay-guided fractiona-
tion of Niphates sp. led to the isolation of pellynols M–O 
(498–500), each of which inhibited PC9 and HepG2 human 
cancer cell lines growth with  IC50 values of 2.9–7.6 μmol/L 
(Wang et al. 2018). The structures of compounds 445–500 
are shown as supplementary Fig. S7.

Steroids

Bioassay-guided fractionation of an antifungal extract 
from Topsentia sp. yielded two new sulfated sterols, geo-
disterol-3-O-sulfite (501) and 29-demethylgeodisterol-3-O-
sulfite (502), both of which reversed efflux pump-mediated 

fluconazole resistance in an S. cerevisiae strain overex-
pressing the C. albicans efflux pump MDR1 and in a flu-
conazole-resistant C. albicans clinical isolate (Di Girolamo 
et al. 2009). Phorbas amaranthus produced two new sul-
fated dimeric sterols, amaroxocanes A (503) and B (504), 
with amaroxocane B (504) being an effective antifeedant 
(Morinaka et  al. 2009). Three additional sterol dimers, 
fibrosterol sulfates A–C (505–507), were identified from 
Lissodendoryx (Acanthodoryx) fibrosa. Fibrosterol sulfates 
A (505) and B (506) were inhibitors of PKCζ  (IC50 = 16.4 
and 5.6 μmol/L) (Whitson et al. 2009). Topsentia sp. yielded 
24-isopropyl steroids, topsentinols K (508), L (509), and K 
trisulfate (510), of which topsentinol K trisulfate (510) was a 
potent inhibitor of the aspartic protease BACE1 with an  IC50 
value of 1.2 μmol/L (Dai et al. 2010). Four new polyhydroxy 
sterols 511–514 came from Callyspongia fibrosa with all 
but 512 displaying moderate antimalarial activity against 
Plasmodium falciparum (Rao et al. 2010). Solomonsterols 
A (515) and B (516), unprecedented C-24 and C-23 sulfated 
sterols, were the first marine natural PXR agonists isolated 
from T. swinhoei (Festa et al. 2011a). Further examination 
of T. swinhoei gave one additional potent agonist of PXR, 
malaitasterol A (517), and one dual FXR and PXR ago-
nist, conicasterol E (518) (De Marino et al. 2011b; Sepe 
et al. 2012). Crella (Yvesia) spinulata was the source of 
two dimeric steroid derivatives, shishicrellastatins A (519) 
and B (520), both with moderate inhibition of cathepsin 
B  (IC50 = 8 μg/ml) (Murayama et al. 2011). Two new sul-
fonated sterol dimers, manadosterols A (521) and B (522), 
were isolated as inhibitors of Ubc13-Uev1A interaction 
 (IC50 = 0.09 and 0.13 μmol/L) from Lissodendryx fibrosa 
(Ushiyama et al. 2012). Haliclona crassiloba produced hal-
icrasterols A–D (523–526) with halicrasterol D (526) dis-
playing antibacterial activity against Escherichia faecalis 
ATCC 29212 with an MIC value of 4 μg/ml (Cheng et al. 
2013). Chemical investigation of X. testudinaria led to the 
isolation of three new 26,27-cyclosterols, aragusterol I (527), 
21-O-octadecanoyl-xestokerol A (528), and 7β-hydroxype-
trosterol (529), of which 21-O-octadecanoyl-xestokerol A 
(528) was a potent antifouling substance (Nguyen et al. 
2013). Swinhoeisterols A (530) and B (531), new steroids 
with a rearranged skeleton featuring an unusual 6/6/5/7-tet-
racyclic ring system, were isolated as (h)P300 inhibitors 
from T. swinhoei (Gong et al. 2014). Further examination of 
T. swinhoei led to additional swinhoeisterols C–F (532–535) 
with swinhoeisterol C (532) inhibiting (h)p300 with an  IC50 
value of 8.8 μmol/L (Li et al. 2018). Cinachyrella sp. yielded 
cinanthrenol A (536), a new steroid containing a phenan-
threne and a spiro[2,4]heptane system, which demonstrated 
cytotoxicity against P-388  (IC50 = 4.5 μg/ml) and HeLa cells 
 (IC50 = 0.4 μg/ml) and estrogen activity  (IC50 = 10 nmol/L) 
(Machida et al. 2014). 24-vinyl-cholest-9-ene-3β,24-diol 
(537) and 20-methyl-pregn-6-en-3β-ol,5α,8α-epidioxy (538) 
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were isolated from Haliclona simulans, both with antitryp-
anosomal and anti-mycobacterial activities (Viegelmann 
et al. 2014). Bioassay-guided fractionation of the extract of 
Polymastia boletiformis gave two new sulfated steroid-amino 
acid conjugates (539 and 540), both with moderate antifun-
gal activity (Smyrniotopoulos et al. 2015). Examination of 
Monanchora sp. led to identification of monanchosterols A 
(541) and B (542), representing the first examples of steroids 
featuring the bicyclo[4.3.1] A/B ring system, as well as com-
pound 543. Compounds 542 and 543 significantly inhibited 
mRNA expression of IL-6 with  IC50 values of 5.0 ± 0.17 and 
5.2 ± 0.30 μmol/L, respectively (Wang et al. 2015b). Six new 
polyoxygenated steroids, gombasterols A–F (544–549), were 
sourced from C. gombawuiensis, of which 544–545 and 
548–549 moderately enhanced 2-NBDG uptake in differ-
entiated 3T3-L1 adipocytes and phosphorylation of AMPK 
and ACC in differentiated mouse C2C12 skeletal myoblasts 
(Woo et al. 2017). Inflatella sp. yielded four new oxysterols 
550–553 with compound 553 displaying essential neuropro-
tective activity in a 6-OHDA-induced model of Parkinson’s 
disease, probably via a ROS scavenging effect (Kolesnik-
ova et al. 2018). The structures of compounds 501–553 are 
shown as supplementary Fig. S8.

Conclusions and outlooks

Marine sponges continue to be prolific producers of structur-
ally diverse compounds with valuable therapeutic potential. 
In this review, we summarize sponge-derived new com-
pounds over the years 2009–2018 in terms of published year, 
chemical class, sponge taxonomy, and biological activity. 
The number of new compounds gradually decreased prob-
ably because natural product chemists turned their research 
focus to sponge symbiotic microorganisms which may be the 
real producers of bioactive compounds. More than half of 
new metabolites reported during this period showed biologi-
cal activity. The major reported bioactivities were antican-
cer/cytotoxic activity (49.1%), antibacterial activity (13.1%), 
enzyme inhibition activity (8.2%), antifungal activity (6.3%), 
and antimalarial activity (4.1%). All chemical groups dis-
played cytotoxicity as a dominant activity. Alkaloids (823) 
and terpenoids (693) represented two main structural types 
of new compounds, adding up to more than half of the total. 
Within the most prolific class Demospongiae, Orders Dicty-
oceratida, Haplosclerida, Poecilosclerida, and Tetractinellida 
contributed the largest quantities, producing 595, 455, 406, 
and 327 new compounds, respectively. Structural novelty 
and excellent pharmacological activities of some representa-
tive compounds are highlighted.

It should be noted that the statistical results of new bioac-
tive compounds are not comprehensive and influenced by 
many factors. First, not all new metabolites isolated from 

sponges were tested for biological activity because of scar-
city of quantity. Second, many bioactive compounds were 
only studied for one or two types of bioassays due to lack of 
effective biological activity screening models. Third, bio-
activity screening of new compounds from marine sponges 
probably depends on research funding, government policy, 
research facilities, industrial investment, the professional 
knowledge of scientists, and so on. On the basis of the fore-
going, more sponge-derived new natural products should 
be screened on a wider variety of bioassays, suggesting 
that effective enrichment of trace compounds and enhanced 
methods in bioactivity screening technologies are important.

Based on the summary above, the potential of marine 
sponges as prolific sources of novel bioactive compounds 
in marine drugs research and development is undisputed. 
There are still plenty of molecules with therapeutic potential 
to be discovered from sponges. It is worth mentioning that 
sponges as animal hosts are important microbial fermenters. 
The discovery of huge microbial diversity in sponges, the 
true producers of secondary metabolites, the mass produc-
tion of trace amounts of compounds by symbiotic microor-
ganisms, and the symbiotic relationship between sponge host 
and microorganisms make marine sponges very important 
and provide many interesting research opportunities.
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