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Abstract
Ascidian-derived microorganisms are a significant source of pharmacologically active metabolites with interesting structural 
properties. When discovering bioactive molecules from ascidian-derived fungi, two new phenols, roussoelins A (1) and B 
(2), and ten known polyketides (3–12) were isolated from the ascidian-derived fungus Roussoella siamensis SYSU-MS4723. 
The planar structure of compounds 1 and 2 was established by analysis of HR-ESIMS and NMR data. The conformational 
analysis of the new compounds was assigned according to coupling constants and selective gradient NOESY experiments, 
and absolute configurations were completed by the modified Mosher’s method. Among the isolated compounds, 1, 2, and 9 
showed moderate antioxidant capacity.
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Introduction

Marine organisms have been a significant natural source for 
the discovery of multiple pharmacologically active mole-
cules with various structures (Blunt et al. 2017, 2018; Car-
roll et al. 2019; Jiang et al. 2020; Liu et al. 2019). Among 
them, about 150 molecules with a wide range of bioactivi-
ties have been discovered from ascidian-derived microor-
ganisms (Bugni and Ireland 2004; Chen et al. 2018; Donia 
et al. 2006). For instance, the lomaiviticins A and B with an 
intricate dimeric diazobenzofluorene glycoside structure and 
antitumor activity were discovered from ascidian-derived 

Actinomycetes Micromonospora lomaivitiensis (He et al. 
2001). The ascidian-associated fungus Eurotiomycetes 
strain 110,162 produced an anti-mycobacterial oxazinin A 
that contained a unique dimeric structure (Lin et al. 2014b). 
Another ascidian-derived fungus Trichobotrys effuse 4729 
yielded an anti-glioma trichobamide A that was a pyrroci-
dine alkaloid containing a novel tetrahydro-5H-furo[2,3-b]
pyrrol-5-one moiety (Chen et al. 2019b).

Since the first report in 1997 from Crews’ research 
group describing the chemical investigation of a fungus 
Pithomyces sp. (isolated from the Indo-Pacific tunicate 
Oxycorynia fascicularis) to afford polekeides (pitholides 
A–D) (Wang et al. 1997), a total of 52 new metabolites 
have been reported from 22 research papers involved in 
ascidian-derived fungi (Belofsky et al. 2000; Bugni et al. 
2000; Chen et al. 2019a, b; Dewapriya et al. 2017, 2018; 
Garo et al. 2003; Ivanets et al. 2018; Li et al. 2020; Lin 
et al. 2014a; MalmstrøM et al. 2000; Montenegro et al. 
2012; Motohashi et al. 2009; Murshid et al. 2016; Niaz 
et al. 2019; Shaala and Youssef 2015; Smetanina et al. 
2004; Song et al. 2019; Sumilat et al. 2017; Xin et al. 
2007; Yamazaki et al. 2015; Yurchenko et al. 2017). There 
were 21 strains (including one strain of unidentified fun-
gus) belonging to eight genera (Acremonium, Aspergil-
lus, Humicola, Penicillium, Pithomyces, Talaromyces, 
Trichobotrys, and Trichoderma). Penicillium (34.6%, 18) 
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and Aspergillus (28.8%, 15) each represents more than 
25% of the total and are the dominant producers of new 
metabolites, whose contributions together comprise more 
than half of the total. These new metabolites with vari-
ous structures (including polyketide, alkaloid, sesquiter-
pene, merosesquiterpene, peptide, cerebroside) displayed 
numerous biological activities, including cytotoxicity 
(Chen et  al. 2019b), antibacterial activity (Dewapriya 
et al. 2018), antifungal activity (Murshid et al. 2016), anti-
inflammatory activity (Belofsky et al. 2000; Chen et al. 
2019a), enzyme inhibitor activity (Yamazaki et al. 2015), 
and other activities (Lin et al. 2014a).

Though 25 genera fungi of 19 families in two phyla 
have been derived from the ascidian, eight genera have 
been chemically investigated and the number of reports 
describing natural products from ascidian-derived fungi 
is still low. Recently, we focused on bioactive secondary 
metabolites from ascidian-derived fungi isolated from the 
South China Sea (Chen et al. 2019a, b; Niaz et al. 2019). 
As we continue to discover bioactive molecules from 
ascidian-derived fungi, two new 5-(3-hydroxybutan-2-yl)
benzene-1,3-diol, roussoelins A (1) and B (2), together 
with ten known polyketides (3–12) were obtained from 
the ascidian-derived fungus Roussoella siamensis SYSU-
MS4723 (Fig. 1), whose secondary metabolites were stud-
ied for the first time from a genus of an ascidian-derived 
fungi. The conformational analysis was assigned accord-
ing to coupling constants and selective gradient NOESY 

experiments, and absolute configurations were finally 
identified by a modified version of Mosher’s  method 
(Ohtani et al. 1991). The cytotoxicity, anti-inflammatory, 
and antioxidant activity of these molecules are reported 
herein.

Results and discussion

The EtOAc extract of R. siamensis SYSU-MS4723 was 
subjected to repeated silica gel and Sephadex LH-20 col-
umn chromatography, followed by semipreparative HPLC, 
to afford two new phenols, roussoelins A (1) and B (2), 
and ten known polyketides (3–12).

Roussoelin A (1) was isolated as a colorless oil. The 
molecular formula  C10H14O3 was assigned by the nega-
tive HR-ESIMS ions at m/z 181.08712  [M−H]− (calcd. for 
 C10H13O3, 181.08702) (Supplementary Fig. S1), indicating 
four degrees of unsaturation. The IR spectrum (Supple-
mentary Fig. S2) of 1 revealed the presence of a hydroxy 
(3346 cm−1) group. The 1H NMR data (Supplementary 
Fig. S3) (Table 1) revealed three aromatic protons [δH 
6.13 (2H, d, J = 2.2 Hz); 6.10 (1H, t, J = 2.2 Hz)], indi-
cating a 1,3,5-trisubstituted aromatic ring; two methyls 
[δH 3.69 (1H, dq, J = 8.3, 6.3 Hz); 2.39 (1H, m)]; and 
two methyl groups [δH 1.00 (3H, d, J = 6.3 Hz); 1.26(1H, 
t, J = 6.9 Hz)]. The 13C NMR (Supplementary Fig. S4) 
and HSQC data (Table 1) of 1 showed the presence of 

Fig. 1  Chemical structures of 1–12 
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10 carbons. Among them, six  sp2 hybridized carbons 
(δC 101.5, 107.2, 107.2, 148.8, 159.4, 159.4) belonged 
to a benzene ring, while there were four remaining  sp3 
hybridized carbons, one of them (δC 73.4) directly con-
nected with a heteroatom. The planar structure of 1 was 
mainly identified by 1H-1H COSY (Supplementary Fig. 
S5), HSQC (Supplementary Fig. S6), and HMBC (Sup-
plementary Fig. S7) spectra (Fig. 2). A 3-hydroxybu-
tan-2-yl group was deduced by the 1H-1H COSY cross 
peak between H-1 and H-2, H-2 and H-3, H-3 and H-10, 
together with HMBC correlations from H-1 to C-2 and 
C-3, H-10 to C-2 and C-3. Key HMBC correlations from 
H-10 and H-3 to C-4 suggested that the 3-hydroxybutan-
2-yl group was linked to C-4 of an aromatic ring. Two 
hydroxyl groups were located on C-6 (δC 159.4) and C-8 
(δC 159.4) of an aromatic ring according to the chemical 
shift and the HMBC correlations from H-7 to C-6 and C-8. 
The planar structure of 1 was elucidated as 5-(3-hydroxyb-
utan-2-yl)benzene-1,3-diol.

The relative configuration of C-2 and C-3 in roussoe-
lin A was established through selective NOESY correla-
tions and coupling constants. A large coupling constant 
(3JH-2,H-3 = 8.3  Hz) between protons H-2 and H-3 was 
observed, indicating they should be in an anti conformation 
(Chlipala et al. 2010; Matsumori et al. 1999). In the analysis 
of anti conformation of roussoelin A, only two of the six 
possible relative conformations (blue and red color) for C-2 
and C-3 were satisfied with the coupling constant (Fig. 3). A 
1D selective gradient NOESY experiment revealed that  H3-1 
and  H3-10 do not have an NOE correlation (Supplementary 
Figs. S8, S9), indicating a relative configuration of 2S*,3S*. 
The absolute configuration of the secondary alcohol was 
resolved by a modified version of Mosher’s method. The 
(R) and (S)-MTPA chloride reacted with 1, respectively, and 
esterification occurred at the C-2 hydroxy group to produce 
the corresponding (S)-MTPA ester (1a) and (R)-MTPA ester 

(1b). The chemical shifts for H-1, H-3, and H-10 of 1a and 
1b were measured as δH 1.18, 3.09, and 1.27 for 1a and δH 
1.20, 3.04, and 1.24 for 1b, respectively. The observed dif-
ferences of chemical shifts (∆δ = δS − δR) (Fig. 4) indicated 
that the C-2 absolute configuration is S. Hence, compound 1 
was identified as shown in Fig. 1 and named as roussoelin A. 

Roussoelin B (2) was also obtained as a colorless oil and 
had the same molecular formula  (C10H14O3) as roussoelin A 
(1) established by the HR-ESIMS ions at m/z 181.08712 
 [M−H]− (calcd. for  C10H13O3, 181.08702). Compound 2 
shared the same planar structure as 1, and was further identi-
fied by 2D NMR spectra (1H-1H COSY, HSQC, and HMBC) 
(Fig. 2). The chemical shift variation of C-1 (δC 22.0, δH 
1.00 for 1; δC 20.1, δH 1.10 for 2), C-2 (δC 73.4, δH 3.69 for 
1; δC 72.8, δH 3.82 for 2), C-3 (δC 49.6, δH 2.39 for 1; δC 
48.4, δH 2.58 for 2), and C-10 (δC 18.7, δH 1.26 for 1; δC16.9, 
δH 1.18 for 2), together with the different specific rotations 
([α]20

D
 −6.6 (c 0.20, MeOH) of 1; [α]20

D
 +18.5 (c 0.20, 

MeOH) of 2) suggested that 2 was a stereoisomer of 1. Simi-
larly, the protons H-2 and H-3 were in an anti conformation 
on the base of a relative large coupling constant 
(3JH-2, H-3 = 6.3 Hz). Only two of the six possible relative 
conformations for C-2 and C-3 were satisfied (Fig. 3). A 
selective NOE experiment revealed that  H3-1 and  H3-10 have 
a strong NOE correlation (Supplementary Figs. S17, S18), 
indicating a relative configuration of 2R*,3S*. The stereo-
structure of C-2, bearing a secondary hydroxy group, was 
identified as R on the base of the modified Mosher’s method 
compared to the chemical shifts for H-1, H-3, and H-10 (1a 
δH 1.19, 3.02, and 1.22; 1b δH 1.08, 3.03, and 1.28) (Fig. 4). 
Thus, roussoelin B (2) was 2-epimer of roussoelin A.

Table 1  1H (400 MHz) and 13C (100 MHz) NMR spectroscopic data 
for compounds 1 and 2 in  CD3OD

No. 1 2

δC, type δH, mult (J in Hz) δC, type δH, mult (J in Hz)

1 22.0,  CH3 1.00, d (6.3) 20.1,  CH3 1.10, d (7.3)
2 73.4, CH 3.69, dq (8.3, 6.3) 72.8, CH 3.82, p (6.3)
3 49.6, CH 2.39, m 48.4, CH 2.58, p (7.0)
4 148.8, C 147.9, C
5 107.2, CH 6.13, d (2.2) 107.7, CH 6.20, d (2.2)
6 159.4, C 159.2, C
7 101.5, CH 6.10, t (2.2) 101.5, CH 6.10, t (2.2)
8 159.4, C 159.2, C
9 107.2, CH 6.13, d (2.1) 107.7, CH 6.20, d (2.2)
10 18.7,  CH3 1.26, d (6.9) 16.9,  CH3 1.18, d (7.1)

Fig. 2  Key 1H-1H COSY (red line) and HMBC (blue arrow) correla-
tions of compounds 1 and 2 (color figure online)
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The known compounds, 4-hydroxyscytalone (3) (Cim-
mino et al. 2016), 4,6,8-trihydroxy-3,4-dihydronaphthalen-
1(2H)-one (6-hydroxyisosclerone) (4) (Yan et al. 2008), 
acremonone F (5) (Angelie et al. 2002), xestodecalactone 
A (6) (Angelie et al. 2002), corynechromone K (7) (Dong-
Lin et al. 2015), corynechromone A (8) (Dong-Lin et al. 
2015), (3Z,5S,6E,8S,9S,10R)-8-chloro-5,8,9,10-tetrahydro-
5,9-dihydroxy10-methyl-2H-oxecin-2-one (9) (Greve et al. 
2008; Zheng et al. 2015), modiolide A (10) (Greve et al. 

2008), curvulide B1 (11) (Greve et al. 2008), and curvulide 
B2 (12) (Greve et al. 2008) were verified by 1H and 13C 
NMR, ESI–MS, and optical rotation data analysis, as well 
as comparison of spectroscopic data with literature.

All isolated compounds were tested for their anti-inflam-
matory activity in vitro by inhibition of LPS-activated NO 
production in RAW264.7 cells with the Griess assay and 
their cytotoxicity using MCF-7 (breast cancer), HepG2 (liver 
cancer), and A549 (lung cancer) human cell lines. None of 
them showed inhibition activity or cytotoxicity at 50 μmol/L. 
Compounds 1–12 were also evaluated using the total anti-
oxidant capacity assay kit with a rapid ABTS method. Only 
compounds 1, 2, and 9 showed moderate total antioxidant 
capacity (0.65 of 1; 0.61 of 2; 0.32 of 9) with Trolox as 
a positive control (Fig. 5). Phenolic compounds (including 
cinnamic acids, benzoic acids, flavonoids, proanthocya-
nidins, coumarins, stilbenes, lignans, and lignins) are the 
most widespread class of metabolites in nature (Pereira et al. 
2009). The antioxidant capacity of phenolic compounds 1 
and 2 should be attributed to their ability to chelate metal 
ions involved in the production of free radicals and suggests 
that chemical protection of symbiotic microbes are benefitial 
to ascidians screening UV or inhibiting enzymes involved in 
radical generation (Cos et al. 1998).

Materials and methods

General experimental procedures

Optical rotations were measured on an MCP 200 polarimeter 
(Anton Paar, China). Infrared spectroscopy was performed 
on a Fourier transformation infrared spectrometer coupled 
with infrared microscope EQUINOX 55 (Bruker, Germany). 
1D and 2D NMR data were measured on Bruker Avance 400 
or 600 MHz spectrometers (Bruker, Germany) using tetra-
methylsilane (TMS) as the internal standard. Electrospray 

Fig. 3  Newman projection for C-2 and C-3 of compounds 1 and 2. 
Six possible relative conformations are shown: (top) 2S*,3S* and 
(bottom) 2R*,3S* (LG  large coupling constant, SM small coupling 
constant)

Fig. 4  ∆δ = δS − δR values in 
ppm obtained from the MTPA 
esters of 1 and 2 
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mass spectrometry (ESIMS) was obtained on an ACQUITY 
QDA (Waters Corporation, USA). High resolution electro-
spray mass spectrometry (HR-ESIMS) was tested on an 
LTQ-Orbitrap LC–MS spectrometer (Thermo Corporation, 
USA). Column chromatography was carried out on silica 
gel with 200–300 mesh (Qingdao Marine Chemical Fac-
tory, China) and Sephadex LH-20 (GE Healthcare, UK). 
High  performance  liquid  chromatography (HPLC) was 
performed on on Essentia LC-16 with an SPD-16 Detector 
(Shimadzu, China).

Fungal material

In this study, the fungus SYSU-MS4723 was isolated from 
an ascidian Styela plicata, which was collected in the Mirs 
Bay (22°33′22.1′′N, 114°27′09.3′′E), Shenzhen, Guangdong 
Province, China, in April 2016. Purified fungus was isolated 
from ascidian on the base of the standard protocol (Kjer 
et al. 2010). The strain was identified to be R. siamensis 
SYSU-MS4723 on the base of morphological characteristics 
and the ITS region (Raja et al. 2017). The sequence data of 
the fungal strain have been submitted and deposited at Gen-
Bank with accession no. MH465397. The voucher specimen 
was preserved on potato dextrose agar slants at 4 °C at the 
School of Marine Sciences, Sun Yat-Sen University.

Extraction and isolation

The strain SYSU-MS4723 was cultured in autoclaved 
solid-substrate rice medium on sixty Erlenmeyer flasks 
(each flask containing 60 ml rice and 60 ml 3% artificial 
sea water) for 30 days under static conditions and day-
light. Following incubation, the fungal solid-substrate 

rice medium was extracted three times with MeOH sol-
vent to afford the crude extract. The crude extract was 
then extracted three times with EtOAc solvent and evapo-
rated under reduced pressure to give a dark brown residue 
(18.5 g). The EtOAc extract residue was then subjected 
to flash column chromatography on silica gel eluted by a 
gradient of petroleum ether/EtOAc from 100:0 to 0:100 
to separate into seven fractions (Fr. A–Fr. G). Fraction 
B was divided into five subfractions Fr.B.1–Fr.B.5 by 
Sephadex LH-20 (CC, 3 × 50 cm) eluting with MeOH-
CH2Cl2 (v/v, 1:1). Fr.B.3 was subsequently performed 
on silica gel CC eluted by PE-EtOAc (v/v, 70:30) to give 
Fr.B.3.1–Fr.B.3.6. Then compound 6 (3 mg) was puri-
fied from Fr.B.3.3 subjected to Sephadex LH-20 (CC, 
3 × 50  cm) and eluted with MeOH-CH2Cl2 (v/v, 1:1). 
Fr.B.3.4 was purified by the semi-preparative PR-HPLC 
(MeOH-H2O, v/v, 75:25, 1.5 ml/min, ultimate  C18 col-
umn 10 × 250 nm, 5 μm) to yield compound 7 (3 mg, 
tR = 15.5 min). Compound 8 (3 mg) was directly purified 
from Fr.B.4 performed on silica gel CC by elution with 
PE-EtOAc (v/v, 70:30), while compounds 3 (4 mg) and 
4 (5 mg) were isolated from Fr.B.3.5 using the silica gel 
CC eluted by MeOH-CH2Cl2 (v/v, 3:97). Then Fr. C was 
subjected to Sephadex LH-20 (MeOH-CH2Cl2, v/v, 1:1) to 
produce Fr.C.1–Fr.C.6, and Fr.C.4 was chromatographed 
on a silica gel with MeOH-CH2Cl2 (4:96) to afford five 
subfractions (Fr.C.4.1–Fr.C.4.5). The new compounds 1 
(4 mg, tR = 17 min) and 2 (4 mg, tR = 18 min) were puri-
fied by semi-preparative PR-HPLC (MeOH-H2O, v/v, 
75:25, 1.5 ml/min, ACE 5 C18-PFP column 250 × 10 mm, 
5 μm) from Fr.C.4.4. The fourth fraction D was applied 
to a Sephadex LH-20 (MeOH-CH2Cl2, v/v, 1:1) to yield 
Fr.D.1–Fr.D.5. Subsequently, compounds 11 and 12 (3 mg, 
tR = 23.5 min; 2 mg, tR = 24.3 min) were purified from 
Fr.D.5 by semi-preparative PR-HPLC (MeOH-H2O, v/v, 
70:30, 1.5 ml/min, ACE 5C18-AR column 250 × 10 mm, 
5 μm). Fr. E was also applied to Sephadex LH-20 (MeOH-
CH2Cl2, v/v, 1:1) to yield Fr.E.1–Fr.E.5. Fr.E.4 was chro-
matographed on a silica gel column with PE-EtOAc (v/v, 
50:50) to give four subfractions (Fr.E.4.1–Fr.E.4.5). 
Fr.E.4.3 was performed on silica gel CC eluted by MeOH-
CH2Cl2 (v/v, 5:95) to afford 5 (3 mg) and 9 (6 mg). And 
Fr.E.4.5 was subject to silica gel CC eluted by MeOH-
CH2Cl2 (v/v, 5:95) to obtained 10 (4 mg).

Roussoelin A (1): colorless oil; [α]20
D

 −6.6 (c 0.20, 
MeOH); IR (neat) vmax 3346, 2978, 2918, 2850, 1601, 
1462, 1329, 1151, 1084, 989, 931, 839, 700 cm−1; 1H 
NMR (400  MHz,  CD3OD) and 13C NMR (100  MHz, 
 CD3OD) data see Table 1; HR-ESIMS m/z 181.08712 
 [M−H]− (calcd. for  C10H13O3, 181.08702).

Roussoelin B (2): colorless oil; [α]20
D

 18.5 (c 0.20, 
MeOH); IR (neat) vmax  cm−1 3329, 2972, 2924, 1603, 

Fig. 5  Antioxidant capacity of compounds 1, 2, and 9 as determined 
by ABTS
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1454, 1342, 1149, 997, 841, 700; 1H NMR (400 MHz, 
 CD3OD) and 13C NMR (100  MHz,  CD3OD) data see 
Table 1; HR-ESIMS m/z 181.08712  [M−H]− (calcd. for 
 C10H13O3, 181.08702).

Preparation of (S)‑MTPA ester and (R)‑MTPA ester

(S)‑MTPA ester (1a) and (R)‑MTPA ester (1b)

Compound 1 (1.0 mg) dissolved in pyridine-d5 (0.5 ml) in 
an NMR tube, and then (R)-MPTACl (5.0 μl) was added 
to react at room temperature for 24 h. Then the 1H NMR 
spectrum of the (S)-MTPA ester derivative (1a) was meas-
ured directly on the reaction mixture (Hoye et al. 2007; 
Zhang et al. 2017). 1H NMR (selected signals, pyridine-d5, 
400 MHz) δH: 1.18 (3H, d, H-1), 3.09 (1H, m, H-3), 1.27 
(3H, d, H-10).

Similarly, another reaction of 1 (1.0 mg), (S)-MPTACl 
(5.0  μl), and pyridine-d5 (0.5  ml) was performed as 
described above for 1a to afford 1b. 1H NMR (selected 
signals, pyridine-d5, 400 MHz) δH: 1.20 (3H, d, H-1), 3.04 
(1H, m, H-3), 1.24 (3H, d, H-10).

(S)‑MTPA ester (2a) and (R)‑MTPA ester (2b)

(S)-MTPA ester (2a) and (R)-MTPA ester (2b) were 
obtained by refering to the above method. 1H NMR 
(selected signals, pyridine-d5, 400 MHz) 2a δH: 1.19 (3H, 
d, H-1), 3.02 (1H, m, H-3), 1.22 (3H, d, H-10). 2b δH: 1.08 
(3H, d, H-1), 3.03 (1H, m, H-3), 1.28 (3H, d, H-10).

Cytotoxic assay

All compounds were tested for cytotoxicity against MCF-7 
(breast cancer), HepG2 (liver cancer), and A549 (lung can-
cer) human cancer cell lines. Human cancer cell lines were 
purchased from the cell bank of the Chinese Academy 
of Sciences (Shanghai, China). The cytotoxicity assay 
was based on the MTT method according to previously 
reported procedures (Chen et al. 2016).

Anti‑inflammatory assay

All compounds were tested for their anti-inflammatory 
activity on the basis of previously reported procedures 
(Zhang et al. 2019).

Total antioxidant capacity assay

Total antioxidant capacity assay kit with a rapid ABTS 
method (Beyotime Institute of Biotechnology, China) was 
used to evaluate the total antioxidant capacity based on the 

manufacturer’s instructions. Samples were incubated at 
25 °C for 6 min and then were recorded at 414 nm using a 
multimode reader (Thermo Fisher Scientific, USA).
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