
Vol.:(0123456789)

SN Computer Science (2023) 4:161 
https://doi.org/10.1007/s42979-022-01553-8

SN Computer Science

ORIGINAL RESEARCH

Invasive or More Direct Measurements Can Provide an Objective 
Early‑Stopping Ceiling for Training Deep Neural Networks 
on Non‑invasive or Less‑Direct Biomedical Data

Christopher W. Bartlett1,2  · Jamie Bossenbroek2,3 · Yukie Ueyama4 · Patricia McCallinhart4 · Olivia A. Peters5 · 
Donna A. Santillan5 · Mark K. Santillan5 · Aaron J. Trask1,4 · William C. Ray1,6

Received: 19 February 2022 / Accepted: 8 December 2022 / Published online: 12 January 2023 
© The Author(s) 2023

Abstract
Early stopping is an extremely common tool to minimize overfitting, which would otherwise be a cause of poor generali-
zation of the model to novel data. However, early stopping is a heuristic that, while effective, primarily relies on ad hoc 
parameters and metrics. Optimizing when to stop remains a challenge. In this paper, we suggest that for some biomedical 
applications, a natural dichotomy of invasive/non-invasive measurements, or more generally proximal vs distal measure-
ments of a biological system can be exploited to provide objective advice on early stopping. We discuss the conditions where 
invasive measurements of a biological process should provide better predictions than non-invasive measurements, or at best 
offer parity. Hence, if data from an invasive measurement are available locally, or from the literature, that information can 
be leveraged to know with high certainty whether a model of non-invasive data is overfitted. We present paired invasive/
non-invasive cardiac and coronary artery measurements from two mouse strains, one of which spontaneously develops type 
2 diabetes, posed as a classification problem. Examination of the various stopping rules shows that generalization is reduced 
with more training epochs and commonly applied stopping rules give widely different generalization error estimates. The 
use of an empirically derived training ceiling is demonstrated to be helpful as added information to leverage early stopping 
in order to reduce overfitting.
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Introduction

Despite rapid advances in machine learning, solutions to 
the problem of overfitting remain primarily ad hoc. Caught 
between the horns of a dilemma, a data scientist usually 
wishes to maximize the predictive capability of a model, 
while avoiding over-learning the data and losing general-
ity. This challenge may be faced without adequate infor-
mation regarding both what is “good enough” for model 

performance, and what is “too good” and verging into the 
realm of overfitting. Across machine learning, poor gener-
alization is dealt with by constraining the model fitting to 
favor simpler models, a process known as regularization. 
Some methods penalize the parameters directly while other 
methods penalize overfitting implicitly, such as randomly 
shutting down nodes while training a neural network, known 
as dropout.

Early stopping is another common regularization method. 
Early stopping is appealing because it does not make 
assumptions about the informational distribution of the 
model. It assumes only that the early model learns general 
features of the training data, and that it increasingly learns 
specific features of the data as additional training epochs are 
conducted. The simplest application is to train the network 
for many epochs, saving model weights at each epoch, and 
then to pick the epoch with the lowest validation error (and, 
therefore, the least generalization error). The goal of early 
stopping is to stop at the ideal epoch without the cost of 
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generating the entire error validation curve. However, there 
currently does not appear to be a general solution for predict-
ing ideal early-stopping points.

For some specific applications, such as medical imag-
ing, we propose an empirical bound that can effectively be 
considered a hard ceiling on the best possible performance a 
deep neural network (DNN) could attain, in effect allowing 
us to know what is “too good” and, therefore, verging into 
the realm of overfitting. Such a ceiling offers guidance on 
when continued training is not advantageous, albeit under 
certain regularity conditions we will discuss below.

For biomedical problems, the availability of invasive 
measurements may provide insight into the information 
available in non-invasive measurements. We propose the 
following postulate about information content for machine 
learning as the premise of our contribution.

A priori, the information in a non-invasive, surface-meas-
ured correlate of some underlying biomechanical phenom-
enon cannot exceed the information content of an invasive 
measurement of the underlying phenomenon itself.

Not all variation is useful for prediction, and the predic-
tive power of a system is limited by both the noise in the 
measurement system, the latent signal being measured, and 
any ambiguity or noise in the classification system for the 
desired output. We presume the following logic. To the 
extent that invasive measurements relate to the same or 
a highly correlated underlying phenomenon as a congru-
ent non-invasive measurement, the invasive measurement 
should offer the better attainable predictive power. There-
fore, when training a DNN on data from a non-invasive 
measure, we claim that going beyond the predictive ceiling 
bounded by the invasive measure’s performance is a clear 
indication of overtraining and poor generalization.

Defining Quantitative Goals for Machine Learning

The concept of early stopping is often discussed in the DNN 
literature as a type of convergence criteria. When the loss 
in the validation dataset levels off across training epochs, 
the DNN has learned the generalizable aspects of the data. 
Continuing to train will only cause memorization effects, 
where aspects of the training data become more emphasized 
to the detriment of generalization.

In practice, the situation is more complex. Validation 
loss curves by epoch are not guaranteed to be smooth, 
and often are not. One might stop at a local minimum. 
Any convergence criteria formed through a simple heu-
ristic may underperform. To train for more epochs offers 
the chance to see if the loss function has a lower local (or 
hopefully the global) minimum but can be costly and time-
consuming. In addition, to be fully certain that the valida-
tion loss curve is accurate requires independent test data 
that has not been seen by the DNN classifier in training. 

Certainly, in biomedical applications, such hold-out data 
can be limited and potentially costly, such as when study-
ing rare/uncommon disease populations.

The balance of finding empirical guidance regarding 
when to stop training a DNN versus how much test data is 
available is not quantitatively defined in the literature and 
remains an unsolved problem.

Early stopping is the best-known heuristic and many 
important attempts to formalize the concept have been put 
forward. For example, Prechelt defines a family of metrics 
[2], each of which could be used in an early-stopping rule. 
Both dataset sizes and computational power have grown 
exponentially since then, so the empirical evaluation of 
the best metric may be different today. In addition, sev-
eral attempts to formalize both metrics and early-stopping 
algorithms that may perform well in our setting, have 
appeared in the literature for other specific applications 
[2, 3].

In this study, we offer a different point of view of the 
early stopping problem, borne from the authors’ experi-
ence with experimental systems: Invasive measurements 
in a biological system could offer the best attainable meas-
ures of the system’s intrinsics while non-invasive measure-
ments are more distal, and can at best equal the predictive 
power of DNN’s trained on invasive measurements.

We present this as a form of outside knowledge to 
inform our early stopping rules. Having classifiers trained 
on invasive measurements as a quantitative benchmark 
provides an empirical ceiling for training non-invasive 
measurements. This assumes that invasive measurements 
of reasonable quality are, or have been, available for 
machine learning with appropriately vetted model perfor-
mance. In the life sciences, this assumption is true with 
reasonable frequency. Over time, there have been many 
invasive studies of discrete biomechanical organismal sys-
tems. Sometimes these were performed to acquire primary 
or secondary data for a research study, some collected for 
standard-of-care record-keeping, and others acquired out 
of pure curiosity about biological function. Much of these 
data would be difficult to acquire prospectively, due to bio-
ethics concerns, a limited understanding of the full utility 
of the invasively-acquired data, or the simple challenge 
of enrolling sufficient test subjects in a timely fashion. 
However, the wealth of outside knowledge that can be 
gleaned from such studies can significantly augment what 
can be learned from modern studies using less invasive 
techniques.

In what follows, we analyze both invasive and non-
invasive measurements on the same animals in order to 
predict disease status. However in most research contexts, 
data from invasive measurement machine learning could 
be taken from the literature or developed from publicly 
available datasets.
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Related Work

The concept of early-stopping predates the current DNN 
literature and early attempts to define useful metrics for 
evaluating potential stopping points were defined prior to 
the recent rapid growth of available data (e.g., Prechelt’s 
work in 1998 [2]). Interestingly, the general ideas behind 
those metrics are still part of common practice today and are 
available in widely used packages for machine learning such 
as Tensorfow [4]. Early stopping uses training and validation 
datasets to assess changes in model generalization. When 
the validation error goes up, productive training is stopped.

Critically, the approach underlying all current methods, 
relies on analyzing the trajectory of the training results with 
the subject data itself. Different methods make different 
heuristic choices regarding what properties of the trajec-
tory indicate that validation error has leveled off or begun 
increasing, but all base their decisions on the behavior of 
training on data of the same type and source as that to be 
learned.

For example, in many approaches, the number of epochs 
of stalled progress or increasing error during which training 
continues before early stopping is controlled by a parameter 
called “patience”. The patience metric approach is not com-
putationally demanding, which is a strength of the approach 
[4, 5]. Using the patience approach, the DNN is trained, and 
for any epoch where the validation error is smaller than any 
previously observed, those model parameters are saved [6]. 
Once the generalization gap—the gap between the training 
error and validation error—increases to the point that further 
training seems unfruitful to continue, then the model param-
eters associated with the lowest validation error are chosen 
as the final classifier. Typical values for patience range from 
3 to 6 epochs.

Many variations on the basic theme of early stopping con-
tinue to be developed. Much of the literature offers heuristics 
that are elucidated in a context-specific way. In breast cancer 
research, a rising trend in validation loss has been described 
but not quantitatively defined [7]. Overfitting in the context 
of feature selection had an early-stopping algorithm defined 
to reduce computing time per cross validation step [8]. In 
the context of fuzzy clustering coupled to a neural network, 

a patience value of 6 was recommended [9]. In fact, the 
patience value of 6 arises in other contexts too, including 
neural networks for computer vision [9, 10], a domain which 
is relevant for the present application. Metrics for early stop-
ping have been derived that offer quantitative guidance. One 
example we adopt here comes from Deng and Kwok [3]. 
Their metric tunes what is considered an upward trend in 
the validation loss at each iteration.

Despite the broad variety of earlier work on early-stop-
ping criteria, to date there has not been a systematic evalu-
ation of early-stopping metrics. Each proposed solution is 
context dependent and represents an approximation of a con-
sistent and reliable ceiling for early stopping. Table 1 sum-
marizes the criteria applied to the training trajectory for each 
of the early stopping methods evaluated in this manuscript.

In contrast to these approaches, in this manuscript we 
propose that in some cases there are sources of data external 
to the data to be learned, that can provide an objective ceil-
ing for performance on the subject data, and, therefore, can 
provide an early-stopping criteria that does not depend on 
the subject-data training trajectory.

An abbreviated version of this work has been previously 
published in the Proceedings of the International Confer-
ence on Signal Processing and Multimedia Applications 
[1]. Here, we have extended our previous work by including 
analysis of a complementary dataset that provides additional 
evidence for the utility of determining objective informa-
tional ceilings for machine learning in other informational 
contexts. This extension further enables us to generalize the 
concept of invasive versus non-invasive measures, to the 
concept of closer to or more directly measuring, versus more 
distant from or more indirectly measuring, the underlying 
pathophysiology.

The remainder of this manuscript is organized as follows: 
“The Demonstration Problems” describes the problems we 
will use to demonstrate overtraining phenomena and the 
results of different early-stopping choices; “Data Sources” 
describes the data sources used in this study; “Analysis 
Framework” describes our analysis framework. “Experimen-
tal” describes the actual data extraction, DNN training and 
experimental results; our “Discussion” discusses our results 
and their import for early-stopping choices in DNN training.

Table 1  Summary of the 
early-stopping methods used for 
comparison in this manuscript

Method Stopping Criteria Heuristic

Generalization loss Current loss divided by previous minimum loss exceeds threshold
Progress  quotientn GL smoothed over n previous epochs exceeds threshold
Patiencen n epochs of stalled progress or increasing error
Deng & Kwok Increases patience when current loss < 0.996 × previous minimum
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The Demonstration Problems

For our demonstration, we focus on Doppler (ECHO) 
sonography to measure blood flow. Doppler sonogra-
phy measures the relative speed of movement of a target 
(in this case blood) compared to a reference probe. In 
the case of blood flow in living organisms, the probe is 
placed on the skin surface and it measures the difference 
in frequency between an emitted ultrasonic waveform and 
the return wave reflected from inside the body. Adjust-
ment of the instrument enables focusing the region of 
interest at specific depths and on specific anatomy. Move-
ment within that region of interest causes a Doppler shift 
in the reflected waveform’s frequency. By this approach, 
Doppler sonography provides a non-invasive inferred 
measurement of internal blood velocity in the direction 
towards or away from the probe tip.

We apply Doppler sonography to two demonstration 
datasets: changes in blood flow in the coronary micro-
vasculature that are indicative of Coronary Microvascular 
Disease (CMD), and changes in blood flow in the umbili-
cal artery (UA) that are indicative of Intrauterine Growth 
Restriction (IUGR).

These two demonstrations offer complimentary per-
spectives on the analysis of Doppler sonography data. 
First, we discuss non-invasive measurements of blood 
flow in the heart that will later be compared to invasive 
measurements from the heart to predict disease state. Sec-
ond we continue this logic of “the closer to the patho-
physiology the better” by comparing non-invasive blood 
flow measurements of Uterine Artery (UA) flow pathol-
ogy, to even less-direct clinical data obtained from medi-
cal histories and simple office procedures (e.g., blood 
pressure). In the second case, neither the sonography nor 
the clinical data are obtained invasively, but the sonog-
raphy is closer to the physiology, and, therefore, can be 
used to inform early stopping when applying machine 
learning to the clinical data.

Echocardiography in Coronary Microvascular 
Disease

Coronary microvascular disease (CMD) is notoriously dif-
ficult to diagnose with non-invasive approaches. Current 
methods utilize only the peak velocity of the coronary flow 
pattern, and have poor predictive power [11]. TTDE data are 
typically acquired as a video of the time-varying Doppler 
signal, and a summary image from a typical TTDE experi-
ment (video fused into a single image in a fashion analo-
gous to a moving-slit aperture) is shown in Fig. 1. There 
are currently no non-invasive methods that incorporate the 
coronary flow pattern over a complete cardiac cycle to defin-
itively assess and predict the development of CMD.

Coronary blood flow (CBF) reflects the summation of 
flow in the coronary microcirculation, and we have begun 
to harness the uniqueness of the CBF pattern under vary-
ing flow and disease conditions (e.g., type 2 diabetes) to 
determine whether it might harbor novel clues leading to the 
early detection of CMD. Previous studies indicate an early 
onset of CMD in both type 2 diabetes mellitus (T2DM) and 
metabolic syndrome (MetS) that occurs prior to the onset 
of macrovascular complications (16 weeks in T2DM db/db 
mice). This results in blood flow impairments and altera-
tions in coronary resistance microvessel (CRM) structure, 
function, and biomechanics [12–21]. Collectively, these data 
strongly suggest an early onset of CMD, and, therefore, sub-
clinical heart disease, in T2DM and MetS [15]. Importantly, 
Sunyecz et al. uncovered innovative correlations between 
CRM structure/biomechanics and newly-defined features of 
the coronary flow pattern [11], some of which were unique 
to normal or diabetic mice.

We have initially utilized the CBF features from [11], in 
the presence and absence of other factors such as cardiac 
function, to develop a mathematical model that defines 6 
simple factors that contain predictive information on normal 
vs. diabetic coronary flow patterns. Utilizing a multidiscipli-
nary approach, we sought to test whether the elements that 
influence coronary flow patterning would be useful in the 
direct assessment of CMD using computational modeling. 

Fig. 1  Transthoracic Doppler echocardiography (TTDE) data are 
acquired as a video, assembled into an image, each vertical slice of 
which is a greyscale histogram of the Doppler blood-flow velocities 
at that timepoint. Many sources of noise are layered onto the Dop-
pler signal, so there is no internal reference to inform machine learn-
ing regarding the true information content. In this typical recording 
of 18 heartbeats, the data recorded for the first 10 beats represent 

physiologically realistic flow patterns, while the 11th through 16th 
beats display corrupted data due to movement of the transducer rela-
tive to the vessel being monitored. Electrocardiogram and respiratory 
recordings underlie the TTDE signal and assist in indexing the heart 
beat and identifying when predictable physiological phenomena such 
as breathing have occluded the TTDE data. Image from Bartlett et al. 
[1]
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We tested this utilizing non-invasive transthoracic Doppler 
echocardiography of coronary flow combined with simul-
taneous invasive cardiac pressure–volume loop (PV-loop) 
assessment of cardiac function.

In contrast with TTDE data which are acquired as a video 
using an externally applied transducer, pressure–volume 
loop data are acquired as paired pressure–volume meas-
urements using a probe inserted invasively into the heart. 
PV-loop data provide a completely different variety of data 
about cardiac function and the state of the cardiac micro-
vasculature, from that obtainable through TTDE. A typical 
PV-loop recording is shown in Fig. 2.

Umbilical Artery Doppler Flow in Intrauterine 
Growth Restriction

Intrauterine Growth Restriction (IUGR) is diagnosed in 
23.8% of fetuses and it has clear ramifications. It leads to 
significant perinatal morbidity and mortality, birth hypoxia, 
impaired neurodevelopment, and metabolic syndrome in 
adult life [22, 23]. Standard practice is that non-invasive 
umbilical artery Doppler flow (UADF) measurement is the 
only Doppler measurement that should be used for IUGR 
monitoring [24]. UADF metrics showing absent or reversed 
blood flow during the diastolic phase of the cardiac cycle 

are associated with stillbirth. However, UADF metrics that 
would usually be considered to be worsening—such as ele-
vations in the ratio of systolic blood flow (i.e., blood flow 
when the heart contracts) to diastolic blood flow (flow when 
the heart relaxes)—are not clearly predictive of poor out-
comes [25]. As a result, clinical factors such as pregnancy-
associated high blood pressure (pre-eclampsia), ultrasound 
measurements of fetal size and blood pressure are the current 
gold standard for prediction of IUGR. The use of simple 
UADF metrics only slightly improves the prediction of poor 
neonatal outcomes over clinical data alone (AUC increase 
from 0.74 to 0.82) [26]. The case for machine learning to 
improve the predictions of IUGR are self-evident. Machine 
learning can extract predictive information from sonographic 
image data, and learn how to predict which pregnancies can 
progress to IUGR.

Data Sources

Coronary Microvascular Disease

Two strains of mice that were 16 weeks old were housed 
under a 12-h light/dark cycle at 22◦ C and 60% humidity. 
The two strains were normal control mice ( n = 35 ) and type 
2 diabetic (DB) mice ( n = 42 ) (Jackson Laboratories). Mice 
were fed standard laboratory mice chow and allowed access 
to water ad libitum. This study was conducted in accord-
ance with the NIH Guidelines and was approved by the 
Institutional Animal Care and Use Committee at the Abi-
gail Wexner Research Institute at Nationwide Children’s 
Hospital.

TTDE Data (Non‑invasive)

Transthoracic Doppler echocardiography (TTDE) video files 
of left main coronary blood flow with ≈ 20 distinct cardiac 
cycles each were acquired from both groups of mice at base-
line (1% isoflurane anesthesia) and hyperemic (increased 
blood flow measured at 3% isoflurane anesthesia) condi-
tions following the protocol described by the Trask lab [11, 
14, 27]. These videos were exported as.avi files from the 
Vevo2100 software and analyzed using an in-house Python 
script for data pre-processing. A summary image from a 
typical TTDE experiment is shown in Fig. 1.

PV‑Loop Data (Invasive)

Invasive hemodynamic measures of cardiac function were 
terminally performed immediately following echocardio-
graphic analysis as described by Trask et al. [28]. During 
the terminal experiment, mice continued to be anesthe-
tized with isoflurane (2%) in 100% oxygen followed by 

Fig. 2  A typical pressure–volume “loop” (PV-loop) dataset. PV-loops 
are created by measuring paired values of pressure and volume in 
the left ventricle at 1000 Hz. The “loop” shape seen in PV-loop data 
can be understood in terms of the properties of a heart beat. Starting 
from the lower left, the low-pressure filling, followed by a near-fixed-
volume increase in pressure, followed by a fixed pressure decrease in 
volume, and then a relaxation to baseline pressure to fill again, com-
pletes a single beat of the heart. Measured PV values over 46 heart 
beats are colored temporally in the figure on a rainbow gradient from 
Red (initial beat) to Indigo (last beat). PV-loops are not identical beat-
to-beat due to real physiological differences in the beat-to-beat filling 
and contraction of the heart. Image from Bartlett et al. [1]
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tracheotomy and ventilated with a positive-pressure ven-
tilator (Model SAR-830P, CWE, Inc.). A 1.2F combined 
conductance catheter-micromanometer (Models FTH-
1212B-3518 and FTH-1212B-4018, Transonic SciSense, 
London, ON, Canada) connected to a pressure-conduct-
ance unit (Transonic SciSense, London, ON, Canada) 
and data acquisition system (PowerLab, AD Instruments, 
Colorado Springs, CO) was inserted into the right carotid 
artery and advanced past the aortic valve into the left ven-
tricle. Pressure–volume loops were recorded off the ven-
tilator for ≤ 10 seconds at baseline and during reduced 
preload by gently occluding the inferior vena cava with a 
cotton swab. We used approximately 30 measures obtained 
from invasive PV-loop measurements for our study. A typi-
cal PV-loop recording is shown in Fig. 2.

Post‑processed Data

Each TTDE image contained a varying number of heart-
beats (with an average of 22.63 ±7.13 heartbeats per 
image) with low noise that were suitable for analysis. The 
number of heartbeats for analysis per group was 2810 for 
control and 3021 for DB. TTDE data were pre-processed 
as described by Sunyecz et al. [11].

Intrauterine Growth Restriction

We obtained clinical, diagnostic, imaging and physiologi-
cal data from 209 obstetrical patients receiving pregnancy 
care at the University of Iowa Hospitals and Clinics as part 
of an ongoing pilot study of IUGR. Images and clinical 
data were obtained through the Maternal Child Knowl-
edgebase (MCK). The MCK is a transformative dataset 
which integrates maternal and child data from every preg-
nancy that received care at the University of Iowa Hos-
pitals and Clinics since 2010. The MCK was queried for 
records that meet these inclusion/exclusion criteria: (1) the 
record must include (a) UADF measurements, (b) complete 
maternal-child data with regards to outcomes (including 
but not limited to diagnoses, vital sign information, medi-
cations, and procedures for the maternal-fetal dyad), (c) 
meta-data on the ultrasonograms to include sonographer, 
provider, machine make and model, time/date image was 
taken and (2) sonogram images must have native binary 
image meta-data. Using ICD-10 codes (O36*, P05*, Z03*, 
Z36*), a total of 138 cases with the diagnosis of IUGR 
were identified and validated by co-author MKS who is a 
board-certified maternal-fetal medicine subspecialist. A 
total of 71 controls were matched to the cases and then 
clinically validated (also by MKS).

Clinical Data (Non‑invasive)

The ultrasound reports and the corresponding medi-
cal records of this cohort of patients were utilized to 
extract pertinent data including demographics, medi-
cal and obstetrical history data. The presence of IUGR 
( EstimatedFetalWeight < 10thpercentile ) was extracted as 
dichotomous variables ( 0 = noIUGR , 1 = UIGR ). Additional 
clinical variables included information about the pregnancy 
(e.g., gravida, parity, covariate diagnoses, medications, and 
blood pressure of the mother) and child characteristics (e.g., 
mode of delivery, APGAR scores, NICU admission, and 
sex).

UADF Data (Non‑invasive but Directly Physiology‑Based)

Umbilical artery Doppler flow sonography (UADF) video 
files of the umbilical blood flow with three to seven distinct 
cardiac cycles each were acquired from patients in the clinic 
at the University of Iowa. Screenshots of heart cycles were 
annotated for clinical variables, de-identified, and the heart 
cycles were binned by systole and diastole for analysis. Fig-
ure 3 shows a comparison between the UADF Doppler sono-
grams of a normally developing pregnancy and one from a 
pregnancy with IUGR. These images look to a non-expert 
to be almost identical, and the only clinically accepted vari-
able predicting IUGR that can be extracted from them (the 
systolic to diastolic velocity ratio) differs by far less than the 
individual-to-individual variation in either controls or cases. 
Despite this surface similarity, ML on UADF sonograms 
can distinguish between the normal and IUGR images with 
over 90% accuracy.

Post‑processed Data

Each UADF image contained one heartbeat’s cycle with 
varying numbers of images per person (with an average of 
6.5 heartbeats per person) with low noise that were suitable 
for analysis. The number of heartbeats for analysis per group 
was 215 for typical pregnancy and 741 for IUGR. IUGR 
data were pre-processed using an adaptation of our previous 
work [11].

Analysis Framework

Our framework consists of deep learning to predict binary 
classes in two biomedical problems: coronary microvascular 
disease, and interuterine growth restriction.

Invasive measures can be more informative than non-
invasive measures and, therefore, this is a readily identifi-
able distinction for analysts. However, here we introduce an 
abstracted dichotomy, that of more-direct/more informative, 
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versus less-direct/less informative data sources. In this way, 
we offer an abstraction one step removed from the invasive/
non-invasive dichotomy.

We first train using a more direct, more informative data 
source, and use the training performance of that model as 
an objective ceiling for early stopping when training on a 
less direct, less informative data source with the same goal. 
In biomedical research, direct measures of physiology can 
be (but are not uniformly) more informative than indirect 
clinical measures from patient history and physical exami-
nations. We have chosen demonstration problems that show 
both these types of distinctions.

In both demonstration cases, we first trained on measures 
are closer to the underlying pathophysiology than the second 
dataset on which we wish to train. It is important to note 
that while this might appear to simply push the problem of 
determining a training ceiling onto a different ML training 
ceiling problem, we will show that the invasive PV-loop 
data are much more amenable to classification by simple 
regression. Therefore, training the DNN for the PV-loop 
data was compared to logistic regression to show that the 
DNN performance is approximately optimal given the highly 
informative nature of invasive measurements.

In many biological systems, the literature contains well-
studied quantifications of the information content available 
for various invasive measures, and these may be used as 
ceilings for non-invasive work on those systems in lieu of 
performing an actual paired invasive study. Performance 
from training a DNN using the non-invasive data to clas-
sify control versus DB mice was compared to the invasive 
measurement performance ceiling to assess if overtraining 
has occurred. We go on to show that using both PV-loop 
and ECHO data in a DNN does not improve classification, 
indicating that no new additional information relevant to the 
classification is offered by the non-invasive measurement.

In addition, we tested several early-stopping metrics from 
the literature to assess their performance in this setting and 
to determine whether they can be misleading, relative to the 
empirical ceiling. In all analyses, data were split 80% train-
ing, 16% validation (used for testing generalization error 
each epoch), and 4% for the final out-of-sample test dataset. 
No outlier removal was applied as the exploratory analysis 
did not indicate any clear cases of outliers. The data were 
approximately balanced (see above), which is consistent 
with our experimental animal design. Our DNN implemen-
tation was in TensorFlow [4] and logistic regression was 
performed in scikit-learn [29].

Analysis of Coronary Microvascular Data

For the coronary microvascular disease experiment, each 
mouse had both a non-invasive cardiac ECHO and paired 
invasive catheterization that obtained left ventricular pres-
sure–volume (PV) loops. The ECHO data are non-invasive 
Doppler-sonographic measurements of coronary blood flow, 
while the PV-loops are direct invasive measurements of the 
pressure and volume in the heart. The volumetric change of 
the heart, and the pressure produced ultimately influence the 
coronary blood flow, so the flow being measured by the non-
invasive ECHO method is highly correlated to these invasive 
measures. The two conditions for the DNN to classify are 
normal control versus DB mouse strains.

Diabetes changes cardiovascular structure, function, and 
stiffness, directly influencing the cardiac pressure–volume 
relationship and coronary blood flow. For both ECHO and 
PV-loop data, every heartbeat provides an iteration of car-
diac data. The images from each mouse ECHO contain 
many heartbeats where each provides information for train-
ing the DNN. Labels for classification derive from the type 
of mouse.

Fig. 3  Umbilical artery Dop-
pler flow sonograms from a 
normally developing pregnancy 
(top) and from a pregnancy 
developing intrauterine growth 
restriction (bottom). The 
average systolic to diastolic 
ratio—which is the current 
Doppler standard for predict-
ing IUGR—in the top image is 
approximately 5.1, and in the 
lower image approximately 5.3 
(essentially they are indistin-
guishable), yet preliminary data 
demonstrate that ML can differ-
entiate between these and other 
similar UADF images with over 
90% accuracy
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Analysis of Umbilical Artery Data

An evaluation for a single umbilical artery was performed 
during each routine anatomy scan. The umbilical artery 
Doppler flow heartbeats were extracted from screen captures 
of the sonography software. As with coronary flow above, 
each heartbeat provides an iteration of Doppler flow data 
that can be used for classification. Labels for classification 
derive from the diagnosis of the patient (typical pregnancy 
or IUGR).

Experimental

Establishing a Ceiling Using Invasive Data

Invasive PV-loop data were used to classify mouse strain 
in a retrospective diagnostic study design. Heartbeats were 
randomly sampled across mouse strain for each batch. No 
data augmentation was applied. Batch size was set to 32 and 
the learning rate was 0.01 as part of the Adam algorithm 
[30]. The loss function was binary cross-entropy on a DNN 
with six hidden layers. Training was conducted over 2000 
epochs and the early-stopping procedure using a patience 
of 6 was applied post hoc. Waiting longer in the training 
than epoch 117 would not improve predictions and final 
test accuracy was 0.972. Logistic regression with recur-
sive feature elimination (RFE) was performed on the PV-
loop dataset. RFE selectively dropped four physiological 
parameters from the final model. Logistic regression of the 
RFE selected model gave similar prediction accuracy as the 
DNN ( accuracy = 0.971 ). As expected, results of the logistic 
regression indicated a significant association of the PV-loop 
physiological parameters with mouse strain ( �2

= 7338.1 , 
df = 15 , p < 0.0001 ). As the logistic regression model is 
less complicated than the DNN, this result highlights the 
high information content of the PV-loop data, making the 
less complicated regression model adequately powered to 
have similar predictive accuracy. From this, we infer that 
training with PV-loop data is essentially optimal for clas-
sification and can, therefore, be used as a ceiling to infer 
early stopping for non-invasive data. Given the postulate of 
the study, we assert that 97% is the ceiling for cardiac-based 
predictions of mouse strain in this experimental setting.

Evaluating the Non‑invasive Transthoracic Doppler 
Echocardiogram

For non-invasive TTDE data to classify mouse strain, the 
analysis setup was similar to the PV-loop data. Pre-pro-
cessed data were classified along 15 physiological parame-
ters, four metrics for variability and the number of heartbeats 
per animal. TTDE data exhibits scale variability due to the 

physical properties the measurement, therefore, data were 
normalized to the grand mean and standard deviation prior 
to training. Without normalization, training was inefficient 
and inaccurate (shown below). Training was conducted over 
2000 epochs and the early-stopping procedures were applied 
post hoc.

Early Stopping

We applied several early-stopping guidelines based on met-
rics and heuristics from the literature to assess how each 
performed in this setting and whether they could be mis-
leading. In addition, we used the empirical ceiling (97%) for 
additional guidance. The patience parameter is commonly 
used in the literature with values of 3 or 6  (Patience3 and 
 Patience6 in Table 2). We also used the Generalization Loss 
(GL in Table 2) metric which is a function of the loss func-
tion value in a given iteration divided by the minimum loss 
observed in any previous epoch [2]. We chose a value that 
was 5% of the initial loss. The Progress Quotient is a func-
tion of the Generalization Loss smoothed over a strip of N 
previous iterations [2]. We chose N to be 3, and 6  (PQ3 and 
 PQ6 in Table 2), to be comparable to our selected patience 
values. Lastly we implemented an early-stopping proce-
dure from a non-medical context that modifies the patience 
parameter dynamically based on the loss from the latest 
iteration [3]. If the validation loss is smaller than 0.996 
of the lowest observed up to that point, then the patience 
is increased by 0.3 times the current number of iterations. 
Training stops when patience is less than the current number 
of iterations (DK in Table 2). Accuracy from the various 
early-stopping procedures is summarized in Table 2, and the 
per-epoch accuracy and loss are shown in Fig. 4.

On the unnormalized data, the best validation accuracy 
was 0.752 across 2000 training epochs. Given the disparity 
with the normalized data, we did not analyze early-stopping 

Table 2  Summary of DNN training results by stopping rule

Note that Test Accuracy (subset) refers to hold out data from animals 
that were in the training data while Test Accuracy (novel) refers to 
data from hold-out animals that had no data in the training, valida-
tion, or test sets

# Test Test
Accuracy % Accuracy %

Epochs (Subset) (Novel)

GL 54 0.904 0.979
PQ3 61 0.909 0.975
PQ6 629 0.895 0.950
Patience3 93 0.946 0.977
Patience6 345 0.925 0.925
DK 212 0.946 0.975
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heuristics. This result highlights the critical need for pre-
processing to reduce non-biological sources of variation in 
the biomedical data for this classification task.

Prediction from Combined PV‑Loop and TTDE Data

Merging the PV-loop and TTDE DNNs into a single network 
did not improve classification (96.5%) over PV-loop data 
alone (97%)—which are the same accuracy within the vari-
ability of the design—using the same early-stopping rule as 
employed in the PV-loop only analysis. These results indi-
cate that no additional information useful for the classifica-
tion task is present in the non-invasive measurement.

Conceptual Generalization of the Invasive/
Non‑invasive Dichotomy

We applied the same paradigm to a physiology versus clini-
cal data dichotomy based on the same principle that, at least 

in this case, the physiological measurement is closer to the 
underlying pathophysiology than the routine clinical data 
included in this study. To classify IUGR using umbilical 
artery Doppler flow, we applied a well-tested convolutional 
neural network architecture (Xception) originally developed 
by Google. The network was trained on a small subset of 423 
Doppler flow images from 169 patients. A validation dataset 
of 60 images was used to monitor training progress. The 
final test dataset of 29 images from 29 patients (not included 
in training or validation data) showed 93.1% accuracy. By 
way of comparison, the ratio of Doppler flow during systolic 
versus diastolic phases of the heartbeat alone attained only 
70.2% accuracy on the same patients using a logistic model 
and 70.1% using a (fully connected) DNN. Including both 
systolic/diastolic ratio along with the clinical data known 
before birth to train the DNN, accuracy only increased to 
77% as shown in Fig. 5.

Addition of the DNN for the clinical data to the image 
analysis DNN in an ensemble does not increase accuracy. 
Taken together, these analyses indicate that the Doppler 
signal alone contains information that could be useful for 
clinical diagnostics which is not currently available to clini-
cians, and that ML can effectively extract this information. 
As it contains no additional information, training the clinical 
data DNN past the point of the Doppler flow accuracy would 
have been a clear example of memorization. As such, the 
UA Doppler flow results represent an early-stopping ceiling.

Discussion

In this paper, we develop the idea that an objective ceiling 
for early stopping using noise-prone, “distant” measure-
ments, could be derived from more direct measurements 
of an underlying process. In this case, we postulated that 
an invasive measurement should provide as much, or more 
predictive power as a non-invasive measurement of the 
same underlying process. We used data from animal exper-
iments that are part of an ongoing project to study early 
markers for a type of cardiac disease that affects blood 
flow. Cardiac catheterization to determine pressure–vol-
ume loops is an invasive measurement while sonographic 
cardiac TTDE is not. The latter is important since non-
invasive measurements are preferred for diagnostics in 
humans and machine learning on diagnostics in humans 
is an important area for biomedical science.

Yet, early stopping for noisy biomedical measurements 
in real-world applications relies on the same ad hoc proce-
dures as other machine learning applications. Though bio-
medical datasets are often expensive to obtain and difficult 
to effectively work with, perhaps in one way biomedical 
data have an advantage over naturalistic data from, for 
example, internet traffic-derived information. Biomedical 

Fig. 4  Accuracy (left y-axis) and loss (right y-axis) of the DNN 
with the training data (tan circles and green plus, respectively) and 
validation data (blue squares and black x, respectively) by epoch. As 
expected, the DNN on training data eventually becomes 100% accu-
rate with a steady decrease in loss, due to memorization. Validation 
accuracy largely levels off, while validation loss reaches a mini-
mum, and then climbs for the remainder of the 2000 epochs (data 
beyond 660 epochs not shown). Each early stopping rule application 
(described in the text and Table 2) is indicated at the epoch where the 
stopping rule was triggered. The best performance is around epoch 
100 for generalization error, and the  Patience3 procedure was the 
closest to that ideal in this scenario. Training the DNN beyond the 
invasively determined information ceiling at 97% (horizontal brown 
dashed line) should be impossible without overfitting by learning 
training-data-specific features. Assuming zero information loss in the 
indirect, non-invasive data, our information-ceiling method would 
trigger stopping at approximately 120 epochs. Image from Bartlett 
et al. [1]
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sciences can perform experiments that clearly delineate 
direct measurements of an underlying biological process 
from indirect measurements of the same process. Given 
the precept guiding this work, it is unlikely that non-inva-
sive measurements will outperform invasive measurements 
based in machine learning applications. Any time accuracy 
in the non-invasive training dataset exceeds the invasive 
performance ceiling, we can be sure that modeling is over-
training and an early-stopping rule needs to be chosen to 
find a stopping point with less generalization error.

Notably, stopping based on our criteria of training until 
the non-invasive dataset reaches the invasive performance 
(97%), would result in stopping training in this experiment 
at approximately 120 epochs, which is just past the point 
(approximately 100 epochs) when validation loss begins to 
climb. If one assumes as a heuristic that some information 
loss occurs in the indirect (non-invasive) measurement 
compared to the direct (invasive) measurement, a ceiling 
might be specified slightly below that determined from the 
invasive data, resulting in stopping somewhat earlier. This 
is near-ideal for this dataset.

Could the objective performance ceiling come from ani-
mals and applied to non-invasive human data? While this 
is tempting as a possible general rule, there are key differ-
ences between animals and humans that preclude strong 
advice. In our setting, we note that the animal models of 
cardiac function are indeed very similar in important ways 
to humans but the measurements offer a few distinct differ-
ences. First, the size of the mouse heart is much smaller. 
The ultrasound measurement procedure will have some-
what different noise issues. For example, given the size 
of the heart, noise is introduced based on the orientation 
of the ultrasound probe that is much greater than would 
be seen in humans. Second, the animals are sedated dur-
ing the sonographic TTDE acquisition, where humans 
would not be. Third, in human data, it may be possible to 
improve classification results beyond what is shown here 

using other clinical variables (such age, sex, and other 
diagnosed diseases).

We postulate that when multiple approaches are avail-
able to evaluate a system, results from a more direct meas-
urement may be used to define an information ceiling for 
the less direct measurements. In the bio/life sciences, it is 
common for there to be many different ways to measure a 
phenomenon, ranging from inexpensive indirect inferential 
measurements to expensive direct invasive measurements. 
We suggest that the results of the expensive direct inva-
sive measurements, which are frequently available in the 
literature, may be used to define informational ceilings for 
machine learning on the less expensive, indirect measure-
ments. Overall, this study is an example that offers an addi-
tional guidance possibility for machine learning researchers 
working in biomedical research or other similar experimen-
tal contexts.

Conclusions

This study provides an evidence base to develop best prac-
tices for early stopping when training deep neural networks. 
While patience is commonly available in DNN packages, 
there is a short list of competing metrics that we included in 
our study. We showed that the early-stopping metrics have 
great variability in performance. Our proposal was to use 
exogenous information to know when to stop training. For 
biological data, it is possible that training is done on more 
direct data, i.e., data collected the closest to the underlying 
physiology as possible, can be used to provide an objec-
tive ceiling for training. The logic model assumes that more 
indirect data sources must contain more noise and, therefore, 
cannot be used to train a DNN that outperforms a superior 
(more direct) dataset. We showed this principle works well 
in two biological settings, first, invasive measures versus 
non-invasive measures and second, a more direct physiology 
measurement versus a (less direct) clinical judgment. In both 

Fig. 5  The sonographic images distinguish between IUGR fetuses vs. 
control using the Xception DNN architecture (ML analysis of Dop-
pler Images), while the systolic/diastolic (S/D) ratio alone, or the S/D 
data and the clinical data,  both have predictive performance that is 

markedly reduced compared to the image analysis. These data indi-
cate that the Doppler alone contains, and ML can effectively extract, 
predictive information not previously available in routine clinical 
work
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cases, early stopping based on the more direct measurement 
performed well.
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