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Abstract
COVID-19 pandemic outbreak, caused by the SARS-CoV-2 virus, affected millions of
people worldwide causing hundreds of thousands of related fatalities. It is crucial to
understand why the virus transmission seems to spread more easily in some regions than
others. The residuals, with respect to the modeled COVID-19 per-day hospitalized
patients in intensive care unit, are correlated to the meteorological and air-pollutant
variables in four major metropolitan areas in Italy during a strict lockdown implemented
by the Italian government, making the analysis independent from socio-economic factors.
The results show that COVID-19 pandemic–related infections are slowed down by higher
tropospheric ozone concentrations and eased by the atmospheric particulate. We quanti-
tatively assessed that higher levels of tropospheric ozone, already proven effective against
viruses and microbial contaminants, play a role in flagging COVID-19 pandemic trans-
mission. Because the tropospheric ozone production is depending, among others, by air-
quality and sunlight, this can explain why the virus is spreading in different ways.
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In March 2020, the World Health Organization declared pandemic the new Sars-CoV-2 virus
outbreak that infected millions of people worldwide, with consequent hundreds of thousands
of fatalities. Understanding why the SARS CoV-2 is selectively spreading, i.e., to understand
why the virus strongly hits some parts of the world with a subsequent large number in terms of
infected people and fatalities, while others regions are spared with much lesser infected and
fatalities, is of fundamental importance to implement strategies at government level to contrast
and contain any possible outbreak. Recent studies (Liu et al. 2020; Lolli et al. 2020) have
already highlighted how the meteorological variables, e.g., temperature and humidity, can
affect COVID-19 pandemic transmission. In this study, we assessed how the atmospheric
particulate and the ozone tropospheric concentration affect COVID-19 pandemic transmission
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in four major metropolitan areas in Italy. We collected the main meteorological and air-
pollution-related variables from 1 February 2020 to 31 May 2020 in Milan, Trento, Florence,
and Rome. We tested the non-linear Kendall and Spearman correlations between those
parameters and the residual number of the hospitalized patients in the intensive care unit
(ICU) as shown in Lolli et al. (2020). The number of hospitalized patients in ICU unit is a
much stronger indicator of COVID-19 pandemic transmission because it is independent of the
number nasopharyngeal swabs performed. In agreement with Lolli et al. (2020), we consider a
delay of 19 days between the infection and the development of the acute respiratory distress
syndrome (ARDS) that requires patient hospitalization into the ICU unit in critical conditions.
For this reason, both the meteorological and air-pollution data are 19 days back time-shifted, as
shown in Lolli et al. (2020). This means that the daily number of ICU patients from 24
February 2020 to 14 June 2020 is based on infections that happened from 5 February 2020 to
26 May 2020. The ICU per-day cases are modeled following the Gaussian mixture model
(GMM) that seems to better represent the COVID-19 behavior in terms of infections and ICU
hospitalizations as reported in Singhal et al. (2020). In this study, we adopted the Bi-Gaussian
model. This choice is corroborated by some tests performed that put in evidence the inade-
quacy of a simple Gaussian in modeling the epidemiologic trend, while Gaussians with more
than three terms are overfitting the data canceling all the valuable information. The ICU hospitalized
number of patients show different trends with respect to time, i.e., in the early phase, the ICU patient
number grows exponentially up to a plateau and it is followed by an exponential drop in the late
phase. The curve symmetry is strictly dependent, among other variables, on lockdown policies
implemented at government level. For this reason, the correlation analysis would give very different
results if applied on a different temporal period, i.e., the results from Spearman and Kendall rank
tests during the growing phase will be completely different with respect to the drop phase. To make
the analysis independent on those issues, we consider instead the per-day residual number of ICU
patients with respect to the GMM model, extrapolated from the data trend. The model should
account for the natural tendency of the viral epidemic and the effect of the lock-down on it. Thus, the
residual analysis (i.e., the differences between the GMM model and the observed cases) should
preserve from spurious correlations between the above-mentioned effects and the parameters under
analysis. Indeed, the considered atmospheric parameters quickly change (sometimes day-to-day),
representing a divergence factor (residue) with respect to the model and characterizing the existing
anomaly about the classical behavior described by the model.

1 Results

In Fig. 1, we show the model, and the per-day number of ICU hospitalized patients for Milan,
Trento, Florence, and Rome and the corresponding residuals.

The correlations between COVID-19 pandemic and meteorological and air pollution
variables were investigated using non-linear Spearman and Kendall rank correlation tests.
The Spearman rank correlation non-parametric test rs is (Lolli et al. 2020):

rs ¼ 1−
6� ∑id

2
i

n n2−1ð Þ ; ð1Þ

where di is the difference between the ranks of two parameters, and n the number of
alternatives. Equation (2) shows the Kendall rank correlation non-parametric test τ:
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τ¼ concor−discor
0:5�n� n−1ð Þ ; ð2Þ

where concor represents the number of concordant pairs, while discor represents the discordant
pairs, and n is the number of pairs. Values of rs and τ equal to + 1 and − 1 imply a perfect
positive and negative correlation, respectively. We analyzed the non-linear correlation between
the daily max temperature (Tmax), the daily average temperature (Tavg), and the minimum daily
temperature (Tmin). For humidity, the correlation was tested for the maximum, average and
minimum dew point (DP) temperature, denoted as DPmax, DPavg, and DPmin, respectively.
Moreover, the water vapor (WV in g kg−1) concentration and the absolute humidity (AH) in
g m−3) through the Clausius-Clapeyron equation (Qi et al. 2020) are considered. These can be
described through the following equations:

WV¼6:22� RH �
6:112�exp

17:67�T
243:5þT

� �

P
; ð3Þ

AH ¼ 2:1674� RH �
6:112� exp

17:67� T
243:5þ T

� �

273:15þ T
; ð4Þ

where RH is the daily averaged relative humidity, T is the daily averaged temperature, and P is
the daily averaged atmospheric pressure. As for the air-pollution parameters, we tested the

Fig. 1 ICU-admitted patients fitted by a Bi-Gaussian function (red line) extrapolated from the observed data
(black circle dots). We use the residuals to investigate the correlation with the meteorological and air-pollution
variables. In blue, we show the residuals (GMM–ICU patients)
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correlations for the fine particulate matter (PM2.5) and the ozone (O3) concentrations. The
meteorological data are publicly available on https://wunderground.com, while the air-
pollution data, i.e., PM2.5 and O3 daily averaged concentrations, are freely available (or on
request for Milan and Lombardy region) from the regional environmental protection agency
websites.

The results, reported in Table 1, put in evidence that the ozone concentration, the temper-
ature, and the humidity (except for Florence) strongly negatively correlates with COVID-19
pandemic transmission for the analyzed metropolitan areas. For the PM2.5 concentrations
instead, a positive correlation is found for all the analyzed areas. Table 2 shows correlation
significance through the p value. In other words, the correlations are gauged against some
“null” hypothesis, i.e., by computing the probability that a totally uncorrelated dynamics
would generate ranks that have a Spearman and Kendall correlation at least as high as the
one computed from the actual residuals. In this work, we assume the correlation significant
when the p value is less than 0.01.

2 Discussion

To the best of our knowledge, no previous studies demonstrated a strong and clear
negative correlation between ozone concentration and COVID-19 pandemic transmis-
sion. On the contrary, positive correlations with the atmospheric particulate were already
assessed (Di Girolamo 2020). This result can be assumed as a secondary factor to explain
the differential virus transmission in the different parts of the world. Dubuis et al. (2020)
corroborates this speculation, as their findings suggest that low concentration ozone is a
powerful disinfectant for airborne viruses as well as the higher humidity of the air. Of
course, in their work, the ozone concentrations are much higher, but in the atmosphere
the ozone concentration lasts for much more time. Moreover, O3 production in the
troposphere is strongly linked to sunlight and pollutants, i.e., precursors as NO2. Con-
versely, the presence of black carbon in the polluted metropolitan areas inhibits the

Table 1 Analysis on meteorological and air pollution parameters. Temperature and ozone correlate significantly
with ICU residual patient number for the metropolitan areas; ns, a correlation not statistically significative

Kendall Spearman

Milan Trento Florence Rome Milan Trento Florence Rome

Tmax − 0.21 − 0.23 − 0.29 − 0.21 − 0.3 − 0.37 − 0.4 − 0.42
Tavg − 0.19 − 0.28 − 0.28 − 0.17 − 0.31 − 0.45 − 0.4 − 0.39
Tmin − 0.19 − 0.34 − 0.24 − 0.12 − 0.27 − 0.52 − 0.34 − 0.31
DPmax − 0.19 − 0.41 ns − 0.13 − 0.27 − 0.61 ns − 0.19
DPavg − 0.21 − 0.38 ns − 0.13 − 0.31 − 0.56 ns − 0.2
DPmin − 0.22 − 0.33 ns − 0.15 − 0.32 − 0.51 ns − 0.19
AH − 0.25 − 0.42 ns ns − 0.37 − 0.61 ns ns
WV − 0.23 − 0.41 ns ns − 0.33 − 0.62 ns ns
PM2.5 0.21 0.19 0.23 0.30 0.27 0.33 0.37 0.41
O3 − 0.22 − 0.24 − 0.2 − 0.37 − 0.40 − 0.39 − 0.31 − 0.54
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ozone production in the boundary layer (Li et al. 2005). All those factors could partially
explain the differential transmission. The results highlight that the ozone concentration
should be considered as a co-factor in COVID-19 pandemic transmission, while the
epidemiologic aspects are of paramount importance and have obviously the primary role.
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