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Abstract
Developing applications for the by-products obtained from waste processing is vital for resource recovery. The synthesis of 
 ZnCl2-activated biochar with high electrocatalytic activity was carried out by the microwave-assisted pyrolysis of pineapple 
peel and subsequent chemical activation process. Activated biochar is employed in the electrochemical sensing of nitrite by 
drop casting in a glassy carbon electrode (GCE). The activated biochar exhibited a stacked carbon sheet, 254  m2  g−1 Brunauer, 
Emmett and Teller (BET) surface area, 0.076  cm3  g−1 pore volume, 189.53  m2  g−1 micropore area and oxygen-containing 
functional groups. The electrochemical impedance spectroscopy of the modified GCE showed a reduced charge transfer 
resistance of  61%. This is crucial to determine the electrochemical properties of biochar. The sensor showed a significant 
current response and an excellent limit of detection of 0.97 µmol  L−1. The modified-activated biochar electrochemical sensor 
demonstrated high selectivity, reproducibility (RSD=2.4%), and stability (RSD=2.6%).
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Introduction

The agricultural industry generates around 23.7 million 
tonnes of food per day globally [1], but one-third of the solid 
food produced annually is wasted [2]. Food wastes cause 8% 
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of global greenhouse gas emissions [3]. Apart from food, 
agricultural waste residues also have negative impacts on the 
environment and economy [4–6]. The agricultural residues 
are classified into two types: agricultural wastes (husk, seed, 
bagasse, leaves) and industrial residues (orange peel, coco-
nut oil cake, cassava peel, soybean oil cake, etc.) [7]. The 
depletion and excessive use of natural sources have caused a 
greater interest in renewable materials generated from waste 
in the agricultural sector [8–10]. The efficient and rapid con-
version of agro-industrial waste into valuable products is 
highly desirable for reducing greenhouse gases related to 
waste accumulation [8, 11].

The conversion of solid agri-food waste into value-added 
products, i.e., biochar, bio-oil and biogas, can transform an 
unvalued material into versatile opportunities and applica-
tions [1, 12, 13]. Microwave-assisted pyrolysis of agri-food 
waste could efficiently convert by-products into a valued 
carbon material due to its electromagnetic heating allowing 
instantaneous volumetric heating and uniform distribution 
in the energetic coupling [14–16]. The synthesis of modi-
fied biochar from natural waste using microwave pyrolysis 
is an attractive alternative to producing ecological sensing 
materials [17–19]. The fabrication of biochar-modified elec-
trodes can be done in two ways, i.e., drop casting on glassy 
carbon electrodes (GCE) or by making the carbon paste of 
the biochar [18]. The application of biochar-modified elec-
trodes allows the determination of different analytes asso-
ciated with the food, agriculture, and medical industries 
[17, 18]. The satisfactory detection capacity depends on the 
electrochemical and morphological properties of the biochar 
achieved during its activation process [18, 20, 21].

The activation of biochar can be attained by two main 
mechanisms: physical and chemical activation methods. 
The physical modification consists of thermal treatment that 
produces more pore volume and a larger surface area [11, 
22]. For example, biomass activated by microwave pyrolysis 
can improve the surface area and surface functional groups. 
The improved composition of biochar can promote electron 
transfer and ion insertion rate [8, 18, 20]. The chemical acti-
vation implicates exposing the biomass or biochar (before or 
after pyrolysis) to chemical agents, such as nitric, sulfonic, 
phosphoric, and sulphuric acids. The activation through 
metal salt agents, i.e.,  ZnCl2 produces dehydration of the 
carbon during the pyrolysis process, generating carbonyl and 
carboxylate functional groups [8, 20].

For the biochar activation, the literature shows different 
biomass feedstock, thermal and chemical methods. However, 
the relationship between the intrinsic properties of activated 
biochar and electrochemical sensor performance has not 
been completely studied. The purpose of this paper is to 
synthesise electrocatalytic biochar using pineapple peel as 
a biomass feedstock and microwave-assisted pyrolysis as a 
thermochemical treatment. The experimental parameters of 

the microwave-assisted pyrolysis process were essential for 
developing a biochar material with sensing properties and 
analytical performance. The physicochemical and electro-
chemical characterisation of activated biochar indicated high 
biochar Brunauer, Emmett and Teller (BET) surface area, 
micropore structure, increased pore volume, notable charge 
transferability, good selectivity and high carbon stability.

Experimental

Biochar synthesis using microwave‑assisted 
pyrolysis

The breakdown of biomass using microwave pyrolysis 
involves electromagnetic volumetric heating in the absence 
of air to produce biochar, bio-oil, and biogas [15, 23, 24]. 
The microwave heating method transfers the energy through 
the interaction of the molecules inside the biomass rather 
than by heat transfer from external sources (dielectric 
heating) [16, 25]. The advantages of microwave-assisted 
pyrolysis are high heating efficiency, rapid reaction time, 
and control over heating [23, 26, 27]. Unlike conventional 
pyrolysis, microwave irradiation generates biochar with 
a higher fixed carbon content, significant thermal decom-
position of the lignin network, better carbon stability and 
higher surface area and pore volume [28–30]. The heating 
rate (~ 132 °C  min−1) of microwave pyrolysis is beneficial 
for the activation of biochar because it promotes the forma-
tion of microporous structures, develops oxygen functional 
groups on the surface, and gives rise to catalytic properties 
[28, 31–33]. Therefore, the thermochemical treatment of 
pineapple peel biomass and modified biochar was carried 
out using microwave-assisted pyrolysis.

Figure 1 shows the microwave pyrolysis scheme used, 
which comprises  N2 flow (5 L  min−1) that maintains an 
inert atmosphere during the experiments; a custom-made 
chamber where the biomass is placed; a reflected power 
controller; a 3 kW microwave generator; power controller; 
various condensers, whose functionality is collect liquid and 
gas by-products; and a vacuum pump. The synthesis pro-
cess of  ZnCl2-activated biochar comprises three stages. The 
first phase is biochar production using microwave-assisted 
pyrolysis. For this, pineapple peel was first washed with 
ethanol and distilled water. The cleaned biomass was dried 
in an oven at 110 °C for 24 h to reduce its moisture con-
tent to 10%. Then, the biomass was pyrolysed at 3 kW for 
30 min. The produced biochar was soaked in  ZnCl2 for 24 h 
for chemical activation. Afterwards, the biochar was dried 
overnight in an oven at 110 °C. The third phase comprised 
the second pyrolysis (calcination process) of activated bio-
char at 1.5 kW for 20 min. After the activated biochar was 
cooled to room temperature, it was washed with 1 mol  L−1 
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HCl and distilled water. Finally, the modified biochar was 
dried at 110 °C overnight.

Electrode preparation for electrochemical study

The powder-activated biochar was dispersed in ethanol and 
subjected to ultrasonic cleaning for 30 min. The electro-
chemical study was carried out by a three-electrode system. 
A GCE, Ag/AgCl electrode and platinum wire were used 
as working, reference and counter electrodes, respectively. 
The GCE surface was polished with 0.3 μmol   L−1  and 
0.5 μmol  L−1 alumina slurry to remove impurities before 
coating. Subsequently, it was cleaned with ultra-sonification 
for 10 min in ethanol and deionised water. The GCE was 
dried at room temperature. Last, the GCE was coated with 2 
µL of 1.5 mg  mL−1  ZnCl2-activated biochar using the drop-
casting technique.

Reagents and instruments

Sodium nitrite  (NaNO2), zinc chloride  (ZnCl2, 1 mol  L−1), 
and hydrochloric acid (1 mol  L−1) were purchased from 
Sigma Aldrich. The phosphate-buffered saline (PBS, pH 
7.0) solution was prepared using dibasic-Na2HPO4 and 
monobasic-NaH2PO4. Biomass feedstock applied in the 
production of modified biochar was pineapple peel which 
was obtained as food waste. The electrochemical experi-
ments were carried out on PalmSens4 potentiostat (Palm-
Sens, Houten, Netherlands). The characterisation techniques 

of the material involve the following: surface area obtained 
from micromeritics 3-flex surface and porosity analyser; 
transmission electron microscopy (TEM) imaging acquired 
from JEOL 2100 200 kV Transmission Electron Microscope 
(Joel, Peabody, MA, USA); X-ray photoelectron spectros-
copy (XPS) using a Kratos Axis Supra (AXIS  Supra+, 
Manchester, UK); Raman spectrum was collected using a 
Renishaw In-Via Micro-Raman spectrometer (inVia Qontor, 
Keyborough, Australia); thermogravimetric analysis (TGA) 
was achieved using Netzsch STA 449F3 Jupiter Simulta-
neous Thermal Analyser (Netzsch, Wittelsbacherstrasse, 
Germany).

Result and discussion

Characterisation of  ZnCl2‑activated biochar

Table 1 shows the FlashSMART CHNSO elemental analy-
sis of non-activated and activated biochar. The ultimate 
analysis of raw biomass showed oxygen as the main com-
ponent (50%). The progressive thermochemical treatment 
causes partial chemical oxygen removal and increased 
carbon content [28, 30]. The reduced O/C and H/C ratios 
indicate that during microwave pyrolysis decarboxylation 
reaction ensued, leading to a strong bond formation (car-
bon bonding) and decreased oxygen concentration [28, 
31, 32]. Unlike raw biomass, the carbon content increased 
in  ZnCl2-activated biochar by 18%, and the  oxygen 

Fig. 1  Microwave pyrolysis sys-
tem used in the  ZnCl2-activated 
biochar synthesis. The system 
components are (a) nitrogen 
gas cylinder; (b) quartz beaker 
containing biomass of pineapple 
peel; (c) custom-made pyrolysis 
chamber; (d) tuner; (e) micro-
wave generator; (f) microwave 
power controller; (g) condens-
ers; (h) vacuum pump
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concentration decreased by 75%. However, after the chem-
ical activation, the H/C ratio in  ZnCl2-activated biochar 
was slightly higher (32%) than that in non-activated bio-
char, and the O/C value increased up to 0.24. According 
to the literature, the reduction of carbon content is related 
to the formation of amorphous microporous structures of 

aromatic sheets, which occurs after the chemical activation 
and second pyrolysis process [34]. The increased O/C ratio 
indicates the formation of oxygen functional groups dur-
ing the thermochemical modification process of biochar 
[35–37]. Specifically, the biochar activation process with 
 ZnCl2 promotes the formation of carbonyl and hydroxyl 

Table 1  Elemental analysis of 
raw biomass, activated and non-
activated biochar

Sample N% C% H% O% H/C O/C

Pineapple peel 1.4 43.37 5.83 49.4 0.13 1.13
Non-activated biochar 1.02 69.25 1.37 7.27 0.02 0.11
ZnCl2-activated biochar 1.52 51.39 1.32 12.31 0.026 0.24

Fig. 2  (a) TGA curves of non-
activated biochar generated at 
3 kW for 30 min and activated 
biochar produced after chemical 
activation and second pyrolysis 
process at 1.5 kW for 20 min, 
(b) Raman spectra, and (c1)–
(c3) XPS of  ZnCl2-activated 
biochar
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groups (XPS data, Fig. 2c1) [35, 38]. The presence of 
oxygen-containing functional groups in biochar improves 
the physical adsorption and total capacitance of modified 
electrodes [39, 40].

The microwave-assisted biomass activation (thermal pre-
treatment) is attached to operational conditions, i.e., micro-
wave power and reaction time. High input power leads to 
micropore formation, and extended exposure to microwave 
irradiation involves a higher surface area and pore volume 
[28, 35, 41]. Between 400 °C and 900 °C was reached at 
a 1.5–3 kW power range for 20–30 min. The high heat-
ing rate made microwave pyrolysis an appropriate ther-
mal decomposition method for quick biomass breakdown 
(cracking of organic matter) [35, 41]. During the microwave 
pyrolysis process at 3 kW, biochar rapidly releases  H2 and 
 CH4, and produces carbonyl and carboxylate groups, which 
develop a higher surface area and micropores [18, 20, 38]. 
These physicochemical characteristics are essential for cata-
lytic activity [20, 42, 43].

ZnCl2 impregnation acts as an activating agent, causing 
the generation of deep cavities on the biochar. The BET sur-
face area and pore volume of the activated biochar increased 
to 254.91  m2  g−1 and 0.076  cm3  g−1, respectively. After 
the activation, the micropores also increased up to 189.53 
 m2  g−1. Micropore formation contributes to the electrocata-
lytic performance of modified electrodes by improving the 
adsorption of the analyte, facilitating the electrical conduc-
tivity and enhancing the sensor response [20, 44]. Table 2 
shows the specific surface area comparison between unmodi-
fied and modified biochar.

Figure 3a, b shows scanning electron microscope (SEM) 
images of the biochar produced from the impregnation of 
 ZnCl2 and the calcination process. The activation process 
had a notable impact on the surface structure of the biochar, 
causing a high concentration of pore formation with uniform 

distribution. Specifically, the penetration of  ZnCl2 into the 
biochar pores generates an expansion of pores through all 
the biochar surfaces, explaining the increased pore volume 
[45]. Also, instead of a solid structure, the formation of thin 
sheets was observed in  ZnCl2-activated biochar. Figure 3c1, 
c2 shows a high sheet carbon structure, semi-organised car-
bon layers, and stacked sheets. No crystalline rods or crystal-
line patches were observed.

TGA of activated and non-activated biochar is shown in 
Fig. 2a. The results show that between 32 °C and 150 °C, 
there is slightly more weight loss in  ZnCl2-activated bio-
char (5%) than in the non-activated biochar (3%). The main 
reason is the moisture loss and adsorption of organic com-
ponents at an early stage. Between 500 °C and 650 °C, the 
activated biochar suffered a higher weight loss (10%), which 
can be attributed to the thermal decomposition of pineapple 
peel compounds (holocellulose and lignin structures) and 
inorganic impurities [46–48]. At temperatures of 700 °C and 
850 °C, the activated biochar was less affected by the vola-
tilisation of the agent  (ZnCl2) inside pores, increasing the 
thermal decomposition resistance [49, 50]. Thus, the TGA 
curve indicates that non-activated biochar is more thermally 
stable than  ZnCl2-activated biochar.

Figure  2b shows the Raman spectrum of the bio-
char, showing a D-band at 1355   cm−1 and a G-band at 
1620  cm−1 [17, 51]. Specifically, the D-band is due to the 
condensed existence of benzene rings in the amorphous 
carbon structure, and the G-band comprises the aromatic 
ring in biochar [52]. Moreover, the D + G peak (observed 
at 2899  cm−1) describes the sp2 graphitic structure [53]. 
The results were similar to the Raman spectra of graphite 
oxide reported in [54]. An increase in the ID∕IG factor 
was observed after the biochar activation, whose ID∕IG 
value in  ZnCl2-activated biochar was 9.4% higher than 
that in non-activated biochar. A higher peak intensity ratio 
represents a large disordered (amorphous carbon atoms) 
and reduced graphite structure of biochar [34, 55, 56]. 
The high pyrolysis temperature of 3–1.5 kW could cause 
a change in the biochar structure. Figure 2c1–c3 shows the 
XPS spectrum of the activated biochar. Along with car-
bon, nitrogen, and oxygen were the principal components. 
Some metals were detected, i.e., Zn, Fe and Mg. High 
oxidation of carbon in the form of C–OH, O–C=O and 
C=O was observed. The C=O, O–C=O and C–OH struc-
tures are associated with  carbonyl, ester and hydroxyl 
groups, respectively [57]. The carbonyl functional groups 
are formed due to the extraction of the H group from aro-
matic rings, whose reactions occur during the microwave 
pyrolysis and activation process [38]. XPS results revealed 
that using microwave pyrolysis as thermal treatment (high 
temperature) and  ZnCl2 as a chemical activator generates 
biochar with high carbon content and oxygen function-
alities [39, 40, 58]. These characteristics are relevant to 

Table 2  BET data of activated and non-activated biochar

BET Brunauer, Emmett and Teller

Analysis Non-activated 
biochar

ZnCl2-activated 
biochar

Surface area
 BET surface area  (m2  g−1) 88.51 254.91
 t-Plot micropore area  (m2  g−1) 39.50 189.53
 t-Plot external surface 

area  (m2  g−1)
49.01 65.38

 BJH adsorption cumulative sur-
face area of pores  
(1.7 nm and 300 nm diameter)

25.45 27.10

Pore volume
 t-Plot micropore volume  (cm3  g−1) 0.02 0.076
 Total pore volume  

calculated < 1.0228 nm  (cm3  g−1)
0.03 0.09
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Fig. 3  Scanning electron microscope (SEM) images of (a1), (a2) 
non-activated biochar obtained at 3  kW for 30  min; (b1), (b2) 
SEM of  ZnCl2-activated biochar after chemical activation and cal-

cination process at 1.5  kW for 20  min; (c1), (c2) high-resolution 
transmission electron microscopy (HRTEM) of  ZnCl2-activated 
biochar
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determine the electrochemical performance of activated 
biochar. The discussion is developed in “Electrochemical 
characterisation”.

Electrochemical characterisation

The electrochemical behaviour of bare GCE and  ZnCl2 
activated biochar/GCE was investigated by electrochemical 
impedance spectroscopy (EIS) and cyclic voltammetry (CV) 
techniques. The EIS method evaluates the charge transfer 
resistance (kinetics) at the surface of the  ZnCl2-activated 
biochar/GCE. The impendence curve comprises a semi-cir-
cular area at higher frequencies and a linear portion, which 
is related to the electron transfer limited process and the dif-
fusion process at lower frequencies, respectively [17, 42, 59, 
60]. The diameter symbolises the electron transfer resistance 
(Rct), whose value depends on the dielectric properties of the 
modified electrode interface [17, 42].

Figure 4 shows the Nyquist plots obtained through EIS. 
The measurement parameters in the experimental procedure 
consist of a  105 to 0.1 Hz frequency range and a 5 mV poten-
tial amplitude in 0.1 mol  L−1 KCl containing 5.0 mmol  L−1 
 K3[(Fe(CN)6)]. The EIS curves show that the diameter of 
bare GCE (Rct=280 Ω) is higher than that of the  ZnCl2 acti-
vated biochar/GCE (Rct=110 Ω). Increased micro porous 
structure (189.53  m2  g−1) and surface area (254.91  m2  g−1) 
of activated biochar promoted the adsorption properties, 
contributing to the accessibility and diffusion of the electro-
lyte into the porous structure. These can improve the charge 
electron transfer and sensor response. Moreover, higher 
conductivity is achieved due to the binding affinity between 
oxygen-containing functional groups on the surface of acti-
vated biochar and the analyte [39, 44]. These results confirm 
that  ZnCl2-activated biochar enhanced the electron transfer 
kinetic properties of the modified electrode.

The electrocatalytic property of the modified electrode 
towards nitrite oxidation was studied in 0.1 mol  L−1 PBS 
containing 0.7 mmol  L−1 nitrite, as represented in Fig. 5. 
There was no oxidation response in the blank solution in 
either of the two electrodes (curves a and b). Bare GCE 
showed a minor oxidation peak with a peak current of  
8 µA in nitrite solution at 1 V (curve c). By comparison, 
 ZnCl2-activated biochar/GCE presented a higher peak cur-
rent of 19 µA (curve d) than non-modified GCE. A high sur-
face area and increased micropore volume of  ZnCl2-activated 
biochar on the GCE improved the contact area between the 
biochar and the analyte, contributing to the charge propaga-
tion along the porous structure. Thus, using  ZnCl2-activated 
biochar as a modification material for the GCE enhanced the 
oxidation peak current and electrocatalytic activity.

Electrochemical detection of nitrite on  ZnCl2 
activated biochar/GCE

The current responses of  ZnCl2-activated biochar/GCE 
in chronoamperometry for nitrite detection are shown 
in Fig. 6. The technical setting used was 0.8 V potential, 
whose value was optimal for the response to noise ratio. 
The concentration range applied was from 10 µmol  L−1 to 
2850 µmol   L−1, 250 µmol   L−1 per interval. The current 
response of modified GCE  increased proportionally to 
the nitrite addition ranging. The calibration curve between 
concentration and the current signal shows a direct rela-
tionship. The linear regression function is represented as 
I(μA) = 0.0627

(

μmol L−1
)

− 1.392,R2 = 0.9939 . The limit 
of detection (LOD) achieved was 0.97 µmol  L−1. Table 3 
shows a comparison of linear ranges and LOD in previ-
ous studies. The performance exhibited by  ZnCl2-activated 
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biochar/GCE was better or comparable to the electrochemi-
cal sensors reported in the literature.

Several studies indicate the addition of metal (copper, 
silver and gold) as the principal source for synthesising 
electrocatalytic active materials [17, 21, 42, 61, 62]. Some 
papers reported the use of conventional pyrolysis heating, 
hydrothermal and exfoliation procedure. Due to the sophis-
ticated synthesis methods, the  ZnCl2-activated biochar/GCE 
showed lower charge transfer resistance (less than 150 Ω) 
compared to that of some materials registered in [17, 60, 
61]. The CV response of the modified GCEs was similar to 
that of our activated biochar, showing a significant oxida-
tion current peak. These electrocatalytic properties make 
 ZnCl2-activated biochar an excellent material for nitrite 
detection. Several studies indicate the addition of metal 
(copper, silver and gold) as the principal source for syn-
thesizing electrocatalytic active materials [17, 21, 42, 61, 
62]. Some papers reported the use of conventional pyroly-
sis heating, hydrothermal and exfoliation procedures. Due 
to the sophisticated synthesis methods, the  ZnCl2-activated 
biochar/GCE showed lower charge transfer resistance (less 
than 150 Ω) than some materials registered in [17, 60, 61]. 
The CV response of modified GCEs was similar to that of 
our activated biochar, showing a beneficial oxidation current 
peak. These electrocatalytic properties make  ZnCl2-activated 
biochar an excellent material for nitrite detection.

Selectivity, stability, and reproducibility 
of  ZnCl2‑activated biochar/GCE

The chronoamperometry response of  ZnCl2-activated bio-
char/GCE and the effect of interfering substances on the 
peak current response of  NaNO2 are shown in Fig. 7. The 
anti-interference property of the modified GCE was studied 
considering 1 mmol  L−1 nitrite, followed by the separate 
addition of 1 mmol  L−1 of six potential interfering compo-
nents into the stirred PBS at 0.8 V working potential. The 
results revealed that the presence of KCl,  KNO3,  CaCl2, 

(a)

(b)

Fig. 6  (a) Chronoamperometry response of  ZnCl2-activated biochar/
GCE at successive addition of  NaNO2 in 0.1 mol  L−1 PBS (pH 7.0). 
(b) Calibration curve for nitrite concentration against peak currents. 
PBS phosphate-buffered saline, µM µmol  L−1

Table 3  Comparison of the analytical performance of nitrite sensor 
with various modified electrodes

LOD limit of detection

Electrode Linear range 
(µmol  L−1)

LOD  
(µmol  L−1)

Reference

ABC-800/GCE 4.9–1184 2.7 [21]
GCE/CeO2NPs 0.02–1200 0.21 [42]
Cu2+ −Cu/biochar 1–300 0.63 [17]
Au/CuNi-based 

hollow nano-
architecture 
(CNHN)

0.05–1150 0.017 [60]

Cu/multi-walled 
carbon nano-
tubes (MWC-
NTs)/GCE

5–1260 1.8 [61]

reduced graphene 
oxide- multi-
walled carbon 
nanotubes-plat-
inum nanoparti-
cles/myoglobin 
(RGO-MWCNT-
Pt)/Mb/GCE

1–1200 0.93 [62]

ZnCl2-activated 
biochar/GCE

100–1400 0.97 This work

Fig. 7  Anti-interference property of  ZnCl2-activated biochar/GCE 
towards the detection of nitrite in the presence of electroactive spe-
cies KCl,  KNO3,  CaCl2, glucose, KBr and urea
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glucose, KBr and urea did not influence the determination 
of  NaNO2. A notable response was observed for nitrite injec-
tions, but a weak current signal was observed for electro-
active species additions. Therefore, it can be rightly said 
that  ZnCl2-activated biochar/GCE demonstrates excellent 
selectivity.

The reproducibility and stability of the modified glassy 
carbon were studied by differential pulse voltammetry 
(DPV). This technique was appropriate to determine the 
nitrate response, unlike chronoamperometry, DPV pro-
vided clarity to observe the oxidation current peaks using 
low nitrate concentrations. The reproducibility and stability 
of the  ZnCl2-activated biochar/GCE electrode are shown in 
Fig. 8a and b, respectively. Five GCEs were modified using 
 ZnCl2-activated biochar to evaluate their reproducibility for 
0.3 mmol  L−1 nitrite in 0.1 mol  L−1 PBS (pH 7.0) solution. 
The results show that the modified GCEs have significant 
reproducibility behaviour, with a relative standard deviation 
(RSD) value of 2.4%. Then, the stability was evaluated for 
the electrochemical nitrite sensor every two days until the 
completion of ten days of storage at room temperature. The 
test was achieved in a 0.1 mol  L−1 PBS (pH 7.0) solution 
containing 0.25 mmol  L−1 nitrite. The DPV measurements 
for stability analysis demonstrate consistency in oxidation 
current response of up to 10 days, observing an excellent 
RSD of 2.6%.

Conclusions

This work synthesised the biochar through microwave pyroly-
sis and studied its electrochemical performance. Microwave-
assisted pyrolysis had a significant role in the development of 
higher fixed carbon content, improved thermal decomposi-
tion of the lignin network, better carbon stability, and higher 
surface area and pore volume. The biochar was activated by 
soaking in  ZnCl2. The activated biochar showed amorphous 

microporous structures of aromatic sheets, oxygen-contain-
ing functional groups on the biochar surface, strong carbon 
bonding, and a relatively higher I

D
∕I

G
 peak intensity ratio 

(owing to the amorphous form of carbon). These properties 
facilitated the adsorption of the analyte and enhanced the 
electrocatalytic activity and hence the sensor response. Modi-
fied GCE presented a higher peak current (19 µA) compared 
to that of bare GCE (9 µA) and reduced the charge transfer 
resistance value (110 Ω). The electrochemical behaviour of 
 ZnCl2-activated biochar/GCE for nitrite detection revealed 
comparable LOD (0.97 µmol  L−1), and high selectivity, lead-
ing to the promising potential for real applications.
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