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Abstract
Signature is an infinite graded sequence of statistics known to characterize geomet-
ric rough paths. While the use of the signature in machine learning is successful in 
low-dimensional cases, it suffers from the curse of dimensionality in high-dimen-
sional cases, as the number of features in the truncated signature transform grows 
exponentially fast. With the idea of Convolutional Neural Network, we propose a 
novel neural network to address this problem. Our model reduces the number of 
features efficiently in a data-dependent way. Some empirical experiments including 
high-dimensional financial time series classification and natural language processing 
are provided to support our convolutional signature model.

Keywords  Signature · Rough paths · Convolutional neural networks · Sequential 
data

Mathematics Subject Classification   60L10 · 62R07 · 68T50

JEL Classifications   C630

1  Introduction

Multi-dimensional sequential data analysis is an important research area in 
Machine Learning, Financial Mathematics and many other areas. There are sev-
eral methods of analyzing sequential data recently developed in deep learning, 
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e.g., Recurrent Neural Network (RNN) (Cho et al. 2014), GRU (Cho et al. 2014), 
LSTM Hochreiter and Schmidhuber (1997) and Transformer (Vaswani et  al. 
2017). They have been successfully applied into a variety of important tasks in 
Data Science, such as natural language processing, financial time series and med-
ical data analyses. Another mainstream approach to the sequential data analyses 
is Bayesian learning, mostly involved with Gaussian Process (GP) (Williams and 
Rasmussen 2006), where by pre-determined a priori distribution, it has advantage 
in quantifying uncertainty up to some extent. For example, Raissi et al. (2018) use 
GP to solve nonlinear partial differential equations with noisy boundary observa-
tions. More recently, a novel mathematical object, called signature, has been pro-
posed and received more attention, to summarize information of sequential data, 
see (Boedihardjo et al. 2016; Chevyrev and Lyons 2016; Levin et al. 2013; Lyons 
and Qian 2002; Lyons et al. 2007). In this paper, we shall discuss the signature in 
the multi-dimensional sequential data analysis.

Signature is a graded feature set of a stream, or sequential data set, which is 
derived from the Rough Path Theory. Signature has been introduced as a fea-
ture map into the field of Machine Learning with successful applications to the 
sequential data. With truncations up to a given desirable accuracy, this special 
feature set has universality for approximations and can characterize pathwise data 
efficiently. It is known that the high-frequency sequential data set is transformed 
into several features efficiently by the truncated signature in the case of relatively 
low dimensional paths. For instance, Lyons and Oberhauser (2014) use the signa-
tures to characterize high-frequency trading paths of financial data. Kidger et al. 
(2019) use the signature transform as a layer of neural network, and propose the 
deep signature transform model. Moreover, the use of the signature is model-free 
and data-dependent, see (Lyons et al. 2019, 2020).

However, the application of the signatures suffers from the curse of dimension-
ality, because the number of features in the truncated signature grows exponen-
tially fast as the dimension increases. Consequently, in the case of high-dimen-
sional sequential data, this feature map requires computational costs in real data 
analyses. A kernel-based learning algorithm has been introduced to address this 
problem in Kiraly and Oberhauser (2019); Toth and Oberhauser (2019). In this 
paper, we propose a new algorithm to solve this problem by combining Convo-
lutional Neural Network and the signature transform. We evaluate the reduction 
of the number of features and show by numerical experiments that this algorithm 
can gain efficiency. Thus, this algorithm may contribute many applications of the 
signatures in the cases of the high-dimensional sequential data.

The rest of this paper is organized as follows. In Sect.  2, we review the signa-
ture of rough paths, geometric rough paths and nice properties, discuss Signature 
Classifier in the classification problems, as a typical application of the signature, 
and evaluate its classification error in Theorem   1. In Sect. 3, we introduce the 
main algorithm of this paper, a Convolutional Signature model, evaluate how this 
model reduces the number of features, show that this model preserves all infor-
mation of path data and discuss its universality in Theorem 2. In Sect.  4, a broad 
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range of experiments are performed to support our model, including high-dimen-
sional, financial time series classification, functional estimation and textual senti-
mental detection. We conclude with further ongoing research in Sect.  5.

2 � Signature and geometric rough paths

2.1 � Signatures

Let us introduce some notations for the sequential data sets, in order to explain 
the signature method, following (Lyons et al. 2007). Given a Banach space E with 
a norm ‖ ⋅ ‖ , we define the tensor algebra

associated with the sum + and with the tensor product ⊗ defined by

where the jth element cj ∶=
∑j

k=0
ak ⊗ bj−k is the convolution of the first j elements 

of (ai)i≥0 and (bi)i≥0 in T((E)). Similarly, let us define its subset

of T((E)) for those with finite number of non-zero elements. Note that T(E) ⊂ T((E)) . 
Also, we shall consider the truncated tensor algebra of order m ∈ ℕ , i.e.,

which is a subalgebra of T((E)). Then as we shall see, the signatures and the m-th 
order truncated signatures lie in these spaces T((E)) and Tm(E) , respectively.

Now with E ∶= ℝ
d and the usual Euclidean norm ‖ ⋅ ‖ , we shall define the 

space Vp([0, T],E) of the d-dimensional continuous paths of finite p-th variation 
over the time interval [0, T] and the signatures of the paths in Vp([0, T],E).

Definition 1  (The space of finite p-variation paths) Fix p ≥ 1 and the interval [0, T] . 
The p-variation of a d-dimensional path X ∶ [0, T] → E ∶= ℝ

d is defined by

Here, the supremum is taken over all the possible partitions of the form 
Dn ∶= {ti}1≤i≤n of [0,  T] with 0 = t0 < t1 < ⋯ < tn ≤ T  , n ≥ 1 . X is said to 
be of finite p-variation, if ‖X‖p < ∞ . We denote the set of continuous paths 
X ∶ [0, T] → E of finite p-variation by Vp([0, T],E).

(2.1)T((E)) ∶= {(ai)i≥0 ∶ ai ∈ E⊗i for every i}

(ai)i≥0 + (bi)i≥0 ∶= (ai + bi)i≥0, (ai)i≥0 ⊗ (bi)i≥0 ∶= (ci)i≥0,

(2.2)T(E) ∶= {(ai)i≥0 ∶ ai ∈ E⊗i and ∃N ∈ ℕ such that ai = 0 ∀i ≥ N}

(2.3)Tm(E) ∶= {(ai)
m
i=0

∶ ai ∈ E⊗i for ∀i ≤ m},

‖X‖p ∶=
�

sup
Dn⊂[0,T]

n−1�
i=0

‖Xti+1
− Xti

‖p
�1∕p

.
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We use the supremum norm ‖ ⋅ ‖∞ for continuous functions on [0, T] , i.e., 
‖f‖∞ ∶= supx∈[0,T] �f (x)� . It can be shown that if we equip the space Vp([0, T],E) 
with the norm ‖X‖Vp([0,T],E) ∶= ‖X‖p + ‖X‖∞ , then Vp([0, T],E) is a Banach space. 
Now the signature and truncated signature are defined as follows.

Definition 2  (Signatures) The signature S(X) of a path X ∈ V
p([0, T],E) , p ≥ 1 is 

defined by S(X) ∶= (1,X1,X2,…) ∈ T((E)) , where the k-th element

is the k-fold, iterated integral for k ≥ 1 , if the iterated integrals are well defined.
The truncated signature is naturally defined as Sm(X) ∶= (1,X1,X2,… ,Xm) ∈ T

m(E) 
for every m ≥ 1 including the 0-th term S0(X) = 1.

Remark 1  The integrals in (2.4) depend on the nature of the paths. Here are some 
typical examples: 

1.	 If X is of 1-variation path, then the integrals (2.4) of the signature can be under-
stood as the Stieltjes integral;

2.	 If X is of p-variation path with 1 < p < 2 , then it can be defined in the sense of 
Young (e.g., see Lyons and Qian 2002).

3.	 If X is a Brownian motion, then we can use the Itô integral or the Stratonovtich 
integral. As we will explain later, when extending from a Brownian motion path 
or a semimartingale to a geometric rough path, we choose the Stratonovitch inte-
gral rather than the Itô integral.

Example 1  (Smooth paths and piece-wise linear paths) For p ≥ 1 the path space 
V
p([0, T],E) contains the smooth functions and the piece-wise linear functions. We 

give the following two examples of paths in Vp([0, T],E) , as shown in Fig.   1. In 
its left panel, we plot the smooth path Xt = (t, (t − 2)3), t ∈ [0, 4] . In its right panel, 
we represent the discrete data: daily AAPL adjusted close stock price from Nov 28, 
2016 to Nov 24, 2017 by interpolating the path linearly between each successive two 
days. The first 2 degree signatures X1 and X2 of these two paths in (2.4) are calcu-
lated and given in Table 1.

(2.4)Xk ∶= ∫ ⋯∫0<t1<⋯<tn<T

dXt1
⊗⋯⊗ dXtn

∈ E⊗k

Table 1   The corresponding 
signatures for the smooth path 
(t, (t − 2)3) and the piece-wise 
linear path of the augmented 
AAPL adjusted price in Fig. 1, 
respectively

X (t, (t − 2)3) AAPL

X
1 (4, 16) (1, 65.52)

X
2

(
8 32

32 128

) (
0.5 31.17

34.00 2123.3

)
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2.2 � Geometric rough paths and linear functionals

Here we introduce rough paths and geometric rough paths briefly. More details can 
be found in Lyons and Qian (2002) and Lyons et  al. (2007). Instead of T((E)) in 
(2.1), the p-rough paths and the geometric p-rough paths are objects in T⌊p⌋(E) in 
(2.3) for some real number p (≥ 1) . A fundamental result from rough paths theory 
and signatures (Lyons et al. 2007) is that there exists a continuous unique lift from 
T⌊p⌋(E) to T((E)). This lift is made in an iterated integral, and consequently, it gives 
us the signature of rough paths.

We denote the space of the p-rough paths by �p . The space G�p of the geometric 
p-rough paths is defined by the p-variational closure (cf. (Lyons et al. 2007) Chap-
ter 3.2) of S⌊p⌋(�1) . For a path X ∶ [0, T] → ℝ

d with the bounded p-variation, the 
truncated signature belongs to the space of the p-rough paths, i.e., S⌊p⌋(X) ∈ �p . If 
X is of bounded 1-variation, then the truncated signature belongs to the space of the 
geometric p-rough paths, i.e., S⌊p⌋(X) ∈ G�p for any p(≥ 1).

It is manifested that the signature enjoys many nice properties. For example, sig-
nature characterizes paths up to tree-like equivalence (Boedihardjo et al. 2016) that 
are parametrization invariant. Here is a precise statement.

Proposition 1  (Parametrization Invariance, Lemma 2.12 of Levin et al. (2013)) Let 
X ∶ [0, T] → ℝ

d be a path with bounded variation and � ∶ [0, T] → [0, T] a re-par-
ametrization of the time parameter. If we define X̃ by X̃t ∶= X𝜓(t) , then each term in 
S(X̃) is equal to the corresponding term in S(X), i.e. S(X̃) = S(X).

Moreover, if there exists a monotone increasing dimension in the path with 
bounded variation or geometric rough path, we can get rid of tree-like equivalence 
(Boedihardjo et  al. 2016; Gyurkó et  al. 2013; Levin et  al. 2013). Also, it is easy 
to specify one path among the parametrization invariance by adding timestamps. 
In other words, provided that an extra time dimension included, signature charac-
terize geometric rough path uniquely. Another useful fact from rough path theory 

Fig. 1   Examples of Vp([0,T],E) , p ≥ 1 : (a) Plot of a smooth path Xt = (t, (t − 2)3), t ∈ [0, 4] . (b) Plot of 
linear interpolation of daily AAPL adjusted close stock price from Nov 28, 2016 to Nov 24, 2017
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(Chevyrev and Lyons 2016; Lyons and Qian 2002) is that signature terms enjoy a 
factorial decay as the depth increases, which makes truncating signature reasonable. 
The following remark shows an example of the factorial decay for bounded 1-varia-
tion paths.

Remark 2  (Factorial Decay, Proposition 2.2 of Lyons et  al. (2007)) Let 
X ∶ [0, T] → ℝ

d be a continuous path with bounded 1-variation, then for every k ≥ 1

where ‖ ⋅ ‖ is the tensor norm.

All these properties motivate us to use the signature as a feature map in Data 
Science. We shall then define the linear forms on the signatures.

For simplicity, let us fix E = ℝ
d , and let {ei}di=1 ( {e

∗
i
}d
i=1

 , respectively) be a basis 
of ℝd (a basis of the dual space (ℝd)∗ of ℝd , respectively). For every n ∈ ℕ and 
indexes (i1,… , in) ∈ {1,… , d}n , (e∗

i1
⊗⋯⊗ e∗

in
) can be naturally extended to 

(E∗)⊗n with the basis (e∗
I
= e∗

i1
⊗⋯⊗ e∗

in
) , and we call I = i1 ⋯ in a word of length 

n. The linear actions of (E∗)⊗n on E⊗n extends naturally a linear mapping 
(E∗)⊗n

→ T((E))∗ by

for every word I and every element � = (a0, a1,… , an,…) ∈ T((E)).
Let A∗ be the collection of all words of length n for all n ∈ ℕ . Then {e∗

I
}I∈A∗ 

forms a basis of T(E∗) = T((ℝd)∗) . Let I, J ∈ A∗ be two words of lengths m 
and n with I = i1 ⋯ im and J = j1 ⋯ jn , respectively. We say a permutation � 
in the symmetric group �m+n of {1,… ,m + n} is a shuffle of {1,… ,m} and 
{m + 1,… ,m + n} , if 𝜎(1) < ⋯ < 𝜎(m) and 𝜎(m + 1) < ⋯ < 𝜎(m + n) . We denote 
the collection of all shuffles of {1,… ,m} and {1,… , n} by Shuffles(m, n).

Definition 3  (Shuffle Product) For every pair I = i1 ⋯ im , J = j1 ⋯ jn of words of 
length m and n, the shuffle product e∗I e∗J of e∗

I
 and e∗

J
 is given by 

e∗I e∗J :=
∑

σ∈Shuffles(m,n)

e∗(kσ−1(1)···kσ−1(m+n))
, (2.7) where 

k1 ⋯ km+n = i1 ⋯ imj1 ⋯ jn.

Denote T((ℝd))∗ as the space of linear forms on T((ℝd)) induced by T((ℝd)∗) . 
The shuffle product between f , g ∈ T((ℝd))∗ denoted by f g can be defined via 
natural extension of (2.7), by the bi-linearity of . It can be shown that T((ℝd))∗ 
is an algebra equipped with shuffle product and element-wise addition restricted to 
the geometric rough path space S(Vp([0, T],ℝd)) , see Theorem 2.15 of Lyons et al. 
(2007). The following proposition motivates us to use the signature as a feature map.

(2.5)

�������
� ⋯�

0≤t1<⋯<tk≤T
dXt1

⊗⋯⊗ dXtk

�������
≤ ‖X‖k

1

k!
,

(2.6)e∗
I
(�) ∶= e∗

I
(an),
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Proposition 2  (Universal Approximation) Fix p ≥ 1 , a continuous func-
tion f ∶ V

p([0, T],ℝd) → ℝ of finite p-variation, and a compact subset K of 
V
p([0, T],ℝd) . If S(x) is a p-geometric rough path for each x ∈ K , then for every 

𝜖 > 0 , there exists a linear form l� ∈ T((ℝd))∗ , such that

Proof  The proof follows directly from the uniqueness of signature transform for 
geometric rough paths and the Stone–Weierstrass theorem. See Lyons et al. (2020) 
and Theorem 4.2 in Arribas (2018) for more details. 	�  ◻

Remark 3  (A curse of dimensionality) By Definition  2, the truncated signature 
Sm(X) has a total of �m ∶=

∑m

k=0
dk = (dm+1 − 1)∕(d − 1) many terms for m ≥ 0 . 

The signature transform is an efficient feature reduction technique, when we have 
the d dimensional path sampled with high frequency in time. However, when the 
dimension d is large, the number of signature terms to be computed increases expo-
nentially fast and makes the signature not easily applicable in practice.

To our best knowledge at this time, only Kiraly and Oberhauser (2019) and Salvi 
et al. (2021) introduce new algorithms of calculating the kernel of the signatures and 
Toth and Oberhauser (2019) discuss the application of the kernel methods to fix this 
high-dimensional problem. We introduce Convolutional Neural Network (CNN) to 
solve this problem in Sect. 3.

2.3 � Classification via signature

Before we discuss the convolutional neural network in Sect.   3, we consider the 
application of the signatures to classification problems. In classification problems, 
we estimate the probability of an object belonging to each class. This estimation 
problem for the sequential data classification can be solved via the signature.

On a probability space, (�,F,ℙ) consider k classes, class 1, class 2, … , class k, 
and n paired independent data (xi, yi)1≤i≤n , where each xi ∶ [0, T] → ℝ

d is the path 
datum and the corresponding label yi ∈ {1,… , k} is the class which xi belongs to. 
We assume that the labels y1,… , yn are sampled from a common distribution and 
the conditional probability ℙ(xi ∈ ⋅ | yi) of xi , given the class yi , is a common prob-
ability distribution for i = 1, 2,… , n . Since we often observe the path dataset at 
discrete time stamps and we use piece-wise linear interpolations to connect among 
them, it is reasonable to assume that each path x in the dataset is of bounded 1-varia-
tion. Hence, its signature S(xi) is a geometric 1 rough path in Sect. 2.2.

Definition 4  (Classification problem) Our sequential classification problem is stated 
as follows: given training data (xi, yi)1≤i≤n , derive a classifier g for predicting the 
labels for unseen data (x,  y). Let pj(x) ∶= ℙ(y = j|x) for j = 1,… , k . Our goal is 
to estimate these conditional probability pj(x) by p̂j(x) for the path x of bounded 

(2.7)sup
x∈K

�f (x) − ⟨l𝜖 , S(x)⟩� < 𝜖.
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1-variation and classify x in the class argmaxj p̂j(x) for j = 1,… , k as accurate as 
possible.

Since the signature S(x) of x determines the path x uniquely, it is rea-
sonable to consider the signature S(x) and a nonlinear continuous function 
g ∶ T((ℝd)) → [0, 1]k , such that

where p̂j ’s are estimator of pj’s, subject to 
∑k

j=1
p̂j(x) = 1 . Here, T represents the 

transpose of the vector.
For practical use, we use the truncate signature transforms, thanks to the factorial 

decay property (Remark 2) of the signature. With the truncation depth m, we obtain 
the estimate

where g ∶ Tm(ℝd) → [0, 1]k is a nonlinear continuous function, and then the pre-
dicted label is given by

Definition 5  (Signature Classifier) We call h ∶ T((ℝd)) → [0, 1] of the form (2.8) a 
signature classifier, where T((ℝd)) is the tensor algebra and h is a nonlinear con-
tinuous function. Naturally, a truncated signature classifier of degree m ∈ ℕ is 
h ∶ Tm(ℝd) → [0, 1] of the form (2.9).

In the simple case with only 2 classes, class 0 and class 1, we consider the 
following concentration inequalities for classification via signature. We first 
restate the classification problem for the two classes. Suppose we have the pair-
wise, independent, identically distributed samples (X1, Y1),… , (Xn, Yn) where 
Yi ∈ {0, 1} and Xi ∈ V

1([0, T],ℝd) . Let h ∶ V
1([0, T],ℝd) → {0, 1} be a classifier. 

The training error R̂n(h) and the true error R(h) are defined by

Here, I(⋅) is the indicator function. Correspondingly, R(h) = ℙ(Y ≠ I(h(X) > 0.5)) 
and R̂n(h) =

1

n

∑n

i=1
I(Yi ≠ I(h(Xi) > 0.5)) . We shall see that R̂n(ĥ) ∶= infh∈H R̂n(h) 

is close to R(h∗) ∶= infh∈H R(h) , where H is the collection of the signature classi-
fiers and we assume that h∗ ∈ H . Denote the set

(2.8)g(S(x)) =
(
p̂1(x),… , p̂k(x)

)T
,

(2.9)g(Sm(x)) =
(
p̂1(x),… , p̂k(x)

)T
,

(2.10)ŷ = argmax
j

p̂j(x).

(2.11)R̂n(h) =
1

n

n∑
i=1

I(Yi ≠ h(Xi)) , and R(h) = ℙ(Y ≠ h(X)).
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to be the event that the training error R̂n(h) is close to the true error R(h) for all clas-
sifiers h ∈ H in the range of � , given a fixed 𝜀 > 0.

From now on, we assume H is a compact set of truncated signature classifiers 
of degree m equipped with metric � . The following definition comes from van 
Handel (2016).

Definition 6  (�-net and covering number) A set H is called a �-net for (H, �) if for 
every h ∈ H , there exists �(h) ∈ H such that 𝜌(h,𝜋(h)) < 𝛿 . The smallest cardinality 
of a �-net for (H, �) is called the covering number

In our case, we may take the uniform norm � , for example. Indeed, by the 
Ascoli-Arzelà theorem, we only need H to be equicontinuous to make it compact, 
and hence N� ∶= N(H, �, �) is always finite for any 𝛿 > 0 . Let H� be a �-net of H 
with cardinality N�.

Theorem  1  For every 𝜖 > 0 , 𝜖0 > 0 , there exist 𝛿 > 0 and a corresponding finite 
covering number N� , such that

Proof  Take a �-net H� of H with cardinality N� . By the Markov inequality and the 
definition of the covering number, we have

Since R̂n(h) is the sum (2.11) of independent random variables, by Hoeffding’s ine-
quality (Hoeffding 1963), we have e−t𝜖�[et(R̂n(h)−R(h))] ≤ e−2n𝜖 for h ∈ H� , t ≥ 0 and 
n ≥ 1 . Hence, for every n ≥ 1 and �-net H� of H , we have

By a similar argument, we also have ℙ(suph∈H𝛿
(R(h) − R̂n(h)) > 𝜖) ≤ N𝛿e

−2n𝜖 for 
every n ≥ 1 and �-net H� of H.

Combining the above two inequalities, we obtain that for every n ≥ 1 and �-net H� 
of H

E ∶= {sup
h∈H

|R̂n(h) − R(h)| ≤ 𝜖}

(2.12)N(H, �, �) ∶= inf{|H| ∶ H is a �-net for (H, �)}.

(2.13)ℙ(sup
h∈H

|R̂n(h) − R(h)| > 𝜖) ≤ 2N𝛿 e
−2n𝜖 + 𝜖0.

ℙ( sup
h∈H𝛿

(R̂n(h) − R(h)) > 𝜖) ≤ e−t𝜖𝔼[ sup
h∈H𝛿

et(R̂n(h)−R(h))]

≤ N𝛿e
−t𝜖 sup

h∈H𝛿

𝔼[et(R̂n(h)−R(h))].

ℙ( sup
h∈H𝛿

(R̂n(h) − R(h)) > 𝜖) ≤ N𝛿e
−t𝜖 sup

h∈H𝛿

𝔼[et(R̂n(h)−R(h))] ≤ N𝛿e
−2n𝜖 .
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By approximating the supremum over H by the supremum over the sets H� with car-
dinality N� , that is,

we conclude (2.13) that for any 𝜖0 > 0 , there exits a 𝛿 > 0,

	�  ◻

By Theorem 1, the event E holds with high probability provided that n is suf-
ficiently large. On the set E , we have by definitions

Thus, it follows that |R(ĥ) − R(h∗)| ≤ 2𝜖 on the set E . Thus, on E , the best empirical 
signature classifier ĥ is close to the best true signature classifier h∗ as in (2.14). The 
connection between signature classifier and general classifier can be constructed by 
the uniqueness of the signature transform.

This covering number N� in Definition 6 plays an essential role here. The study 
of the covering number N(H, �, �) for the compact set H of the truncated signa-
ture classifiers is still in progress. If we can quantify this number, then the num-
ber of training samples n needed for fixed error can be calculated from (2.13).

Example 2  (GARCH time series) We give an example of two classes of time series, 
{xn}N

n=1
 , generated by GARCH(2,2) model. The time series are given by

where w > 0 , �i ≥ 0 , �j ≥ 0 and �k ’s are I.I.D. standard normal distributed. Denote 
� = (�1, �2) and � = (�1, �2) . 2 classes of GARCH time series are generated by set-
ting parameters in Table 2.

For paths xn generated by the first row parameters in Table   2, we label yn = 1 
(class 1), for the rest paths xn generated by the second row parameters in Table 2, we 
label them by yn = 2 (class 2 ). Thus, we generate paired data {(xn, yn)}N

n=1
.

ℙ( sup
h∈H𝛿

|R̂n(h) − R(h)| > 𝜖) ≤ 2N𝛿e
−2n𝜖 .

ℙ(sup
h∈H

|R̂n(h) − R(h)| > 𝜖) = lim
𝛿→0

ℙ( sup
h∈H𝛿

|R̂n(h) − R(h)| > 𝜖),

ℙ(sup
h∈H

|R̂n(h) − R(h)| > 𝜖) < ℙ( sup
h∈H𝛿

|R̂n(h) − R(h)| > 𝜖) + 𝜖0

≤ 2N𝛿e
−2n𝜖 + 𝜖0.

(2.14)R(h∗) ≤ R(ĥ) ≤ R̂n(ĥ) + 𝜖 ≤ R̂n(h∗) + 𝜖 ≤ R(h∗) + 2𝜖.

xn
k
= �k�k,

�2
k
= w +

2∑
i=1

�ix
n
k−i

+

2∑
j=1

�j�
2
k−j

,
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Remark 4  It is important to note that we cannot directly apply Proposition 2 here, 
because this p(x) may not be continuous in x. Intuitively, it is better to add nonlinear-
ity on classifier h(⋅) . The experiment in Sect.  4.2 verifies this intuition.

In practice, the signature classifier (2.9) and its truncation (2.10) can be applied 
to find the classification model g(⋅) to estimate ŷ in other contexts. In Sect. 4, we 
shall apply the logistic regression to Example 2, and the result shows that the use 
of the truncated signature to classify this GARCH(2,2) time series is significantly 
efficient.

3 � Convolutional Signature Model

The main goal of this section is to introduce the Convolutional Signature (CNN-Sig) 
model. As we have seen in Remark   3 in Sect. 2.2, the truncated signature suffers 
from the exponential growth of the number �m of terms, when the dimension d is 
large, and in this case both space and time complexity increase dramatically. We will 
use Convolutional Neural Network (CNN) to reduce this exponential growth to at 
most linear growth. CNN has been mostly used in analyzing visual imagery, where 
it takes advantage of the hierarchical patterns in image and assembles complex pat-
terns by focusing on many small pieces of the picture. Convolutional layer convolves 
the input data with a small rectangular kernel, and the output data can be masked 
with an activation function. As there are some patterns between channels of a path, 
this motivates us to consider the signature with CNN to address the high dimen-
sional problem.

Before introducing the CNN-Sig model, we shall explain that the signature trans-
form can be viewed as a layer in the deep neural network model.

3.1 � Signature as a layer

Signature transform can be viewed as a layer in deep neural networks and this is 
firstly proposed in Kidger et al. (2019). In the background of Python package  signa-
tory Kidger and Lyons (2020), signature transform takes input tensor of shape 
(b, n, d), corresponding to a batch of size b of paths in ℝd with n observing points at 
times {tj}nj=1 , and returns a tensor of shape (b, �m) or a stream like tensor of shape 
(b, n, �m) , where �m is defined in Remark   3 in Sect. 2.2. Usually it omits the first 
term 1 of the signature transform. Since the signature is also differentiable 

Table 2   Parameters for 
GARCH(2,2) time series

Class w � �

1 0.5 (0.4, 0.1) (0.7, 0.5)
2 0.2 (0.8, 0.5) (0.4, 0.1)
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numerically with respect to each data point, the backpropagation calculation is avail-
able. In this way, the signature can be viewed as a layer in neural network.

3.2 � Convolutional signature model

CNN, which has been proved to be a powerful tool in computer vision, is an efficient 
feature extraction technique. This idea has been used in Liao et al. (2019) as well 
as the “Augment" module (Kidger and Lyons 2020) (but only 1D CNNs are used). 
There are two cases of using 1D CNNs. The first case is to extract new sequential 
features of original paths and then paste them to the original path as extra dimen-
sions. This method is not helpful in the high dimensional case and causes extra dif-
ficulty. The second case is that we use extracted sequential features directly from the 
1D CNN. It works as a dimension reduction technique but the challenge is that it 
causes loss of information.

With the favor of the 2D CNN, we are able to reduce the number of signature fea-
tures and capture all information in the original path at the same time. Since the con-
volution here is different from the convolution concept in mathematics, we define it 
and present Example  3 to show the computational details for those who are not so 
familiar with CNN.

Definition 7  (2D Convolution) Let ∗ be an operation of element-wise matrix 
multiplication and summation between two matrices of the same shape, 
that is, A ∶= (ai,j)1≤i≤m,1≤j≤n and B ∶= (bi,j)1≤i≤m,1≤j≤n of the same size: 
A ∗ B =

∑m

i=1

∑n

j=1
ai,jbi,j . Suppose the input tensor is M ∶= (Mi,j)1≤i≤I,1≤j≤J , a ker-

nel window K ∶= (ki,j)1≤i≤m,1≤j≤n and a stride window (s, t). The output O ∶= (op,q) 
of 2D convolution is given by

The shape of the output O depends on how we treat the boundary specifically and 
does not play a crucial role here.

Example 3  (2D Convolution) Let us consider a tensor M ∶= (Mi,j)1≤i,j≤5 and a kernel 
window K ∶= (ki,j)1≤i,j≤3,

and a stride window (1,  1). The output will be a 3 × 3 tensor, denoted by 
O = (oij)1≤i,j≤3 , where each element oi,j of O is given by the element-wise multiplica-
tion and summation of

(3.1)op,q ∶= (Mi,j)1+(p−1)s≤i≤m+(p−1)s,1+(q−1)t≤j≤n+(q−1)t ∗ K.

M ∶=

⎛
⎜⎜⎜⎜⎝

2 1 0 2 0

0 1 2 2 1

0 0 0 1 1

2 0 0 2 2

0 2 0 1 1

⎞
⎟⎟⎟⎟⎠
, and K ∶=

⎛⎜⎜⎝

0 1 0

1 0 − 1

−1 − 1 − 1

⎞⎟⎟⎠
, respectively,
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and K, i.e., oi,j = M̃i,j ∗ K for 1 ≤ i, j ≤ 3 . For example,

and so on. Therefore, the output O is given by

The Convolutional Signature model uses the 2D CNN before the signature trans-
form, and the structure of the convolutional signature model can be described in 
Fig. 2. The convolution is implemented in channels. Since the signature is efficient 
in the time direction, we do not have to convolute the time direction.

M̃i,j ∶= (Mk,�)i≤k≤i+2,j≤�≤j+2

o11 =

⎛
⎜⎜⎝

2 1 0

0 1 2

0 0 0

⎞
⎟⎟⎠
∗

⎛
⎜⎜⎝

0 1 0

1 0 − 1

−1 − 1 − 1

⎞
⎟⎟⎠
= 2 ⋅ 0 + 1 ⋅ 1 + 0 ⋅ 0 +⋯ + 0 ⋅ (−1) = −1,

o12 =

⎛⎜⎜⎝

1 0 2

1 2 2

0 0 1

⎞⎟⎟⎠
∗

⎛⎜⎜⎝

0 1 0

1 0 − 1

−1 − 1 − 1

⎞⎟⎟⎠
= 1 ⋅ 0 + 0 ⋅ 1 + 2 ⋅ 0 +⋯ + 1 ⋅ (−1) = −2,

o13 =

⎛⎜⎜⎝

0 2 0

2 2 1

0 1 1

⎞⎟⎟⎠
∗

⎛⎜⎜⎝

0 1 0

1 0 − 1

−1 − 1 − 1

⎞⎟⎟⎠
= 1, o21 =

⎛⎜⎜⎝

0 1 2

0 0 0

2 0 0

⎞⎟⎟⎠
∗

⎛⎜⎜⎝

0 1 0

1 0 − 1

−1 − 1 − 1

⎞⎟⎟⎠
= −1,

O =

⎛⎜⎜⎝

−1 − 2 1

−1 − 1 − 1

0 − 5 − 3

⎞⎟⎟⎠
.

Fig. 2   Convolutional neural network and signature transform connected by �
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3.3 � Number of features

Suppose c (≤ d) is an integer such that d is divisible by c and let us fix the ratio 
� = d∕c ∈ ℕ . For the sake of simplicity of explanations, we set the number of fea-
tures with kernel window of size (1 × c) and stride (1 × c) . We illustrate our idea in 
the following example.

Example 4  Let us consider a tensor M ∶= (Mi,j)1≤i≤5,1≤j≤4 and 2 kernel windows 
K1 ∶= (k1

i
)1≤i≤2 , K2 ∶= (k2

i
)1≤i≤2,

Using a stride window (1,  2), we calculate the output O = {O1,O2} with 
Ol = (ol

i,j
)1≤i≤5,1≤j≤2 , l = 1, 2 . The computation is done in the same way as in Exam-

ple 3: o1
1,1

= (2, 1) ∗ (−1, 1) = −2 + 1 = −1 , o1
2,2

= (2, 2) ∗ (−1, 1) = −2 + 2 = 0 , 
o2
1,1

= (2, 1) ∗ (1, 2) = 2 + 2 = 4 , o2
2,2

= (2, 2) ∗ (1, 2) = 2 + 4 = 6 . Therefore, the 
output O is given by

In this example, since K1 and K2 are linear-independent, we fully recover the input M 
given K1,K2 and output O.

Notice that since the first term in signature transform is always 1, we can omit 
that, to save the computational memory. As shown in Fig.  2, we start from one 
d-dimensional path with length L, using such a convolutional layer, and we resulted 
in c paths with each of d/c-dimensional. Then we augment each path with extra time 
dimension and apply signature transform to each path truncated at depth m, which 
gives us the number of features

many features by concatenating all c filters. These features can be used in any fol-
lowing neural network model. For example, a fully connected neural network in the 
simplest case, or a recurrent neural network (RNN) if we compute the sequence of 
the signature transform.

The number Nf  of features grows linearly in d by increasing c linearly and fix-
ing � . Instead of optimizing this Nf  by setting � = argminNf  directly, we can 

M ∶=

⎛
⎜⎜⎜⎜⎝

2 1 0 2

0 1 2 2

0 0 0 1

2 0 0 2

0 2 0 1

⎞
⎟⎟⎟⎟⎠
, K1 ∶=

�
−1 1

�
and K2 ∶=

�
1 2

�
.

O1 =

⎛
⎜⎜⎜⎜⎝

−1 2

1 0

0 1

−2 2

2 1

⎞
⎟⎟⎟⎟⎠
, O2 =

⎛
⎜⎜⎜⎜⎝

4 4

2 6

0 2

2 4

4 2

⎞
⎟⎟⎟⎟⎠
.

(3.2)Nf ∶= c ⋅
(d∕c + 1)m+1 − d∕c − 1

d∕c + 1 − 1
=

(� + 1)m+1 − � − 1

�2
⋅ d
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think � as a hyperparameter to be tuned to avoid overfitting problem. It can be 
easily seen that by setting � = 1 , we reach a minimum of Nf  when m ≥ 3 . How-
ever, lower � will give us higher c, which increase the number of parameters in 
the CNN step. We consider the sum Nf + (

d

�
)2 of number of features and the num-

ber of parameters in CNN. Moreover, we can add a multiplier � to the second 
term, and then define a regularized number on �,

We can select a large real positive number � . This will help us avoid the overfitting 
problem, when we are concerned about that the CNN layer fits the original paths too 
well and it sacrifices the prediction power.

3.4 � One‑to‑one Mapping

Under the setup in Sect.  3.3, we can generalize Example  4 and prove such a 
convolutional layer preserves all information of the original path. Suppose that 
{ki}c

i=1
 are all c convolutional kernels with ki = (ki

1
,… , ki

c
) for i = 1,… , c . Denote 

the square matrix

Let the original path be � =
(
xt1 ,… , xtn

)T , xtj =
(
x1
tj
,… , xd

tj

)
 and the output path 

{x̃i}
c
i=1

 , where x̃i =
(
x̃t1,i,… , x̃tn,i

)T with x̃tj,i =
(
x̃1
tj,i
,… , x̃

𝛾

tj,i

)
 , 1 ≤ i ≤ c . The CNN 

layer can be represented in equation as

Lemma 1  If � is of full rank, then this CNN layer is a one-to-one map.

Proof  Since � is square and of full rank, it is invertible.

If follows that the original path � can be fully recovered by x̃ ∶= {x̃i}
c
i=1

 . 	�  ◻

We denote the CNN layer transform as � ∶ V
1([0, T],ℝd) → V

1([0, T],ℝd∕c+1)c . 
Here, plus 1 in the dimension (d∕c) + 1 comes from the time dimension we add to 
each convoluted path.

(3.3)N�(�) ∶=
(� + 1)m − 1

�2
⋅ (� + 1) ⋅ d + � ⋅

d2

�2
.

� ∶=

⎛⎜⎜⎝

k1
1
… k1

c

⋮ ⋮ ⋮

kc
1
… kc

c

⎞⎟⎟⎠
.

(3.4)� ⋅

(
xlc+1
tj

,… , x
(l+1)c
tj

)T

=
(
x̃l
tj,1
,… , x̃l

tj,c

)T

, 1 ≤ l ≤ 𝛾 , 1 ≤ j ≤ n.

(
xlc+1
tj

,… , x
(l+1)c
tj

)T

= �
−1

⋅

(
x̃l
tj,1
,… , x̃l

tj,c

)T

, 1 ≤ l ≤ 𝛾 , 1 ≤ j ≤ n.
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In accordance with practical case, we consider approximating functions with 
domain in a subspace of V1([0, T],ℝd) that is observed at finite time stamps and 
connected by linear interpolation between consecutive points. More precisely, 
define

Suppose f ∶ V
1
D
([0, T],ℝd) → ℝ is the continuous function we need to estimate. 

Then we have the following theorem.

Theorem  2  (Approximation by the CNN-Sig model) Let K be a compact set in 
V
1
D
([0, T],ℝd) . Suppose that f is Lipschitz in K. For any 𝜖 > 0 there exist a CNN 

layer � , an integer m, and a neural network model � such that

Proof  For every x ∈ V
1
D
([0, T],ℝd) , we rewrite f(x) as a function of x̃ = {x̃i}

c
i=1

 in 
(3.4):

It follows that h = f◦�−1 is a continuous function. Since S(x̃i) is a geometric rough 
path and characterize the path x̃i uniquely for each 1 ≤ i ≤ c , there exists a continu-
ous function ĥ ∶ (T(ℝ))c → ℝ such that

The existence follows from the compactness and that the signature map is continu-
ous and one-to-one. Moreover, since f is Lipschitz, we have that h is Lipschitz and 
hence ĥ is also Lipschitz. The compactness of K implies that the image of S◦� is 
also compact, hence h(x̃) can be approximate arbitrarily well be truncated signatures 
up to a uniform truncation depth m for all data in the set K. The existence of such m 
is induced by the proof of (Lemma  4.1, Min and Hu (2021)) and Lipschitz property. 
That is, there exists an integer m, such that

This ĥ is not necessarily linear, because there might be some dependence among 
{x̃i}

c
i=1

 , but it can be approximated by a neural network model arbitrarily well. A 
wide range of � can be chosen. For example, a fully connected shallow neural net-
work with one wide enough hidden layer and some activation function would work, 
see Funahashi (1989), Cybenko (1989); or a narrow but deep network, see Kidger 
and Lyons ((2020)). That is, there exists � such that

(3.5)

V
1
D
([0, T],ℝd) ∶= {x ∈ V

1([0, T],ℝd) ∶ there exist n ∈ ℕ and 0 = t0 < ⋯ < tn = T

such that x(t) =
ti − t

ti − ti−1
x(ti−1) +

t − ti−1

ti − ti−1
x(ti)

for ti−1 ≤ t ≤ ti, i = 1,… , n}.

sup
x∈K

|f (x) −𝛷◦Sm◦�(x)| < 𝜖.

(3.6)f (x) = f (�−1(x̃)) = f◦�−1(x̃) =∶ h(x̃).

h(x̃) = ĥ(S(x̃1),… , S(x̃c)).

(3.7)sup
x∈K

|ĥ(S(x̃1),… , S(x̃c)) − ĥ(Sm(x̃1),… , Sm(x̃c))| ≤ 𝜖

2
.
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By combining (3.6), (3.7), (3.8) together, we get the desired result. 	�  ◻

In the CNN-Sig model, the CNN layer can be understood as data-dependent 
encoder which help us find the best way of encoding original path to several lower-
dimensional paths. On the one hand, a large c will result in overfitting problem of 
CNN layer. On the other hand, small c will produce large number of features for � , 
and then � may has the overfitting problem. This tradeoff can be balanced by mini-
mizing N�(�) in Eq. (3.3). Thus, although the choice of c does not affect the univer-
sality of the model, it could help with resolving the overfitting problem.

Remark 5  When we do experiments of the CNN-Sig model, this model works even 
better compare to plain signature transform of original path on testing data, it is 
because the CNN-Sig model reduces the number of features and thus overcome the 
overfitting problem better than direct signature transform.

Moreover, the signature transform can be performed in a sequential way. Then 
we can choose a RNN model (GRU or LSTM) for � . Some other candidates for � 
can be Attention model like Transformer, 1d-CNN and so on, which might help us 
get better predictions. Thus, this CNN-Sig model is quite flexible and can be incor-
porated with many other well developed deep learning model as � , which depends 
specifically on the task. In practice, we can use a different stride size to allow some 
overlap during convolution and reduce the number of filters. The one-to-one map-
ping property may be lost in this case if we choose small number of filters, but it 
results in less overfitting. Another alternative is that we can also convolute over time 
dimension, provided that correlation over time is of importance to the sequential 
data.

4 � Experiments

In this section, several results of the experiments are provided for the purpose of 
exhibiting the performance of the signature classifier and the CNN-Sig model. Sec-
tions  4.1 and 4.2 show that the signature classifier can be a nice candidate for the 
time series classification problem. In Sects.  4.3 and 4.4, we apply the CNN-Sig 
model to high-dimensional tasks, including the standard high-dimension datasets, 
approximation of maximum-call European payoff and sentimental analysis.

(3.8)sup
x∈K

|||𝛷(Sm(x̃1),… , Sm(x̃c)) − ĥ(Sm(x̃1),… , Sm(x̃c))
||| ≤

𝜖

2
.
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4.1 � Classification of GARCH time series

The generalized autoregressive conditional heteroskedasticity (GARCH) process is 
usually used in econometrics to describe the time-varying volatility of financial time 
series (Bollerslev 1986; Engle 1982). GARCH provides a more real-world context 
than other models when predicting the financial time series, compare to other time 
series model like ARIMA. We apply logistic regression to Example 2, i.e. the goal is 
to estimate g(Sm(x)) = (p̂0, p̂1) in (2.9), where

subject to p̂0 + p̂1 = 1 , l is a linear functional on Tm(ℝd) to be chosen such that the 
cross entropy

is minimized, and we predict labels by ŷi = argmaxi p̂i . 500 samples are generated 
for each class and we use 70% of each class as training data and 30% of each as test-
ing data. Using m = 4 , we get training accuracy 96.4% and testing accuracy 97.0% . 
The confusion matrix is given below in Table  3.

4.2 � Classification of directed chain discrete time series

In the study of mean-field interaction and financial systemic risk problems, (Deter-
ing et  al. 2021) propose a countably many particle system of diffusion processes, 
coupled through an infinite, chain-like directed graph, and discuss a detection prob-
lem of mean-field interactions among diffusive particles. In Remark 4.5 of Deter-
ing et al. (2021), a discrete time analogue of the mean-reverting diffusions on the 
directed chain is also proposed.

We shall discuss a classification problem of such time series data partially 
observed from the directed chain graph. More specifically, we analyze an identically 
distributed time series data {Xn}n≥1 and {X̃n}n≥1 parametrized by a, u ∈ [0, 1] and 
defined recursively by

(4.1)log
p̂1

1 − p̂1
= ⟨l, Sm(x)⟩,

(4.2)E(l) = −

N∑
i=1

(yi log p̂i + (1 − yi) log(1 − p̂i))

(4.3)Xn = aXn−1 + (1 − a)(uX̃n−1 + (1 − u)�[Xn−1]) + �n, n ≥ 1,

Table 3   Training (left) and 
testing (right) confusion matrics

True 0 1 True 0 1
Predicted Predicted

0 343 7 0 147 3
1 18 332 1 6 144
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where we assume that X0 = X̃0 = 0 for simplicity, the distribution of {Xn, n ≥ 0} 
is identical with that of {X̃n, n ≥ 0} and �n , n ≥ 1 are independent, identically dis-
tributed standard normal random variables, independent of {X̃n}n≥1 . The parameter 
u ∈ [0, 1] measures how much Xn depends on its neighborhood and 1 − u measures 
how much Xn depends on the common distribution. X and X̃ have the same distribu-
tion with the moving average representation:

where {�n,k , n, k ≥ 0} is an independent, identically distributed array of standard 
normal random variables.

Suppose that our only observation is {Xn}n≥1 , but both {X̃n}n≥1 and u are hid-
den to us. Our question is that given the access to {Xn}n≥1 generated by different 
u, can we determine their classes?

In this part, we first set the default parameters and generate training and test-
ing paths according to (4.4). First, we initial some parameters: a = 0.5 , u = 0.2 
or 0.8 for classification task, N = 100 is the time steps, 1/N is the variance of � . 
To generate paths, we generate a n × (n + 1) matrix E of the error terms � , and 
then pick the column we need for each n. The summation takes time O(N2) and 

(4.4)

Xn =
∑

0≤l≤k≤n−1

(
k

l

)
ul(1 − a)lak−l�n−k,l,

X̃n =
∑

0≤l≤k≤n−1

(
k

l

)
ul(1 − a)lak−l�n−k,l+1, n ≥ 1,

Table 4   Training accuracy and 
testing accuracy on Logistic 
regression

Training Acc Testing Acc

0.7465 0.7375

Table 5   Training accuracy and 
testing accuracy on NN

Training Acc Testing Acc

0.8930 0.8925

Table 6   Training and testing mean absolute error(MAE) and R2 for the direct signature transform plus 
linear regression (Sig+LR) and the CNN-Sig model with � as a fully connected neural network

d Sig+LR CNN-Sig

Training Testing Training Testing

MAE R
2 MAE R

2 MAE R
2 MAE R

2

6 ( � = 2) 0.001 1.000 0.101 0.538 0.020 0.986 0.030 0.972
10(� = 2) 0.000 1.000 0.124 0.806 0.033 0.988 0.062 0.962
12(� = 2) 0.000 1.000 0.153 0.821 0.048 0.981 0.111 0.924
20(� = 1) 0.000 1.000 0.225 0.838 0.177 0.916 0.203 0.892
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we have to range n from 1 to N. The time complexity is the order of O(N3) . We 
simulate 2000 training paths and 400 testing paths for this task.

Method 1: Logistic Regression In this method, we use 2000 training paths: 
1000 for u = 0.2 and 1000 for u = 0.8 . Calculating the signature transform of 
these paths, augmented with time dimension, up to degree 9, we build a Logistic 
Regression model on the signatures of training data and test this model, see Eq.  
(4.1).

The result is shown in Table 4. We observe that signature does capture useful 
features for u in these special time series.

Method 2: Deep Neural Network We build a Neural Network model to get a 
better result. We use 4 hidden layers with 256, 256, 128, 2 units respectively. For 
first 3 layers, we use "ReLu" as activation function, for last layer, we use "Soft-
max" activation function as the approximated probability values. After training 
for 20 epochs, the result is shown in Table 5.

This 4-layer neural network model produces better accuracy than logistic 
regression. The reason follows Remark  4. Logistic regression trains a linear 
classifier, but it cannot be used to estimate p(⋅) efficiently, because p(⋅) is not 
continuous in x. This DNN model adds nonlinearity to h(⋅) ,s and hence works 
better.

4.3 � High‑dimensional time series

Signature is an efficient tool as a feature map for high-frequency sequential data to 
reduce the number of features. However, the number of signature terms increases 
exponentially as dimension (or channels in the language of PyTorch) increasing. In 
Sect. 3, we proposed the CNN-Sig model to address this problem. We test our model 
by applying it in both regression and classification problem.

Experiments—Regression Problem for Maximum-Call Payoff
We investigate our model on a specific rainbow option, high-dimension European 

type maximum call option. In other words, we want to use our CNN-Sig model to 
estimate the payoff

where T is terminal time, K is strike price, superscript k represents the k-th coordi-
nate of this d-dimension path. If Xk

T
 is smaller than K for all 1 ≤ k ≤ d , this payoff is 

zero. Otherwise the payoff would be the maximum of (Xk
T
− K) over those k satisfies 

Xk
T
≥ K . Result of this experiment may motivate us to use CNN-Sig model in high-

dimensional optimal stopping problem from financial mathematics.
Because of the limitation of exponential growth in the number of features, we 

use lower d = 6, 10, 12, 20 to compare the performance between plain signature 

max
1≤k≤d((X

k
T
− K)+),

Fig. 3   QQ plot for training and testing result for lower dimensional regression with d = 6, 10, 12, 20 using 
the CNN-Sig model

▸
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transform and CNN-Sig model. Then we apply this model to test its performance 
with higher dimension d = 50.

We generate 1000 training paths and 1000 testing paths for cases of d = 6, 10, 12 , 
and generate 3000 training paths and 1000 testing paths for case d = 20 . All stock 
price paths follows Black–Scholes model.

For all 4 cases, we consider m = 4 as the signature depth. For � in the CNN-Sig 
model, we use the same structure, 2 fully connected layers followed by ReLu acti-
vation function and then a fully connected layer. We did not apply any technique 
for avoiding overfitting problem in the CNN-Sig model to make this comparison 
fair. The result for comparison is shown in Table 6. We can see that for all these 
4 cases, the CNN-Sig model beats direct signature transform. Since the CNN-Sig 
model reduces the number of features, it can help avoid overfitting problem compare 
to Sig+LR. We produce the QQ plots for training and testing results of the CNN-Sig 
model, see Fig. 3.

For d = 50 , where the plain Sig+LR becomes not applicable, we use the same CNN-
Sig structure as lower d cases for training. The training MAE is 0.206 with R2 = 0.982 
and testing MAE is 0.751 with R2 = 0.797 . The QQ plot of training and testing results 
is in Fig. 4. In this experiment, we show that CNN-Sig algorithm could be a good can-
didate in the high-dimensional regression problem where plain signature is not applica-
ble. But since CNN-Sig will add non-linearity here, we are not able to price this option 
in the same way as Arribas (2018). This will be left as our future research.

Experiments - Classification
We apply the CNN-Sig model to different high-dimensional times series from 

Baydogan (2015) and Ruiz et  al. (2021). As suggested in Ruiz et  al. (2021), all 
experiments are compared with a benchmark model ROCKET (Dempster et  al. 
2020). The results are evaluated over 5 independent trials and listed in Table  7. 
ROCKET is known to be a fast and accurate classification method, the experiment 
results show that the CNN-Sig model is competitive and fast after a model selection 
procedure via k-fold cross validation.1

4.4 � Sentiment Analysis by Signature

In Natural Language Processing (NLP), text sentence can be regarded as sequen-
tial data. A conventional way to represent words is using high-dimensional vector, 
which is called word embedding. These kinds of word embedding are usually of 
50, 100, 300 dimension. Using plain signature transform becomes extremely diffi-
cult because of these high dimensions. We apply our CNN-Sig model to address this 
problem. The dataset we use is IMDB movie reviews, (Maas et al. 2011).

This IMDB dataset contains 50,000 movie reviews, each of them is labelled by 
either "pos" or "neg", which represent Positive for Negative respectively. The IMDB 
dataset is split into training and testing evenly. For training part, we use 17,500 sam-
ples for training the model, and use the other 7500 samples as validation dataset. A 
100-dimension word embedding GloVe 100d (Pennington et al. 2014) is used as the 

1  All experiments are trained on a server with Intel Core i9-9820X (3.30GHz) and four RTX 2080 Ti 
GPUs
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initial embedding, this high dimension restricts us to use plain signature transform. 
In our model, by setting � to be small, we use 1 convolutional 2d layer to reduce the 
dimension from 100 to c paths with each of � + 1 dimensional augmented by extra 
time dimension. The architecture is shown in Fig. 5.

Fig. 4   QQ plot for training and testing result for regression task with d = 50 using CNN-Sig model

Table 7   Testing accuracy, 
standard deviation and total 
training time (s) for all high-
dimensional time series datasets

Bold content implies the result is better compare to the other model

Datasets ROCKET CNN-Sig

PEMS-SF 0.810 (0.014) 0.817 
(0.010)

JapaneseVowels  0.960 (0.002) 0.940 
(0.017)

FingerMovement 0.500 (0.01) 0.514 
(0.034)

FaceDetection 0.597 (0.004) 0.553 
(0.001)

PhonemeSpectra 0.035 (0.002) 0.152 
(0.006)

MotorImagery 0.620 (0.007) 0.524 (0.05)
Heartbeat 0.729 (0.011) 0.723 

(0.017)
Training Time 353.5 209.1

Fig. 5   Convolutional Signature neural network model for IMDB dataset
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The result is shown in Table  8 and the testing accuracy has been improved to  
86.9% which is higher than the result in Toth and Oberhauser (2019) (83%) and 
Bidirectional LSTM (Bi-LSTM) with 2 hidden layers (0.846%). Moreover, CNN-
Sig is a more efficient structure compare to Bi-LSTM in terms of training time and 
GPU memory usage.

We believe that the CNN-Sig model is a good candidate for feature mapping and 
easy to be embraced into more complex models. By applying more complicated 
structure, such as using attention model for � and a sliding window, e.g., see Morrill 
et al. (2020), for calculating a sequential signature transform, the accuracy can be 
improved.

5 � Conclusion

Using the signature to summarize sequential data has been proved to be very effi-
cient in the low-dimensional cases. However, signature transform suffers from expo-
nential growth of the number of features with respect to the path dimension. This 
makes both regression and classification problem impossible in practice.

In this paper, we proposed the Convolutional Signature (CNN-Sig) model to 
address this problem. Using a convolutional layer, we achieve a linear growth of 
the number of features and preserve all information simultaneously. The experi-
ments show that this model can be a good candidate for classifying multi-dimension 
sequential data. Moreover, signature has been proved experimentally to be insensi-
tive to missing values, this property may be useful in many natural language pro-
cessing (NLP) tasks. The CNN-Sig model mitigates the high-dimension problem 
and provides a possible way to apply the signature transforms.
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Table 8   Testing accuracy, GPU 
memory usage(Gb) during 
training and total training 
time(s) on IMDB dataset

Bold content implies the result is better compare to the other model

Bi-LSTM CNN-Sig

Accuracy 0.846 (0.013)  0.869 
(0.002)

Memory 6.8 1.3
Time 401.5 292.5

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


27

1 3

Digital Finance (2023) 5:3–28	

References

Arribas, I.P. (2018). Derivatives pricing using signature payoffs Preprint is available at arxiv:​ abs/​1809.​
09466

Baydogan, M. (2015). Multivariate Time Series Classification Datasets . Available at http://​musta​fabay​
dogan.​com, [Accessed: 2020-07-12]

Boedihardjo, H., Geng, X., Lyons, T., & Yang, D. (2016). The signature of a rough path: uniqueness. 
Advances in Mathematics, 293, 720–737.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Economet-
rics, 31(3), 307–327.

Chevyrev, I., & Lyons, T. (2016). Characteristic functions of measures on geometric rough paths. Annals 
of Probability, 44(6), 4049–4082.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H. & Bengio, Y. 
(2014). Learning phrase representations using RNN encoder-decoder for statistical machine 
translation

Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., & Bengio, Y. (2014)Learning 
phrase representations using rnn encoder-decoder for statistical machine translation. (p. (2014)) 
arxiv:​ abs/​1406.​1078.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics Of Control, 
Signals And Systems, 2, 303–314. https://​doi.​org/​10.​1007/​BF025​51274.

Dempster, A., Petitjean, F., & Webb, G. I. (2020). Rocket: exceptionally fast and accurate time series 
classification using random convolutional kernels. Data Mining and Knowledge Discovery, 34(5), 
1454–1495.

Detering, N., Fouque, J. P., & Ichiba, T. (2021). Directed chain stochastic differential equations. Stochas-
tic Processes and their Applications, 130, 2519–2551.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of 
united kingdom inflation. Econometrica, 50, 987–1007.

Funahashi, K. I. (1989). On the approximate realization of continuous mappings by neural networks. 
Neural Networks, 2(3), 183–192.

Gyurkó, L.G., Lyons, T., Kontkowski, M. & Field, J (2013). Extracting information from the signature of 
a financial data stream arxiv:​ abs/​1307.​7244

van Handel, R. (2016). Probability in High Dimension. APC 550 Lecture Notes (p. Princeton University). 
https://​web.​math.​princ​eton.​edu/​~rvan/​APC550.​pdf

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Comput., 9(8), 1735–1780.
Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the 

American Statistical Association, 58(301), 13–30.
Kidger, P., Bonnier, P., Perez Arribas, I., Salvi, C. & Lyons, T. (2019). Deep signature transforms. In: 

Advances in Neural Information Processing Systems 32, pp. 3105–3115. Curran Associates, Inc. . 
http://​papers.​nips.​cc/​paper/​8574-​deep-​signa​ture-​trans​forms.​pdf

Kidger, P., & Lyons, T. ((2020,7,9),). Universal Approximation with Deep Narrow Networks. Proceed-
ings Of Thirty Third Conference On Learning Theory., 125, 2306–2327. https://​proce​edings.​mlr.​
press/​v125/​kidge​r20a.​html.

Kidger, P., & Lyons, T. (2020). Signatory: differentiable computations of the signature and logsignature 
transforms, on both CPU and GPU. https://​github.​com/​patri​ck-​kidger/​signa​tory

Kiraly, F. J., & Oberhauser, H. (2019). Kernels for sequentially ordered data. Journal of Machine Learn-
ing Research, 20(31), 1–45.

Levin, D.A., Lyons, T. & Ni, H.(2013). Learning from the past, predicting the statistics for the future, 
learning an evolving system Preprint is available at arxiv:​ abs/​1309.​0260

Liao, S., Lyons, T., Yang, W. & Ni, H.(2019). Learning stochastic differential equations using RNN with 
log signature features Preprint is available at arxiv:​ abs/​1908.​08286

Lyons, T., Nejad, S., & Arribas, I. P. (2019). Numerical method for model-free pricing of exotic deriva-
tives using rough path signatures. Applied Mathematical Finance, 26, 583–597.

Lyons, T., Nejad, S., & Arribas, I. P. (2020). Non-parametric pricing and hedging of exotic derivatives. 
Applied Mathematical Finance, 27, 457–494.

Lyons, T., Ni, H., & Oberhauser, H. (2014). A feature set for streams and an application to high-fre-
quency financial tick data. New York: Association for Computing Machinery. https://​doi.​org/​10.​
1145/​26400​87.​26441​57.

http://arxiv.org/abs/1809.09466
http://arxiv.org/abs/1809.09466
http://mustafabaydogan.com
http://mustafabaydogan.com
http://arxiv.org/abs/1406.1078
https://doi.org/10.1007/BF02551274
http://arxiv.org/abs/1307.7244
https://web.math.princeton.edu/%7ervan/APC550.pdf
http://papers.nips.cc/paper/8574-deep-signature-transforms.pdf
https://proceedings.mlr.press/v125/kidger20a.html
https://proceedings.mlr.press/v125/kidger20a.html
https://github.com/patrick-kidger/signatory
http://arxiv.org/abs/1309.0260
http://arxiv.org/abs/1908.08286
https://doi.org/10.1145/2640087.2644157
https://doi.org/10.1145/2640087.2644157


28	 Digital Finance (2023) 5:3–28

1 3

Lyons, T., & Qian, Z. (2002). System Control and Rough Paths. Oxford mathematical monographs: Clar-
endon Press.

Lyons, T. J., Caruana, M., & Lévy, T. (2007). Differential equations driven by rough paths. Lecture Notes 
in MathematicsDifferential Equations Driven by Rough Paths: École d’Été de Probabilités de Saint-
Flour XXXIV - 2004 (Vol. 1908, pp. 81–93). Berlin Heidelberg: Springer.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning word vectors 
for sentiment analysis (pp. 142–150). Portland, Oregon, USA: Association for Computational Lin-
guistics. http://​www.​aclweb.​org/​antho​logy/​P11-​1015.

Min, M., & Hu, R. (2021)Signatured Deep Fictitious Play for Mean Field Games with Common Noise. 
Proceedings Of The 38th International Conference On Machine Learning. 139 pp. 7736-7747 
(2021,7,18), http://​proce​edings.​mlr.​press/​v139/​min21a.​html

Morrill, J., Fermanian, A., Kidger, P. & Lyons, T.(2020) A generalized signature method for time series 
Preprint is available at arxiv:​ abs/​2006.​00873

Pennington, J., Socher, R. & Manning, C.D.(2014). Glove: Global vectors for word representation. In: 
Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 http://​www.​aclweb.​
org/​antho​logy/​D14-​1162

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2018). Numerical Gaussian processes for time-depend-
ent and non-linear partial differential equations. SIAM Journal on Scientific Computing, 40, 
A172–A198.

Ruiz, A. P., Flynn, M., Large, J., Middlehurst, M., & Bagnall, A. (2021). The great multivariate time 
series classification bake off: a review and experimental evaluation of recent algorithmic advances. 
Data Mining and Knowledge Discovery, 35(2), 401–449.

Salvi, C., Cass, T., Foster, J., Lyons, T., & Yang, W. (2021). The Signature Kernel Is the Solution of a 
Goursat PDE. SIAM J. Math. Data Sci., 3(3), 873–899.

Toth, C. & Oberhauser, H. (2019). Bayesian learning from sequential data using Gaussian processes with 
signature covariances (2019) Preprint is available at arxiv:​ abs/​1906.​08215

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. & Polosukhin, 
I. (2017) Attention is all you need. In: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, 
S. Vishwanathan, R. Garnett (eds.) Advances in Neural Information Processing Systems, vol. 30. 
Curran Associates, Inc. (2017). https://​proce​edings.​neuri​ps.​cc/​paper/​2017/​file/​3f5ee​24354​7dee9​
1fbd0​53c1c​4a845​aa-​Paper.​pdf

Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning. MA: MIT press 
Cambridge.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

http://www.aclweb.org/anthology/P11-1015
http://proceedings.mlr.press/v139/min21a.html
http://arxiv.org/abs/2006.00873
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://arxiv.org/abs/1906.08215
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

	Convolutional signature for sequential data
	Abstract
	1 Introduction
	2 Signature and geometric rough paths
	2.1 Signatures
	2.2 Geometric rough paths and linear functionals
	2.3 Classification via signature

	3 Convolutional Signature Model
	3.1 Signature as a layer
	3.2 Convolutional signature model
	3.3 Number of features
	3.4 One-to-one Mapping

	4 Experiments
	4.1 Classification of GARCH time series
	4.2 Classification of directed chain discrete time series
	4.3 High-dimensional time series
	4.4 Sentiment Analysis by Signature

	5 Conclusion
	Acknowledgements 
	References




