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Abstract
Although the evaluation of inter-rater agreement is often necessary in psychomet-
ric procedures (e.g., standard settings or assessment centers), the measures typi-
cally used are not unproblematic. Existing measures are known for penalizing raters 
in specific settings, and some of them are highly dependent on the marginals and 
should not be used in ranking settings. This article introduces a new approach using 
the probability of consistencies in a setting where n independent raters rank k items. 
The discrete theoretical probability distribution of the sum of the pairwise absolute 
row differences (PARDs) is used to evaluate inter-rater agreement of empirically 
retrieved rating results. This is done by calculating the sum of PARDs in an empiri-
cally obtained n × k matrix together with the theoretically expected distribution of 
the sum of PARDs assuming raters randomly ranking items. In this article, the theo-
retical considerations of the PARDs approach are presented and two first simulation 
studies are used to investigate the performance of the approach.
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1 Introduction

There is a need for new approaches measuring inter-rater agreement in ordinal 
settings because the measures typically used are not unproblematic (e.g., [23]) 
and there has been no method especially designed for ranking settings developed 
yet. This article introduces a new approach using the probability of consistencies 
in a setting where n independent raters rank k items. Rankings are ratings in an 
ordinal setting, assigned to items without replacement. They are often used in 
psychometric procedures like standard settings or assessment centers in order to 
figure out whether raters agree on the difficulties of items or ability of applicants. 
In addition to the best scoring items or applicants, also inter-rater agreement is of 
concern. In an assessment center, it is important both to know which candidate 
was evaluated best and whether raters agreed or not. It might be the case that 
an applicant is not obtaining the best score because he or she was poorly evalu-
ated by one rater only. For instance, at the University of Applied Sciences Wie-
ner Neustadt amongst other criteria like psychological tests and questionnaires an 
assessment center is part of the selection process of bachelor applicants. There 
are assessment centers for specific conditions (e.g., self-presentation). After-
ward, the mean ratings are used as one criterion to decide whether applicants are 
rejected or admitted. Rankings were additionally included as indifferent ratings 
(no decision between candidates) were shown to be problematic. Rankings can be 
used to evaluate whether assessors are able to rank applicants and to investigate 
to which extent rankings are consistent among the raters.

To evaluate whether raters agree or disagree on the performance of an applicant 
inter-rater reliability measures are used. Measures evaluating inter-rater agree-
ment in a classic rating setting exist, but they are highly discussed (e.g., [10]; 
[25]) and problematic in ranking settings. Cohen’s kappa and Fleiss’ kappa are, 
for instance, known for penalizing raters in specific settings, are highly dependent 
on the marginals and should not be used in ranking settings. Furthermore, even 
though rater agreement is often of interest, there are no suiting measures that can 
deal with a ranking setting. This article tries to fill this gap introducing a new 
measure using the so-called sum of pairwise absolute row differences (PARDs). 
The sum of PARDs is a directly interpretable measure (p value equivalent) and 
is not biased in ranking settings, so its use is highly recommended. In addition, 
unlike already existing measures, as shown in the results section, the new meas-
ure is as appropriate in small settings as it is in bigger settings, since it is taking 
into account both the number of raters and the number of items to be ranked. 
Another advantage of the presented approach is that it is possible to compare the 
result within and between settings. The overall research question of this paper is 
to which extent the PARDs approach is a suitable measure to describe inter-rater 
agreement in a ranking setting. The first simulation studies compare the PARDs 
measure to already existing measures, and the second simulation study deals with 
the question how many matrices are necessary.

This paper starts providing a literature review on existing measures and 
their usability in ranking settings and continues introducing the sum of 
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PARDs-approach. Both the theoretical derivation and the computational imple-
mentation are discussed. To complete the article results of a simulation study 
comparing the existing measures with the results retrieved from the PARDs 
approach and another simulation study showing the comparison of matrices of 
different sizes. Conclusions and suggestions for future research are given at the 
end of this article.

2  Literature Review

2.1  Existing Measures

Many measures exist aiming to assess inter-rater reliability. A main distinction can 
be made between agreement measures (e.g., kappa, Tau approaches) and correla-
tional approaches (e.g., Pearson correlation coefficient, Spearman correlation coef-
ficient, intra-class correlation). In this section, the main ideas of this approaches are 
discussed and their suitability in ranking problems is analyzed.

2.1.1  Kappa‑like Approaches

Although the idea of kappa-like approaches was discussed earlier, Cohen [5] first 
suggested the Cohen’s kappa coefficient ( � ) in 1960 as an agreement measure 
among two raters rating nominal categories. Cohen’s kappa � is calculated by the 
famous formula

The two values used in order to calculate � are p0 and pe : The first one is the rela-
tive observed agreement among raters, and the latter one is the hypothetical prob-
ability of chance agreement. pe is calculated using the observed data to calculate 
the probabilities of each rater randomly choosing each category. The value of � is 
1 when perfect agreement between two raters occurs, and 0 in case the agreement 
is equal to the expected agreement under independence assumption. It is negative 
when agreement is less than expected by chance.

Scott’s pi is very similar to Cohen’s kappa and was introduced by Scott in 1955 
[22]. The difference between the two approaches is that the expected agreement is 
calculated in a different way. Scott’s pi uses the assumption that raters are having the 
same distribution of responses. Although Fleiss introduced a multiple-rater agree-
ment coefficient as a generalized kappa coefficient in 1971, it in fact generalizes 
Scott’s pi coefficient [13]. Fleiss’ kappa was developed by Fleiss and Kappa in 1973 
[9], and in its general form, it is used for analyzing agreement between more than 
two raters rating nominal categories. In addition to the fact that kappa-like meas-
ures are based on questionable marginal homogeneity assumptions [15] and they are 
highly dependent on marginal distributions [27], these measures do not take into 
account the ordinal scale in ranking settings. Therefore, they are not suited to be 

(2.1)� =

p0 − pe

1 − pe
.
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used in this framework. Although Landis and Koch in 1977 [18] describe kappas 
lower than zero as poor agreement, 0.01–0.20 as slight agreement, 0.21–0.40 as fair 
agreement 0.41–0.60 as moderate agreement, 0.61–0.80 as substantial agreement 
and 0.81–1.00 as almost perfect agreement, there does not exist consensus about 
how large the value should be in practice.

Fleiss’ kappa can also be applied to ordinal data in case weights are introduced 
and used to take into account greater and smaller deviations of the raters from each 
other. The original idea of a weighted kappa approach is based on ordinal settings, 
where larger distances between raters have to be penalized [6]. The most commonly 
used weights for this approach are linear and quadratic [24]. However, both are criti-
cized on their arbitrary forms and it can be shown that, under specific conditions, 
the linear weighted kappa is equivalent to a product moment correlation [6]. In case 
of the quadratic weight, it holds that it is equivalent to a intra-class correlation [21]. 
This means those measures do not differ from later described approaches. There also 
exists a kappa coefficient for cardinal scales that is asymptotically equivalent to the 
intra-class correlation (ICC) estimated from a two-way random effects ANOVA as 
discussed by Fleiss and Kappa in 1973 [9]. In some cases, Fleiss’ kappa may return 
low values, even when agreement is actually high. That is why attempts have also 
been made to correct for that [8].

2.1.2  Correlational Approaches

Correlational approaches are commonly used in any setting where the linear associa-
tion between multiple outcomes is of interest. Well-known measures are the Pear-
son correlation coefficient which directly compares the directions of two variables, 
while the Spearman correlation coefficient, on the other hand, provides informa-
tion about similar and dissimilar ranks. Third, the intra-class correlation (ICC) is 
a special case of a correlation used in settings, where measurements are organized 
in groups. Therefore, these approaches might be predetermined to be used in rank-
ing settings. According to the correlational approaches and the ICC approach, there 
are some interpretation rules suggested: Cicchetti [4] suggests the following guide-
lines for interpretation for kappa and ICC measures: Less than 0.40 is considered 
poor. Values between 0.40 and 0.59 can be considered as fair, values between 0.60 
and 0.74 as good and values between 0.75 and 1.00 as excellent. Koo and Li [17] 
suggest slightly different values: They consider below 0.50 as poor, between 0.50 
and 0.75 as moderate, between 0.75 and 0.90 as good and above 0.90 as excellent. 
For interpreting correlations, the suggestions of Cohen [7] are usually used. Another 
approach often used is Kendall’s Tau [16]. It is a nonparametric approach measuring 
ordinal associations between two measured quantities, calculated by

where nc is the number of concordant pairs, nd is the number of discordant pairs, r 
is the number of rows, c is the number of columns and m = min(r, c) . Compared to 
the kappa-like approaches, it directly assumes an ordinal setting, in which a high 

(2.2)�c =
2 × (nc − nd)

n2 ×
m−1

m
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coefficient represents a similar rank between variables and a low coefficient a dis-
similar rank. However, considering its definition it is only useful in a setting with 
two variables which is a serious limitation for larger ranking settings.

In fact, practitioners use this type of approaches in combination with kappa-
like approaches in standard settings and psychometric studies to determine inter-
rater agreement (e.g., [3]; [20]). Theoretical research on the other hand doubts 
the applicability of these approaches for several reasons: First, a correlation does 
only provide information about similar directions across items [10] which is a 
serious restriction in the case of rankings. Moreover, neither of the correlational 
approaches does correct for chance agreement [11] which is a serious issue in 
inter-rater settings. Therefore, in most of the practical implications correlations 
are not used as the only measure of inter-rater agreement. The approaches pro-
vided in the literature show problems with the measures currently used in rank-
ing settings and confirm that a new approach is necessary. In general, it is to 
point out that there is a lack of inter-rater reliability measures accounting for 
the closeness of ratings and at the same time correcting for chance agreement. 
Although there are some strengths of the correlational approaches, they are not 
taking into account chance agreement. This is the gap this article tries to fill by 
discussing a new approach to calculate inter-rater agreement in ranking settings.

3  Methodological Approach

In this chapter, we will introduce a new method specifically designed to fit any 
ranking setting where n independent raters (assessors) decide on k options while 
accounting for the issues discussed in the literature review. First, we describe 
the suggested method from a theoretical perspective. The new approach using 
the probability of consistencies in a setting where n independent raters rank k 
items was first presented at the Psychometric Computing Conference 2019 in 
Prague [2], while further developments were discussed at the Simulation and 
Statistic Conference in Salzburg [1]. The discrete theoretical probability dis-
tribution of the sum of the pairwise absolute row differences (PARDs) assum-
ing n raters randomly ranking k items is used to evaluate inter-rater agreement 
of empirically retrieved rating results. This is done by calculating the sum of 
PARDs in an empirically obtained n × k matrix together with the theoretically 
expected distribution of the sum of PARDs assuming raters randomly ranking 
items. In particular, a p value equivalent in a discrete setting is found to evaluate 
inter-rater agreement of the empirically retrieved rating results.

The first part of this section describes this method in detail. Afterward, a first 
part of a simulation study will show the performance of the method compared to 
other well-known inter-rater agreement measures offered in the literature and a 
second part of a simulation study will show how accurate simulation approaches 
are in case of different sizes of matrices.
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3.1  Sum of Pairwise Absolute Row Differences (PARDS)—A Measure 
for Inter‑Rater Agreement

Consider the following typical ranking problem: As mentioned earlier, at the Uni-
versity of Applied Sciences Wiener Neustadt an assessment center is part of the 
selection process of bachelor applicants. For instance, n = 3 independent raters are 
rating and ranking the performance of k = 3 applicants in a specific condition (e.g., 
self-presentation). Afterward, the mean ratings are used as one criterion to decide 
whether applicants are rejected or admitted. Rankings were additionally included as 
indifferent ratings (no decision between candidates) were shown to be problematic. 
Rankings can be used to evaluate whether assessors are able to rank applicants and 
to investigate to which extent rankings are consistent among the raters. But how can 
meaningful criteria for inter-rater agreement be assessed in case of the assessment 
center rankings? A ranking example is presented in Table 1.

In the PARDs approach, the pairwise absolute row differences are first calculated 
as shown in Table 2. The absolute value of these differences is used as both positive 
and negative differences may occur.

Afterward, the sum of all entries in the matrix (sum = 4) is calculated, and there-
fore, all pairwise row differences are taken into account. This is done to find an over-
all agreement measure for the whole matrix. In order to determine how probable this 
or a more extreme result (this or a smaller sum of PARDs) is, compared to a setting 
in which numbers are assigned randomly and without repetition, the discrete prob-
ability distribution function of this sum in a given setting is needed. More generally, 
consider a ranking setting with n independent raters and k options. A row difference 
accounts for the differences between each individual rater. If all raters agree on the 
ranking, this difference will be zero for all columns. Therefore, in a setting in which 
all raters are ranking the items in the same way, the sum of PARDs will be zero. If a 
difference exists in the rankings, it increases with the dissimilarity in the rankings. 
This means a larger disagreement leads to a larger difference. Agreement on the 
other hand is given, if the sum of PARDs reveals a small value. Now the question 
arises how the size of the sum of PARDs can be judged. We suggest to determine 

Table 1  Example 3 × 3 setting n, k 1 2 3

1 1 2 3
2 2 1 3
3 1 2 3

Table 2  PARDs 3 × 3 setting n, k 1 2 3

1-2 1 1 0
2-3 1 1 0
3-1 0 0 0
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or estimate the probability of the empirically calculated sum of PARDs or a smaller 
sum of PARDs.

If k numbers are assigned to k places without replacement, there are in general 
k! ways to arrange them. This means there are k! different options to construct one 
row of the matrix. Furthermore, in a n × k setting the number of possible matri-
ces is k!n . With this information, it is possible to determine the total of a sum of 
PARDs of zero. Since a sum of PARDs of zero would mean that the rankings are 
the same and therefore the rows must be the same, there are k! ways of obtaining 
such a so-called zero difference. Therefore, the probability of a zero difference is 
given by: P(d0) =

k!

k!n
 . The zero difference represents a benchmark for the whole pro-

cess as it refers to a setting where all raters agree on all ranking decisions (total 
agreement). This has to be taken into perspective with other outcomes, in particular 
the sum of PARDs, possible in a specific setting. Some laws for specific settings 
can be derived, like the maximum number of differences per column is given by 
Diffcol = (n − 1) + (n − 2) + ...(n − (n − 1)) . Finding a general formula to obtain the 
sum of PARDs and their probabilities is only possible for certain, small settings. 
In order to estimate the probability of a certain sum of PARDs, another approach 
is to find all possible matrices, calculate their sum of PARDs and determine their 
frequencies. Simulation is necessary for bigger matrices, and both approaches were 
implemented using R [19] and the R-package gtools [26]. Back to the example men-
tioned above with n = 3 raters ranking k = 3 items, all possible matrices can be cre-
ated and the discrete probability function can be determined as presented in Fig. 1.

The cumulative probability shown in Fig. 2 can be used as a measure for inter-
rater agreement and is directly interpretable. In the displayed example, the inter-rater 
reliability is approximately 0.19, meaning that in a random setting a sum of PARDs 
of 4 or lower results in approximately 19 percent of the cases. The approach allows 
for probabilities of matrices and their sums of PARDs to be calculated. Instead of 
a rather uninformative comparison, it is possible to directly calculate and compare 
probabilities of a specific outcome to all other possible outcomes in a setting. This 
leads to a single cumulative probability for each empirical setting, corresponding 
to the single scores used in the other inter-rater agreement measures. Because this 
measure is a cumulative probability, it is directly interpretable, and therefore, it is 
more informative than other measures. For small settings, it is possible to generate 
all matrices and calculate their relative frequencies used as probability estimates. As 
mentioned earlier, for bigger settings (e.g., 5 × 4 settings) it is necessary to simulate 
matrices and to estimate their cumulative probability functions, because the number 
of possibilities increases k factorial to the power of n. For instance, creating all pos-
sible matrices of a 5 × 4 takes approximately 7 minutes. The creation of all matrices 
in a 4 × 5 is not possible given the system information provided in Sect. 4.1.

A simulation approach is often used if it is not intended or feasible to fit a spe-
cific model with real data. Instead of finding an exact solution for one realization, 
a simulation is capable of considering many outcomes and data variations. This 
is especially useful if the number of observed possibilities is too large as in the 
case of the PARDs approach. It is easy to see that for increasing n and k a com-
putation of all sum of PARDs and corresponding probabilities is not feasible and 
not even necessary (as shown later in this study). Furthermore, the aim of this 
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approach lies in a determination of a p value equivalent and comparable measure 
within and between settings, not in an exact determination of the probability for 
each sum of PARDs. More specific, the process enables a comparison between a 
single realization (the empirically observed inter-rater agreement matrix and its 
corresponding sum of PARDs) and the total amount of possible deviations in the 
same setting. The first is deterministic if the rating is over, and the second is also 
deterministic at all times in a specific setting. For the comparison, it is enough to 
know where the empirically observed realization lies in the distribution function 
and how much distribution mass is in the lower tail form this point. This is how 
the simulation approach of the sum of PARDs works: Instead of computing every 
possible difference matrix to obtain the distribution function, only a fixed value 
of matrices (e.g., 106 ) is computed based on the combinatorial logic of this pro-
cess and the resulting relative frequencies are calculated and used as an estimate 
for the probabilities of the sum of PARDs. Using such a simulation approach, 
one has to determine how to deal with the small and therefore unlikely sum of 
PARDs. If they are not treated at all, they are systematically under represented, 
resulting in overestimating the cumulative probabilities of the sum of PARDs. 
This would be especially problematic because they are in particular of interest, 

Fig. 1  Discrete probability function 3 × 3
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since the aim of this measure is to represent inter-rater agreement. That is why 
we suggest to make use of the probabilities and values known (like the probabil-
ity of the zero difference) and to fit a continuous logistic growth curve model in 
order to correct for the under-representation of the small differences using the 
R-package nls2 [12]. The fitting of a logistic growth curve model is demonstrated 
using a 5 × 10 (Fig. 3).

3.2  Simulation Studies

Since a new measure is defined in this article, first attempts should be made to 
investigate how well the sum of PARDs approach works, for both settings in 
which exact calculation of the probabilities is possible and for those in which 
simulation is necessary. Therefore, the first goal of this study is to compare it 
with already existing, well-known measures like the Fleiss weighted linear kappa, 
the intra-class correlation, the Pearson and the Kendall correlation. This is the 
first small simulation study of this paper. For this simulation study, 1000 times 1 
million matrices in a 5 × 10 setting were simulated and small, medium sized and a 
large sum of PARDs were compared to the other mentioned measures. Small was 

Fig. 2  Discrete distribution function 3 × 3
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considered to have a cumulative probability lower than 0.05, medium around 0.5 
and large higher than 0.9.

The second simulation study aims to investigate how accurate different num-
bers of simulated matrices are compared to each other. Or in other words: How 
many matrices are needed for a sufficient result? This was tested using the follow-
ing matrices sizes: 3 × 5 , 3 × 6 and 3 × 7 . The reason is that for these rather small 
matrices it is possible to compare the retrieved estimates to the calculated val-
ues. Furthermore, this study and the mentioned settings were in line with a real 
application case at the University of Applied Sciences Wiener Neustadt where the 
application of the sum of PARDs was used and the results of the simulation stud-
ies were important. In each case, first the number of all possible matrices was cre-
ated (N). Afterward, the numbers of to be simulated matrices were determined: 
The first simulation used 10 × N , the second simulation used N − matrices , the 
third 0.1 × N , the fourth 0.01 × N , the fifth 0.001 × N and the sixth 0.0001 × N . 
In case the simulation ended up with less than 15 matrices, the results were not 
used. For each scenario, 1000 samples of the targeted size were randomly sam-
pled and their sum of PARDs and corresponding probabilities were estimated by 
fitting a logistic growth curve model using the R-package nls2 [12].

Fig. 3  Logistic growth curve model 5 × 10
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4  Results

4.1  Calculation Times and Systems Used

In order to provide an overview of the calculation times for various settings, the cal-
culation times are reported underneath (Tables 3, 4 and  5) using the following sys-
tem: Windows 10 Education 64-Bit (10.0, Build 18362); CPU: Intel Core i7-8565U, 
1.80 GHz(8 CPUs), 2.0 GHz; RAM: 16348 MB; Graphics: Intel UHD Graphics 
620 8256 MB capacity, 128MB VRAM. 1000 × 106 matrices were simulated and 
reported in seconds.

4.2  Simulation Study I

1000 times 1 000 000 matrices were simulated. A small (lower than cumulative 
probability of .05), a medium-sized (around .50) and a large effect according to the 
PARDs approach were compared (higher than .90). In particular, the chosen sum of 
PARDs values was 220, 332 and 380. For each sum of PARDs, the corresponding 
matrices were selected and the other measures were calculated. Provided in the table 
underneath are the empirically retrieved mean values and the standard deviations of 
the simulated samples (Table 6). 

A high agreement (low sum of PARDs) corresponds to a fair agreement accord-
ing to Fleiss’ weighted linear kappa [18]. Also the ICC and the Pearson and Kendall 
correlation coefficient suggest a fair or moderate agreement. For both the medium 
and the large-sized effects, no agreement regarding the other measures can be 

Table 3  Setting 2 × i
i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

User 1.69 3.46 6.14 11.77 24.66 56.14 ∼112
System 0.00 0.02 0.01 0.00 0.03 0.03 ∼0.06
Passed 1.70 3.49 6.17 11.78 24.70 56.18 ∼1120

Table 4  Setting 3 × i
i = 3 i = 4 i = 5 i = 6 i = 7

User 67.05 463.86 2601.01 ∼18000 ∼108000
System 0.08 0.45 4.58 ∼45.8
Passed 67.12 464.38 2605.93 ∼18000 ∼108000

Table 5  Setting 4 × i
i = 3

User 6293.59
System 8.89
Passed 6303.57
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found. To summarize the results of this simulation study it can be stated that the 
interpretations of the effect sizes are comparable.

4.3  Simulation Study II

Underneath the distribution functions of the different scenarios are displayed in 
Figs. 4,5 and 6. It can be seen that in case of small samples the smallest differences 
are not included in the simulated sum of PARDs (e.g., 0, 4,...). In the simulated 
scenarios, the estimated probabilities in smaller samples are higher than in larger 
samples. This means in the respective scenarios the probabilities are overestimated 
in case of too small samples, but it can also be seen that the logistic growth curve 
model is hardly influenced by the changes in the sample sizes. There seems to be a 
slightly increasing variability with decreasing sample size.

5  Discussion and Conclusion

The aim of this work is to introduce the sum of PARDs measure as a measure dis-
playing inter-rater agreement in ranking settings. There is a need for a measure 
like this because the existing measures mentioned in the literature review all have 

Table 6  Comparison 5 × 10

Measure Small −x̄ Small − s Medium −x̄ Medium − s Large−x̄ Large − s

Cum. Prob 
(sum PARDs)

0.0001 0.0001 .50 0.0005 .99 0.0002

Fleiss’ 0.33 0.0000 −0.01 0.0000 −0.15 0.0000
ICC 0.51 0.0368 0.01 0.0371 −0.19 0.0183
Pearson 0.48 0.0375 −0.01 0.0348 −0.20 0.0166
Kendall 0.36 0.0250 −0.01 0.0292 −0.14 0.0201

Fig. 4  Fitted logistic growth curve models 3 × 5
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shortcomings, especially if they are used in ranking settings. The sum of PARDs 
measure has the advantage that it was developed especially for ranking settings. The 
PARDs measure can be seen as an effective way to represent all the complex infor-
mation of the ranking process in a single value without using any irrelevant informa-
tion. It has to be noted that the PARDs measure was originally developed for ranking 
settings. Future research will also deal with the extension of the approach. Another 
advantage is that it can also be compared across different settings, since it is using 
cumulative probabilities of discrete (or estimated continuous) distribution functions.

A small, first simulation study showed that there is the same tendency across the 
compared measures. A large 5 × 10 matrix was used in the first simulation study. In 
this setting, a high inter-rater agreement according to the sum of PARDs approach 
corresponded to a fair agreement according to the other measures. The second 
simulation study aimed to investigate how many matrices are necessary for a valid 
result. It can be seen that in the scenario of 3 × 5 , 3 × 6 and 3 × 7 matrices the esti-
mates were quite robust, especially in case the logistic growth curve model is used 

Fig. 5  Fitted logistic growth curve models 3 × 6

Fig. 6  Fitted logistic growth curve models 3 × 7
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and even for the smallest sample sizes. In future research, the question has to be 
answered whether this is because the PARDs approach using the simulated matri-
ces is systematically overestimating the inter-rater agreement or because the other 
measures are systematically underestimating the inter-rater agreement in the ranking 
setting. This method can, for instance, be used to identify assessors who tend to rank 
applicants differently in assessment centers or wherever items are ranked and agree-
ment needs to be investigated.

The aim of this article is to present first considerations of the sum of PARDs 
approach and first results of simulation studies. It is not the aim to provide a math-
ematical proof of statistical properties of the measure, and the article is not claiming 
that this measure is already sufficiently tested using larger simulation studies. This 
was not the scope of this paper anymore and is planned to be investigated in the 
future. Also, a general rule how many matrices are necessary in larger settings has 
to be found. In addition, techniques on how to deal with missing values are planned 
to be considered and the method will be implemented in a R-package. Meaningful 
cutoff criteria are not suggested because a directly interpretable measure is provided 
and the researcher can therefore decide on his or her own about the required effect 
size in a given setting. One disadvantage of this approach is of course the necessary 
computation power in case of bigger settings, but because computational power will 
get better in the future it can be seen as only a current limitation (e.g., Kambatla, 
Kollias, Kumar and Grama in 2014 [14]). Furthermore, it will not be necessary for 
practitioners to create or simulate the matrices by themselves, and the theoretical 
(simulated) probability functions will be included in the planned R-package.

Since it is a measure developed for ranking settings and usually practitioners usu-
ally rank a small number of items, its application cases are typically smaller sized 
matrices. The reason for this is that it is difficult for human raters to be accurate if 
a too large number of options are presented which have to be ranked according to 
some criterion. In particular in small settings, the suggested sum of PARDs measure 
is computed fast and it seems to be promising, because it is using each and every 
data point and it is directly interpretable because it is a cumulative relative frequency 
used as an estimate for the cumulative probability. The sum of PARDs approach is 
the only inter-rater agreement measure represented by a probability.
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