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Abstract
Hierarchical random effect models are used for different purposes in clinical research 
and other areas. In general, the main focus is on population parameters related to the 
expected treatment effects or group differences among all units of an upper level 
(e.g. subjects in many settings). Optimal design for estimation of population param-
eters are well established for many models. However, optimal designs for the predic-
tion for the individual units may be different. Several settings are identified in which 
individual prediction may be of interest. In this paper, we determine optimal designs 
for the individual predictions, e.g. in multi-cluster trials or in trials that investigate a 
new treatment in a number of different subpopulations, and compare them to a con-
ventional balanced design with respect to treatment allocation. Our investigations 
show that in the case of uncorrelated cluster intercepts and cluster treatments the 
optimal allocations are far from being balanced if the treatment effects vary strongly 
as compared to the residual error and more subjects should be recruited to the active 
(new) treatment. Nevertheless, efficiency loss may be limited resulting in a moder-
ate sample size increase when individual predictions are foreseen with a balanced 
allocation.
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1  Introduction

Hierarchical random effect models are used for different purposes. Common 
applications, e.g. in clinical research, are random effect meta analyses of several 
clinical trials using individual patient data (IPD), multi-centre trials assuming 
random centre effects or mixed or random effect models for repeated measure-
ments (MMRM) for longitudinal data within subjects. Clinical trials or meta-anal-
yses of clinical trials may involve several populations or subgroups of patients 
(e.g. defined by genetic biomarkers), where in some settings between-population 
variability may be modelled using a hierarchical approach.

Precision medicine aims at investigating new treatments in different subpopu-
lations of patients, e.g. with specific tumour subtypes, in order to detect poten-
tially differential treatment effects indicating the application in specific subpopu-
lations. Basket trials investigate a new treatment in a number of different groups 
of patients, where the treatment is compared to a control in each of the different 
subpopulations. If, for example, two binary or dichotomized genetic biomarkers 
identify biomarker positive or negative patients, the whole patient population 
could be split into four disjoint subsets of patients. However, far more subpopula-
tions of interest may be identified, especially in oncological settings, where one 
treatment may be investigated in a large number of different patient populations. 
Furthermore, in many oncological indications, biomarker defined subgroups 
might be rather small and early phase clinical trials aim at exploring different 
subpopulations that may be highly heterogeneous with respect to the response to 
treatment, since depending on the individual biomarker status, different treatment 
effects are often expected. In these difficult settings with a limited number of trial 
participants available, high design efficiency is an important prerequisite for a 
successful development of new targeted drugs in small populations.

Further applications refer or observational studies data on quality parameters 
of drugs arise from hierarchical settings with multiple layers, i.e. with multiple 
sources of variability according to the underlying manufacturing process, e.g. 
given by manufacturing sites, production batches and samples within batches. In 
general, the main focus is on population parameters related to the expected treat-
ment effects or group differences among all units of an upper level (e.g. trials 
in IPD meta-analyses, centres in multi-centre trials, patients in longitudinal tri-
als, batches in quality control, etc.). Several authors considered optimal design 
for estimation of population parameters (expected values of random effects) in 
similar models; see e.g. [2–6, 8]. In general, prediction of the outcome in the 
individual units may also be of interest in several settings, as for treatment effects 
in single clusters to assess qualification of individual clinics, manufacturing 
sites in manufacturing control, treatment effects in different subpopulations of 
patients. In these cases, the question arises, whether optimal designs for popula-
tions parameters can also be used for individual predictions of random effects, 
whether optimal designs for individual predictions differ from those for popula-
tions parameters and to which extent and which efficiency loss (or sample size 
increase) can be anticipated if another conventional design is chosen.
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In this paper, we investigate optimal designs for random effects to be applied, e.g. 
in basket trials (or multi-cluster trials), investigating a number of disjoint patient 
populations and compare them to a conventional balanced design with respect to 
treatment allocation. Nevertheless, the results are applicable to very different set-
tings as outlined above.

The structure of the paper is as follows: In Sect. 2, a hierarchical model is speci-
fied and the best linear unbiased predictions of the individual parameters (intercepts 
and treatment effects for the individual units or clusters) are derived. In Sect.  3, 
analytical results are presented to characterize optimal designs for prediction of the 
cluster specific effects. The results are illustrated by some numerical examples. The 
paper is concluded by a short discussion.

2 � Model Specification

We consider a randomized comparative trial with K different clusters (e.g. subpopu-
lations). In all of these clusters, individuals are allocated to two treatment groups. In 
the first group (denoted by x = 1 ), the individuals receive an active treatment while 
in the second group (denoted by x = 0 ) a placebo or a control treatment is applied.

We consider K clusters i = 1,… ,K . Denote by �i and �i the intercept (mean 
response at placebo or control) and the effect of the active treatment (compared to 
placebo or control), respectively, in cluster i, which both may vary across the clus-
ters. The response Yij of an individual j = 1,… ,Ni in cluster i can be described as

where xij is equal to 1, if the individual belongs to the treatment group, and xij is 
equal to 0 for the control (or placebo) group and �ij denotes the random variation 
in the response of the individuals. The individual variations �ij are assumed to have 
zero mean and to be homoscedastic with common variance �2.

The cluster specific intercepts �i and treatment effects �i can be assumed as ran-
dom with (unknown) expected values E(�i) = � and E(�i) = � characterizing the 
mean intercept and mean treatment effect across the clusters and covariance struc-
ture Cov((𝜇i, 𝛼i)

⊤) = 𝜎2� for some 2 × 2 positive definite dispersion matrix � . All 
random effects and all individual variations are assumed to be uncorrelated.

For the sake of simplicity, we further assume that the total number N of indi-
viduals per cluster is the same for all clusters ( Ni = N ) and that the allocation rate is 
constant across the clusters, i. e. the number n of individuals in the treatment group 
is the same for all clusters. The design problem can then be formulated in terms of 
finding the optimal allocation rate w = n∕N for the treatment group.

Because of exchangeability of the individuals within each cluster, we may sort 
them in the analysis regardless of randomization in such a way that the first n indi-
viduals j = 1,… , n to be analyzed receive the active treatment and the remaining 
N − n individuals j = n + 1,… ,N are in the control group. Then the experimental 
settings xij in (1) can be specified by

(1)Yij = �i + �ixij + �ij ,
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and are independent of the cluster i.
Hence, the multi-cluster model (1) can be identified as a particular case of the 

random coefficient regression model

investigated by [7] when the regression functions and the cluster parameters are 
specified by � (x) = (1, x)⊤ and � i = (𝜇i, 𝛼i)

⊤ , respectively. In general, this model can 
be written in vector notation as

where �i = (Yi1,… , YiN)
⊤ and 𝜀i = (𝜀i1,… , 𝜀iN)

⊤ are the N-dimensional vec-
tors of observations and individual variations at cluster i, respectively, and 
� = (�(x1),… , �(xN))

⊤ is the within cluster design matrix which is equal across all 
clusters.

For the present multi-cluster model, the design matrix � simplifies to

where �
�
 and �

�
 denote the �-dimensional vectors with all entries equal to 1 and 0, 

respectively.
According to [7], Corollary 1 (see also [2]) in model (2), the best linear unbi-

ased predictors (BLUPs)

of the random parameters � i are weighted combinations of the estimates 
�̂ i;within = (�⊤�)−1�⊤�i based only on the observations within cluster i and the best 
linear unbiased estimator (BLUE) �̂0 = (�⊤�)−1�⊤�̄ of the population parameter 
�0 = E(� i) = (𝜇, 𝛼)⊤ , where �̄ =

1

K

∑K

i=1
�i is the mean observational vector aver-

aged across the clusters.
We additionally assume that the cluster intercepts �i and the cluster treat-

ment effects �i are uncorrelated for all clusters, i.  e. � = diag(u, v) , where 
u = 𝜎2

𝜇
∕𝜎2 > 0 and v = 𝜎2

𝛼
∕𝜎2 > 0 are the variance ratios of the intercepts and the 

treatment effects in relation to the observational variance of the individuals.
With the common notations Ȳ (T)

i ⋅
=

1

n

∑n

j=1
Yij and Ȳ (C)

i ⋅
=

1

N−n

∑N

j=n+1
Yij for the 

mean response in the treatment (“T”) and the control (“C”) group in cluster i, 
Ȳ (T)
⋅ ⋅

=
1

K

∑K

i=1
Ȳ
(T)

i ⋅
 and Ȳ (C)

⋅ ⋅
=

1

K

∑K

i=1
Ȳ
(C)

i ⋅
 for the overall mean of the treatment and 

the control group, respectively, the BLUPs for the cluster parameters �̂ i = (𝜇̂i, 𝛼̂i)
⊤ 

of the random intercepts and the random treatment effects � i = (𝜇i, 𝛼i)
⊤ in model 

(1) can be written as weighted averages

xij = xj =

{

1, j = 1,… , n

0, j = n + 1,… ,N

(2)Yij = � (xj)
⊤� i + 𝜀ij, i = 1,… ,K, j = 1,… ,N

(3)�i = �� i + �i,

� =

(

�n �n

�N−n �N−n

)

,

(4)�̂ i =
(

�
⊤
� + �

−1
)−1(

�
⊤
� �̂ i;within + �

−1�̂0

)
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where c0 =
nu

(Nu+1)(nv+1)−n2uv
 and c = u(N−n)(nv+1)

(Nu+1)(nv+1)−n2uv
 , and

with weights c1 =
(Nu+1)nv−n2uv

(Nu+1)(nv+1)−n2uv
 and c2 =

Nu+nv+1

(Nu+1)(nv+1)−n2uv
.

The derivation of formulas (5) and (6) is deferred to “Appendix”.
To measure the quality of a design, we will use the mean squared error (MSE) 

matrix of the BLUP �̂ =
(

�̂
⊤

1
,… , �̂

⊤

K

)⊤

 of the complete vector � = (�⊤

1
,… , �⊤

K
)⊤ of 

all random parameters. The mean squared error (MSE) matrix for the BLUP �̂ can 
be computed by means of the following formula :

(see [7], Corollary 2), where �
�
 denotes the � × � identity matrix and ⊗ is the sym-

bol for the Kronecker product of matrices or vectors.
Further denote by � =

(

𝛼1,… , 𝛼K
)⊤ the vector of treatment effects for all clus-

ters. Then � =
(

�K ⊗ (0, 1)
)

� and, hence,

for the MSE matrix of the BLUP �̂ = (𝛼̂1,… , 𝛼̂K)
⊤ of � . Using this and formula (7), 

we obtain the MSE matrix

Note that the MSE matrix for 𝛼̂ is completely symmetric and that, hence, the MSE 
of 𝛼i attains the same value for all cluster treatment effects.

3 � Optimal Design

As individuals are interchangeable within treatment groups, we may define an exact 
within cluster design

(5)𝜇̂i = c0

(

Ȳ
(T)

i ⋅
− Ȳ (T)

⋅ ⋅

)

+ cȲ
(C)

i ⋅
+ (1 − c)Ȳ (C)

⋅ ⋅
,

(6)𝛼̂i = c1Ȳ
(T)

i ⋅
+ (1 − c1)Ȳ

(T)
⋅ ⋅

− c2Ȳ
(C)

i ⋅
− (1 − c2)Ȳ

(C)
⋅ ⋅

(7)
Cov

(

�̂ − �
)

= 𝜎2
(

1

K

(

�K�
⊤
K

)

⊗
(

�
⊤
�
)−1

+
(

�K −
1

K
�K�

⊤
K

)

⊗ (�⊤
� + �

−1)−1
)

(8)Cov(�̂ − �) =
(

�K ⊗ (0, 1)
)

Cov
(

�̂ − �
)(

�K ⊗ (0, 1)
)⊤

(9)
Cov(�̂ − �) = 𝜎2

(

N

n(N − n)

1

K
�K�

⊤
K

+
v(Nu + 1)

(Nu + 1)(nv + 1) − n2uv

(

�K −
1

K
�K�

⊤
K

)

)

.

(10)
(

T C

n N − n

)
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by the allocation numbers n and N − n to the treatment and control groups T and C, 
respectively.

For analytical purposes, we generalize this to the definition of an approximate 
design:

where w =
n

N
 is the allocation rate to the treatment group and 1 − w =

N−n

N
 is the 

allocation rate to the control group. For finding an optimal design, only the optimal 
allocation rate w∗ to the treatment group has to be determined.

For an approximate design, the definition of the MSE matrix (9) of the BLUP �̂ is 
extended in a straightforward manner and can be rewritten (neglecting �2 ) as :

in terms of the allocation rate w.
For the assessment of the MSE matrix, we focus on the A-optimality criterion 

for the cluster treatment effects � , which averages the mean squared errors of the 
predicted cluster treatment effects 𝛼i . More specifically, the A-criterion ΦA,� is the 
trace of the MSE matrix of the prediction �̂ of the cluster treatment effects. For an 
approximate design, we obtain

for the criterion function ΦA,� in terms of the allocation rate w.
Alternatively, one may consider the MV-optimality criterion for the cluster treat-

ment effects � , which measures the maximal MSE over all predicted cluster treat-
ment effects 𝛼̂i . More specifically, the MV-criterion ΦMV,� is the maximal diago-
nal entry of the MSE matrix of the prediction �̂ of the cluster treatment effects. 
Because the MSE is equal for all 𝛼i , the MV-criterion is related to the A-criterion by 
ΦMV,� =

1

K
ΦA,� , and hence, the A-optimal designs are also MV-optimal.

Because, in general, there is no explicit solution for the optimal allocation rate, 
which minimizes (13), we will give an insight in the qualitative behaviour by some 
numerical examples below.

It is worthwhile mentioning that the criterion (13) is convex, and therefore, an 
optimal exact design may be obtained by choosing the best of the two exact designs 
adjacent to an optimal approximate design.

Example 1  For illustrative purposes, we consider a numerical example with K = 16 
clusters and N = 4 individuals in each clusters, corresponding, for example, to a 
phase II trial investigating the potentially heterogeneous treatment effect in a popu-
lation that is subdivided by four different dichotomous biomarkers. Obviously, the 

(11)� =

(

T C

w 1 − w

)

,

(12)
MSE(w) =

1

Nw(1 − w)

1

K
�K�

⊤
K

+
v(Nu + 1)

(Nu + 1)(Nwv + 1) − N2w2uv

(

�K −
1

K
�K�

⊤

K

)

(13)ΦA,�(w) =
1

Nw(1 − w)
+ (K − 1)

v(Nu + 1)

(Nu + 1)(Nwv + 1) − N2w2uv
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resulting sample size per subgroup will be small resulting in a high need for optimal 
designs.

Figure 1 exhibits the behaviour of the optimal allocation rate w∗ to the treat-
ment group in dependence on the variance ratio v of the treatment effects for 
some fixed values 0.01, 0.1, 0.25, 0.5 and 1.5 of the variance ratio u of the inter-
cept. For reasons of presentation, we plot the optimal allocation rate w∗ against 
the rescaled variance ratio rv = v∕(1 + v) in the spirit of intra-class correlation in 
order to cover all possible values of the treatment effects variance ratio by a finite 
interval ((0, 1)), where rv → 0 and rv → 1 relate to v → 0 and v → ∞ , respectively, 
and rv is monotonically increasing in v. What can be seen from the picture is that 
for fixed values of u the optimal allocation rate w∗ is equal to 0.5 for v → 0 and 
increases with increasing values of the variance ratio v of the treatment effects. 
The different lines associated with the different values of u appear in descending 
order which means that the optimal allocation rates decrease when the variance 
ratio u of the intercepts gets larger.

The next figure (Fig.  2) shows the behaviour of the optimal allocation rate in 
dependence on the variance ratio u of the intercepts for fixed values 0.01, 0.1, 0.2, 
0.5 and 2 of the variance ratio v of the treatment effects, where again the variance 
ratio is rescaled ( ru = u∕(u + 1) ). Also here it can be seen that the optimal allocation 
rate decreases with increasing values of u and increases with increasing values of v.

Figures  3 and 4 present the efficiency of the equal allocation rate w0 = 0.5 
which is optimal in the fixed effects model ( u = v = 0 ). The efficiency for the 
A-criterion (A-efficiency) has been computed using the common formula

Note that for the MV-criterion the MV-efficiency, which is defined analogously, 
coincides with the A-efficiency. The efficiencies decrease with increasing values of 

(14)effA(w0) =
ΦA,�(w

∗)

ΦA,�(w0)
.

Fig. 1   A-optimal allocation 
rate w∗ to the treatment group 
in dependence on the rescaled 
variance ratio rv = v∕(1 + v) of 
the treatment effects for u = 0.01 
(solid line), 0.1 (dashed line), 
0.25 (dotted line), 0.5 (dashed-
dotted line) and 1.5 (dashed line, 
long dashes)

rv

w
*

0.0 0.2 0.4 0.6 0.8 1.0
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0.59

0.66

0.73

0.80
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Fig. 2   A-optimal allocation rate 
w∗ to the treatment group in 
dependence on the rescaled vari-
ance ratio ru = u∕(1 + u) of the 
intercepts for v = 0.01 , (solid 
line), 0.1 (dashed line), 0.25 
(dotted line), 0.5 (dashed-dotted 
line) and 2 (dashed line, long 
dashes)
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w
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0.80

Fig. 3   A-efficiency of the equal 
allocation rate w

0
= 0.5 in 

dependence on the rescaled vari-
ance ratio rv = v∕(1 + v) of the 
treatment effects for u = 0.01 
(solid line), 0.1 (dashed line), 
0.25 (dotted line), 0.5 (dashed-
dotted line) and 1.5 (dashed line, 
long dashes)
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Fig. 4   A-efficiency of the 
equal allocation rate w

0
= 0.5 

in dependence on the rescaled 
variance ratio ru = u∕(1 + u) of 
the intercepts for v = 0.01 (solid 
line), 0.1 (dashed line), 0.25 
(dotted line), 0.5 (dashed-dotted 
line) and 2 (dashed line, long 
dashes)
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the variance of the treatment effects and increase with increasing values of the vari-
ance of the intercepts.

Example 2  Extending the illustrative example, we further consider trials with K = 16 
or K = 32 clusters and N = 6 or N = 4 individuals in each cluster. Figure 5 exhibits 
the behaviour of the optimal allocation rate w∗ to the treatment group in dependence 
on the variance ratio q = v∕u for some fixed values 0.01, 0.1, 0.25, 0.5 and 1.5 of the 
variance ratio u of the intercept. For reasons of presentation, we again plot the opti-
mal allocation rate w∗ against the rescaled variance ratio rq = q∕(1 + q) . As we can 
observe from the graphics, the dependence on the variance ratio q is more essential 
for K = 32 and N = 4 than for K = 16 and N = 6.

Figure 6 presents the efficiency of the equal allocation rate w0 = 0.5 which is opti-
mal in the fixed effects model. The efficiency is more sensible with respect to the vari-
ance ratio in the case K = 32 and N = 4 than for K = 16 and N = 6.

4 � Discussion

In the present paper, we focused on A- and MV-optimality for prediction of the cluster 
treatment effects � . Alternatively, one may be tempted to employ the D-optimality cri-
terion ΦD,� which is defined as the log determinant of the MSE matrix of the prediction 
�̂ of the cluster treatment effects �,

ΦD,�(w) = log

(

1

Nw(1 − w)

)

+ (K − 1) log

(

v(Nu + 1)

(Nu + 1)(Nwv + 1) − N2w2uv

)

.

rq

w
*
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0.72

0.81

0.90
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w
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0.72

0.81
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Fig. 5   A-optimal allocation rate w∗ to the treatment group in dependence on the rescaled variance ratio 
rq = q∕(1 + q) of the treatment effects for u = 0.01 (solid line), 0.1 (dashed line), 0.25 (dotted line), 0.5 
(dashed-dotted line), 1.5 (dashed line, long dashes) and for K = 16 and N = 6 (left panel), K = 32 and 
N = 4 (right panel)
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The D-criterion is commonly used in the case of estimation of fixed effects and 
measures essentially the volume of a simultaneous confidence ellipsoid for the 
parameters of interest taking correlations between the parameter estimates into 
account. In the present setting of prediction of cluster treatment effects, especially 
when considering treatment effects in patient subpopulations, stand-alone interpre-
tations for the given clusters are targeted and the simultaneous prediction ellipsoid 
corresponding to the D-criterion appears less relevant for the clinical interpretation. 
From a practical point of view, simultaneous prediction intervals based on a Bonfer-
roni-like approach would better fit to the intended application. The corresponding 
R-optimality criterion (see e.g. [1]) measures the volume of these multidimensional 
intervals and is defined as the product of the diagonal elements of the MSE matrix. 
In the present situation of equal diagonal elements, the R-criterion ΦR,� is related to 
the A- and MV-criterion by ΦR,� = (ΦMV,�)

K = (
1

K
ΦA,�)

K , and hence, the A-optimal 
designs are also R-optimal.

As illustrated in the examples, the larger the between-unit (between-cluster) var-
iability of the treatment effects, the more the optimal weight deviates from equal 
allocation, especially if the variance of the treatment effects is large compared to the 
variance of the intercepts of the units. An increasing heterogeneity in the treatment 
effect leads to a decreased precision of the design that is optimal for overall popula-
tion parameters: A balanced design is far from optimal if the treatment effects vary 
strongly as compared to the residual error and more subjects should be recruited to 
the active (new) treatment in multi-cluster trials. Nevertheless, efficiency loss may 
still be limited as in the examples resulting in a total sample size increase of about 
10–20% in the considered scenarios if individual predictions are foreseen with a less 
efficient balanced allocation. If between-unit variability of treatment effects is con-
sidered to be small, equal allocation may suffice. However, using the results given in 
the paper, specific settings with different expectations can be assessed properly, in 

rq
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0.0 0.2 0.4 0.6 0.8 1.0
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0.86

0.93

1.00
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Fig. 6   A-efficiency of the equal allocation rate w
0
= 0.5 in dependence on the rescaled variance ratio 

rq = q∕(1 + q) of the intercepts for u = 0.01 (solid line), 0.1 (dashed line), 0.25 (dotted line), 0.5 (dashed-
dotted line) and 1.5 (dashed line, long dashes) and for K = 16 and N = 6 (left panel), K = 32 and N = 4 
(right panel)
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order to make optimally use of a limited number of patients or sample units to pre-
dict random effects of individual units. Basket trials with few patients in a number 
of biomarker defined subpopulations could be designed as efficient as possible in 
order to better facilitate the development of new targeted drugs.

Appendix: Derivations of the Formulas for the BLUPs for the Cluster 
Parameters

We use formula (4) for computing the BLUPs. First note

and

This implies

and

with constants c0 , c, c1 , and c2 as given in (5) and (6).
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Ȳ (T)
⋅⋅
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⋅ ⋅

c1Ȳ
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