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Abstract
Mountains regions like Gilgit-Baltistan (GB) province of Pakistan are solely dependent on seasonal snow and glacier melt. 
In Indus basin which forms in GB, there is a need to manage water in a sustainable way for the livelihood and economic 
activities of the downstream population. It is important to monitor water resources that include glaciers, snow-covered 
area, lakes, etc., besides traditional hydrological (point-based measurements by using the gauging station) and remote 
sensing-based studies (traditional satellite-based observations provide terrestrial water storage (TWS) change within 
few centimeters from the earth’s surface); the TWS anomalies (TWSA) for the GB region are not investigated. In this study, 
the TWSA in GB region is considered for the period of 13 years (from January 2003 to December 2016). Gravity Recovery 
and Climate Experiment (GRACE) level 2 monthly data from three processing centers, namely Centre for Space Research 
(CSR), German Research Center for Geosciences (GFZ), and Jet Propulsion Laboratory (JPL), System Global Land Data 
Assimilation System (GLDAS)-driven Noah model, and in situ precipitation data from weather stations, were used for the 
study investigation. GRACE can help to forecast the possible trends of increasing or decreasing TWS with high accuracy 
as compared to the past studies, which do not use satellite gravity data. Our results indicate that TWS shows a decreas-
ing trend estimated by GRACE (CSR, GFZ, and JPL) and GLDAS-Noah model, but the trend is not significant statistically. 
The annual amplitude of GLDAS-Noah is greater than GRACE signal. Mean monthly analysis of TWSA indicates that TWS 
reaches its maximum in April, while it reaches its minimum in October. Furthermore, Spearman’s rank correlation is 
determined between GRACE estimated TWS with precipitation, soil moisture (SM) and snow water equivalent (SWE). We 
also assess the factors, SM and SWE which are the most efficient parameters producing GRACE TWS signal in the study 
area. In future, our results with the support of more in situ data can be helpful for conservation of natural resources and 
to manage flood hazards, droughts, and water distribution for the mountain regions.

Keywords GRACE observation · GLDAS-Noah · Gilgit-Baltistan · Terrestrial water storage · Water and flood 
management · Precipitation · Soil moisture · Snow water equivalent

1 Introduction

The Gilgit-Baltistan (GB), Pakistan, is located in High-Moun-
tain Asia (HMA), which is the highest glacierized territory 
outside the Arctic and Antarctic, the so-called Third Pole, 

covering an area of over 100,000  km2 and containing over 
40,000  km2 of ice bodies (snow glaciers) [21]. GB holds 
Indus River’s catchment, a key source of water for agricul-
ture and hydroelectricity production in Pakistan. GB also 
famous for its natural forests, mineral reserves, and some 
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of the world’s highest mountains makes it one of the most 
attractive and visited tourist destinations of local and for-
eign tourist in the country [36]. These large glaciers of GB 
contribute 70% to the Indus water flow [1, 3, 33]. Any small 
variation in temperature can be disastrous for the whole 
region and downstream population in context of climate 
change as it is projected that 1 °C increase in temperature 
would result in 15–16% increase in river runoff [44]. As 
snow and glaciers are very sensitive to climatic conditions, 
the rate of snow and glaciers melts will ultimately affect 
livelihood and safety situation of large population. There 
are contrasting research conclusions regarding glaciers of 
GB as authors [6, 43] have concluded that snow cover is 
increasing in the area, whereas [18, 22] conclusions are 
in contrast. Considering these inconclusive results about 
water resources (snow and glaciers), which will make dif-
ficult the management of water resources and its related 
events like flood or drought, there is an urgent need to use 
independent and newer technologies to assess the status 
of water storage in the region [5].

To study surface and sub-surface water resources 
through remotely sensed data, a new satellite of Gravity 
Recovery and Climate Experiment (GRACE) observation 
by NASA have provided data since 2002 for observing 
variations in terrestrial water storage (TWS) [2, 14, 30, 31], 
ground water changes [9], and flood hazard assessments 
[50] at continental or regional level with few hundred kil-
ometers resolution and uniform data coverage. The data 
provided from satellite gravity measures are complement 
to the field ground stations’ data. However, to validate and 
increase the accuracy, the results needs to be evaluated 
based on parallel data sets provided by other remotely 
sensed sources [8, 35, 42]. The Global Land Data Assimila-
tion System (GLDAS) [37], launched by NASA and NOAA, 
provides four core surface models which include VIC [29], 
Noah [26], Mosaic [27], and CLM [11] to simulate TWS. 
GRACE is a complement and can overcome the limitations 
of the other remotely sensed products and gauge station 
measurements with the main advantage that it provides 
water stored at all levels, including surface and sub-surface 
water, whereas the GLDAS-Noah model does not simulate 
the ground water storage [13]. However, according to the 
study conduct by [23], the ground water storage is stable 
(no apparent trend) in Upper Indus basin (UIB) as there is 
no any human intervention such as ground water pluming 
has been reported in the region. Therefore, ground water 
storage estimation has been neglected in this study.

In GB, Pakistan, except traditional hydrological studies 
[4, 6, 7, 15], TWS is not considered at a regional scale with 
the GRACE observation data and technologies. In GB, the 
previous studies using traditional remote sensing technol-
ogies about water resources, i.e., glaciers and snow have 
contrasting results, few authors have concluded expansion 

and increase in glaciers and snow cover areas, whereas 
other contradicted their results [6, 15, 18]. In this research 
work, our main objective is to assess the TWSA in GB and 
to identify the factors that may play major role in variation. 
For this purpose, the water storage change is considered 
for GB region of Pakistan at a seasonal and monthly basis 
for the duration from January 2003 to December 2016. The 
monthly GRACE grids data (Level 2-RL05) from CSR, GFZ, 
and JPL processing centers were used. Further, to examine 
the influencing factors of TWS variability and to validate 
the outcomes, monthly grids of GLDAS-Noah extracted 
data with a 1° × 1° resolution are also investigated.

2  Material and methods

2.1  Study area

GB is located 72°–76° E and 34°–37° N. The total area is 
68917.95  km2. The landscape of GB is unique in terms of 
glaciers and high mountains as it contains one of the high-
est mountain ranges of the world, i.e., Karakuram range 
and most of the area is glacierized (i.e., one of the largest 
glaciers in the world is located here, i.e., Baltoro Glacier). 
The geography of the GB is also unique as the Karakoram 
to the east, the Hindu Kush to the west, the Pamir to the 
north and the Himalaya to the south. The GB land area 
is about 87% situated 3000 m above sea level shown in 
Fig. 1. Moreover, it has many highest peaks of the world 
including world’s second highest mountain K-2 (Mt. God-
win Austin) and Gasherbrum-I. The total glacier area of GB 
is about 13,082.94  km2. These glaciers and snow cover area 
have major contribution to the runoff of the Indus River. 
The climatic conditions of GB have large variation rang-
ing semi-arid cold desert in the northern Karakoram and 
moist temperature zone in the western Himalayas where 
temperature varies from less than zero degrees to 40 °C 
based on season and location.

2.2  Data from GRACE

In this study, we used GRACE spherical harmonic coeffi-
cient data of level 2 released by three processing cent-
ers: the Center for Space Research (CSR) of the University 
of Texas at Austin, the German Research Center for Geo-
sciences (GFZ) and the Jet Propulsion Laboratory (JPL) with 
maximum degree and order of 60 to computer terrestrial 
water storage (TWS) variation in the study area. Problem 
related to C20 coefficient would impact that the outcome 
of TWS estimated by GRACE is replaced with satellite laser 
ranging [10] and degree 1 coefficients are estimated based 
on method [40]. Glacial isostatic adjustment (GIA) has 
been done based on the model from [17]. A de-striping 
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filter has been applied to the data to minimize the effect 
of correlated errors, and a Gaussian filter has been applied 
with smoothing radius of 300 km to smooth the data [12].

2.3  GLDAS model

GLDAS is a joint project of National Aeronautics and Space 
Administration (NASA)-Goddard Space Flight Center 
(GSFC) and the National Oceanic and Atmospheric Admin-
istration (NOAA). GLDAS is an international offline terres-
trial modeling system that combines satellite and field 
station measurements to generate uniform land surface 
models or states (e.g., soil moisture (SM) and snow water 
equivalent (SWE) and changes) or predict in real time (e.g., 
evapotranspiration, rainfall) [37].

GLDAS drives four surface models: MOS, VIC, CLM, 
and Noah. In this research work, GLDAS monthly data 
of Noah model are taken from [32] with spatial resolu-
tion of 1 degree by 1 degree, for the period from 2003 
to 2016. GLDAS-Noah dataset contains a time series of 
states related to land surface and changes, which we will 
use to investigate water storage. Besides, the variances 
related to the main portion of the signal to TWS will be 

observed which may be expected to increase from the 
variation in canopy water storage, SWE and SM. Conse-
quently, the GLDAS-Noah model’s data were used to parti-
tion the TWS changes into SM, SWE, and CWS components 
to understand how the variability of these hydrological 
fluxes plays a role in enhancing or dissipating the TWS. 
Additionally, groundwater water storage components are 
missing in GLDAS model, which can be calculated from 
the GRACE signal. It has been observed that integrated 
total water content estimated by GRACE is comparable 
with the GLDAS model’s TWS [1, 23]. Therefore, these land 
surface state variables were derived, and then, the TWS 
from the GLDAS model is calculated. In the first step, these 
time series of land surface and changes’ states related to 
the GB are extracted, and in the next step, the TWS from 
GLDAS-Noah model is computed, as given in Eq. 1:

In Eq. 1, ΔTWSGLDAS is the variation in TWS from GLDAS-
Noah model, ΔSM is the variation in SM, ΔSWE is the vari-
ation in SWE, and ΔCWS is the variation in canopy water 

(1)ΔTWSGLDAS = ΔSM + ΔSWE + ΔCWS

Fig. 1  Study area and weather stations’ maps
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storage. The four layers SM values of Noah model are 
summed to represent total SM.

2.4  In situ precipitation data

The daily precipitation data for the 12 weather stations for 
the period 2003 to 2016 by Pakistan Metrological Depart-
ment (PMD), Government of Pakistan, were used for this 
study. Most of the weather stations are in elevation zone 
between 2000 and 4000 m.

2.5  Computation of trend, annual phase 
and amplitude

The long-term trends of the annual and semi-annual com-
ponents of the above-defined data sets were estimated 
using least square regression as follows:

where t represents time, �0 is the intercept, �1 is the slope, 
( �2 , �3 ) represents the annual components, ( �4 , �5 ) are the 
semi-annual components, and ε is the random error.

2.6  TWS variations from time series

To determine the variability of TWS in Gilgit-Baltistan, TWS 
variations over the time drawn were examined from Janu-
ary 2003 to December 2016 using GRACE data and GLDAS-
Noah model. Figure 2 shows residual (GRACE TWS-mean 
CSR, GFZ, and JPL) monthly TWS changes in Gilgit-Baltistan 
(mm) according to GRACE and GLDAS-Noah models. It 
can be observed that GRACE TWS time series from dif-
ferent data processing centers (CSR, GFZ, and JPL) and 

(2)
Y(t) = �0 + �1t + �2 cos (2�t) + �3 sin (2�t)

+ �4 cos (4�t) + �5 sin (4�t) + �,

GLDAS-Noah model are consistent. However, three data 
sets from GRACE (CSR, GFZ, JPL) observation and GLDAS-
Noah model show a decreasing trend of (− 0.74 ± 0.31, 
− 0.37 ± 0.32, − 0.26 ± 0.41 mm/year) and − 0.79 ± 0.46 mm/
year, respectively, although the trend is not statistically sig-
nificant. The annual amplitude, phase and trend of GRACE 
data sets and GLDAS-Noah model are shown in Table 1.

The highest annual amplitude measured for the peri-
odic components by GLDAS-Noah model is 70.57 mm, fol-
lowed by GFZ, CSR and JPL of GRACE observation being 
57.94 mm, 41.26 mm, and 30.32 mm, respectively. The 
amplitude of GRACE TWS signal is lower than GLDAS-Noah 
model because GRACE estimated gravity field is composed 
of a set of spherical harmonic coefficient complete to 
degree and order 120. Spatial averaging and smoothing 
is required to reduce the contribution of noisy short wave 
length component in GRACE gravity field data as a result, 
degradation of actual signal may be possible [41]. Moreo-
ver, the SWE component time series (Fig. 8) shows that 
the minimum phases during summer-fall do not go lower 
than around − 40, while the peak variations match those 
of GRACE. It may be caused by permanent SWE building 
up or not melting completely during summer, which could 
be caused by the snow model deficiency or a lack of gla-
cier model in GLDAS. Additionally, the annual phase shift 
estimated by GRACE (CSR, GFZ, and JPL data processing 
centers) and GLDAS-Noah model is almost the same with 
degree values of 255.500, 255.640, 256.320 and 254.590, 
respectively. The phase distortion describes how well the 
timing of positive and negative parts of TWSA time series 
matches. By comparing phase spectra of these signals, we 
get the delay spread information or dispersion, the infor-
mation about the phase distortion.

2.7  Monthly mass change over the study period

The changes of TWS are determined based on GRACE 
(CSR, GFZ, and JPL) and GLDAS-Noah models in GB region 
over the 13 years period. Figure 3 shows residual mean 
monthly TWS change in GB (mm) from GRACE data and 
GLDAS-Noah model from 2003 to 2016. The particular 

Fig. 2  Residual monthly TWS variations in GB (mm) from GRACE 
(CSR, GFZ, JPL) and GLDAS-Noah models

Table 1  Mean yearly phase, amplitude, and trend changes in GB 
computed by GRACE (CSR, GFZ, and JPL) and GALDAS-Noah mod-
els

Water storage Annual phase (°) Annual 
amplitude 
(mm)

Trend (mm/year)

CSR 255.50 41.26 − 0.74 ± 0.31
GFZ 255.64 57.94 − 0.37 ± 0.32
JPL 256.32 30.32 − 0.26 ± 0. 41
GLDAS-Noah 254.59 70.57 − 0.79 ± 0.46
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month mean TWS values are computed by considering 
the mean of all grid values in different geographic coordi-
nates of the GB for each month of a specific year. Accord-
ing to the GRACE (CSR, GFZ, and JPL) data, the TWS shows 
an increasing behavior from January to April. The mean 
monthly maximum TWS value is almost 56 mm in April. 
The TWS variation is negative from August to January, with 
a minimum of − 50 mm from October to November. Simi-
larly, GLDAS-Noah models also show the same behavior 
with maximum of mean TWS greater than 100 mm in April 
and reached minimum in October with a value of almost 
− 100 mm as shown in Fig. 3. The monthly mean TWS varia-
tion in the region is corresponding to the variations of pre-
cipitation and snow fall in the region. The snow fall reaches 
its maximum in spring and its minimum in summer [22].

2.8  Seasonal mass change

The spatial changes in TWS estimated by GRACE (average 
of CSR, GFZ, and JPL) and GLDAS-Noah model for GB for 
the period January 2003 to December 2016 are shown in 
Fig. 4. The inverse distance-weighted (IDW) method of 
interpolation is applied to generate the maps and classi-
fied into seven classes to show variations in TWS. The TWS 
is low (negative) in winter (Fig. 4a, e) and autumn (Fig. 4d, 
h) seasons estimated by both datasets, but their amplitude 
of variation is varied in different locations. On the other 
hand, the TWS is high (positive) in whole study area for the 
spring (Fig. 4b, f ) and summer (Fig. 4c, g) season estimated 
by GRACE and GLDAS-Noah models. This can be explained 
by the recent studies which emphasized that winter snow 
falling got shifted to spring and now there is more snow-
ing in spring as compared to winters [5, 22]. The maximum 
decrease in TWS is observed in western side of the study 
area for winter and autumn season estimated by GRACE 

solution, while GLDAS-Noah model shows decrease in 
TWS in southeast side for both seasons. For the spring 
season, TWS is low in eastern side estimated by GRACE 
solution, while GLDAS-Noah model shows decrease in TWS 
in southeastern side for the same season. Summer season 
also shows decrease in TWS in western side of the study 
area for GRACE solution, while GLDAS-Noah model esti-
mates minimum TWS in southeastern region.

Overall, the TWS is very low in winter and autumn, 
while it is high in spring and summer season as shown in 
Fig. 4. The spatial variation of TWS estimated by GRACE 
is converted into time series data, and a nonparametric 
Mann–Kendall’s test (MKT) is applied to compute sea-
sonal trends in the dataset as shown in Fig. 5. The MKT is 
a powerful technique generally used to compute trends 
in environmental variables [45]. A statistically significant 
(p < 0.05) decreasing trend of TWS is observed for the 
winter (DJF) and autumn (SON) season with a slope of 
− 3.382 and − 2.963 mm/year, respectively. However, the 
spring (MAM) and summer (JJA) seasons show an increas-
ing trend of TWS with a slope of 0.295 and 0.414 mm/year 
but statistically not significant (p > 0.05).

2.9  Impacts on TWS changes

In the following section, we made scrutiny of the factors 
(precipitation, SM, SWE) which play major role in variability 
of TWS in the region.

2.9.1  Influence of precipitation

To determine the influence of precipitation on TWS 
changes, we utilized precipitation (mm/month) data 
from Pakistan Metrological Department (PMD). The total 
monthly precipitation for the period of 2003 to 2016 is 
represented in green histogram, while the TWS estimated 
by GLDAS-Noah model is represented in pink dash line as 
shown in Fig. 6. The three data sets of GRACE (CSR, GFZ, 
and JPL) which estimated TWS are represented in red, blue 
and black color. We compared the precipitation data to the 
GLDAS-Noah and GRACE data shown in Fig. 6. The TWS 
estimated by GRACE (CSR, GFZ, and JPL) and GLDAS-Noah 
model is increased with the increasing precipitation and 
vice versa, which indicates that precipitation has a direct 
positive correlation with TWS.

To make certain, the correlation between GRACE TWS 
time series and precipitation is computed using Spear-
man’s rho method. The three datasets of GRACE (CSR, 
GFZ, and JPL) show significant positive correlation with 
precipitation with minimum value of r = 0.410 as presented 
in Table 2. Similarly, GLDAS-Noah model also has a statis-
tically significant positive correlation with precipitation 
(r = 0.478).

Fig. 3  Residuals of mean monthly TWS changes for GB calculated 
from GRACE (CSR, GFZ, JPL) and GLDAS-Noah model for 2003–2016



Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:533 | https://doi.org/10.1007/s42452-021-04525-4

Fig. 4  Spatial variation of TWS estimated by GRACE (a–d) and GLDAS-Noah model (e–h) for GB concerning winter (a, e), spring (b, f), sum-
mer (c, g), and autumn (d, h), respectively, for 2003–2016
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2.9.2  Influence of soil moisture (SM)

The soil moisture data provided by the GLDAS-Noah data 
files from the global grids are concentrated to the GB 
region scale. Soil moisture measurements are summed for 

Fig. 5  Seasonal TWS variations estimated by GRACE for the period of 2003–2016. Mann–Kendall’s trend test τ and Sen’s slope estimator “S”

Fig. 6  Mean monthly precipitation (mm/month) and mean 
monthly GRACE TWS (CSR, GFZ, JPL) and GLDAS-Noah model of GB 
during 2002–2016

Table 2  Correlation between precipitation with CSR, GFZ, JPL and 
GLDAS-Noah computed using Spearman’s rho method

** Correlation is significant at 0.01 level (2-tailed)

Correlations Precipitation

Spearman’s rho CSR Correlation
Coefficient sig. (2-tailed)

0.469**

GFZ Correlation
Coefficient sig. (2-tailed)

0.410**

JPL Correlation
Coefficient sig. (2-tailed)

0.484**

NOAH Correlation
Coefficient sig. (2-tailed)

0.478**
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four-layer model of Noah and transferred to mm and aver-
aged. At the end, residual mean monthly changes are com-
puted. Figure 7 shows the results of soil moisture changes 
(mm) and GRACE TWS of GB from 2003 to 2016. Soil mois-
ture measurements range between −  75 and 60  mm, 
whereas GRACE TWS data range from 125 to − 102 mm. It 
can be determined that for GB, one of the parameters pro-
ducing the GRACE TWS signal is the soil moisture. Table 3 
shows the relationship between soil moisture and GRACE 
TWS using the correlation coefficients.

The value of minimum correlation coefficient is 0.433 
between CSR and soil moisture, which shows positive sig-
nificant correlation. To summarize, soil moisture is one of 
the very important parameters in terms of TWS variation 
in the study area.

2.9.3  Influence of snow water equivalent

Likewise soil moisture data, the snow water equivalent 
(SWE) data provided by the GLDAS-Noah data files from the 
global grids are concentrated to the GB region scale using 
the same approach. Residual mean monthly changes are 

computed. Figure 8 shows the assessment results of snow 
water equivalent changes (mm) and GRACE TWS of GB from 
2003 to 2016. Snow water equivalent measurements range 
between 150 and − 98 mm, whereas GRACE TWS data range 
from 125 to − 102 mm. It can be noticed that SWE results are 
in complete agreement with GRACE TWS time series varia-
tions. It can be concluded that for GB, one of another most 
important parameters developing the GRACE TWS signal is 
the SWE. According to the [20], major area of Upper Indus 
basin is covered with glaciers and snow. Table 3 shows the 
relationship between snow water equivalent and GRACE 
TWS using the correlation coefficients.

The minimum correlation coefficient is 0.45 which 
shows positive significant correlation between SWE and 
GRACE TWS time series. To summarize, SWE is an impor-
tant parameter in order to monitor water storage varia-
tions and any unusual event related to water like flood or 
drought can be predicted and managed in advance from 
these results. The flood or water shortage management 
from GRACE data can be useful not only for economy and 
people of GB region but also for the whole country and 
millions of populations living in downstream country.

Fig. 7  Residual average monthly SM variation (mm) of GB from 
GLDAS-Noah model and residual average monthly TWS variation 
from GRACE (CSR, GFZ, JPL) signal

Table 3  Correlation between 
soil moisture and snow 
water with CSR, GFZ, and JPL 
computed using Spearman’s 
rho method

** Correlation is significant at 0.01 level (2-tailed)

Correlations Soil moisture Snow water

Spearman’s rho CSR Correlation
Coefficient sig. (2-tailed)

0.433** 0.459**

GFZ Correlation
Coefficient sig. (2-tailed)

0.447** 0.455**

JPL Correlation
Coefficient sig. (2-tailed)

0.444** 0472**

Fig. 8  Residual mean monthly snow water equivalent variation 
(mm) of GB from GLDAS-Noah model and residual mean monthly 
TWS change from GRACE (CSR, GFZ, JPL) signal
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3  Discussion

The TWS storage estimated by GRACE (CSR, GFZ, and JPL) 
and GLDAS-Noah model for the study indicates that the 
TWS in GB has a slightly decreasing trend, while the trend 
is insignificant. The regional studies show contrasting 
results for similar elevations and uniformed temperature 
rise as the total mass in the Karakuram is stable or at gain, 
whereas in eastern and central Himalaya, the glaciers mass 
is losing [19, 46]. Similarly, several studies found a negative 
trend using measured gravity signals for the Karakuram 
region [24, 25, 38], whereas many have opposite opinion 
or even they argue about mass gain [7, 16, 47]. Our results 
are in consistent with former researchers; however, the 
negative trend in GB region is insignificant. Furthermore, 
the annual amplitude and phase calculated from GRACE 
(CSR, GFZ, and JPL) and GLDAS-Noah model indicate that 
annual phased is almost the same for all data sets, but the 
amplitude is different. The annual amplitude of GRACE 
(CSR, GFZ, and JPL) is lower than GLDAS-Noah model, 
because spatial averaging and smoothing filters are nec-
essary to apply on GRACE data to minimize the effect of 
noisy short wave length components of the gravity field 
solutions [41]. However, the GLDAS-Noah refers to a ter-
restrial modeling system that integrates ground-based 
observations and satellite data products to estimate land 
surface states and fluxes by using advance land surface 
models (LSMs) and data assimilation techniques.

Long-term monthly analysis of TWS over the GB region 
indicate that increased pattern of TWS starts from January 
and reaches its maximum in the month of April. This corre-
sponds to the maximum precipitation in this time period; 
according to the study of source [49], major precipitation 
occurred in winter and spring in Upper Indus basin origi-
nated from westerly disturbance. The TWS decreases from 
April and reached it minimum in October with the increase 
in temperature. Furthermore, seasonal analysis of TWS 
indicates that TWS is low in winter and autumn seasons, 
while it is high in spring and summer. The reason might 
be the decreased snowfall at high elevation in winter and 
increased evaporation [34, 39]. Statistical analysis result 
indicates that the decreasing trend of TWS in DJF and SON 
is statistically significant with decreasing rate of − 3.38 and 
− 2.96 mm/year, respectively.

The precipitation is the major contributor for the vari-
ation of TWS. The TWS in the study region is increasing 
with the increase in precipitation and vice versa and have 
a positive statistically significant correlation. Previous stud-
ies also found high correlation between precipitation and 
TWS for the whole region of High-Mountain Asia which is 
in agreement with our results [48]. Furthermore, SWE and 
CWS also have a significant relationship with TWS, but the 

SWE plays major role in variations of TWS. Other regional 
studies argued that snowfall is the main contributor 
toward variability of glacier mass balance or TWS, which 
is in consistent with our results [28].

4  Conclusions

According to this research work, TWS studied for GB from 
GRACE and GLDAS-Noah derived TWS time series from 
2003 to 2016 are consistent, which shows slightly decreas-
ing trend. However, the trend is statistically insignificant. 
Our results are overall in agreement with few recent stud-
ies regarding stability of snow cover area and glaciers in 
GB. The annual amplitude of GLDAS-Noah model is higher 
than GRACE due to degradation of GRACE signal by apply-
ing decorrelation and Gaussian filter to reduce noise. The 
mean monthly TWS indicates that TWS reaches its maxi-
mum in April, while its reaches it minimum in October. 
This monthly variation of TWS is also in agreement with 
previous studies related to change in snow cover and gla-
ciers in GB except in previous studies case the increasing 
snow cover and glacier starts from September. Our results 
help to conclude accurate results about the increasing or 
decreasing TWS trend in GB and having contradicting 
conclusions in earlier studies which do not use satellite 
gravity data. Seasonal analysis results indicate that TWS is 
decreasing in whole region in winter and autumn, while 
TWS is positive in spring and summer season. The TWS is 
increasing with the increase in precipitation which indi-
cate that precipitation has high positive correlation with 
TWS estimated by GRACE and GLDAS-Noah models. Soil 
moisture and snow water equivalent are the most effi-
cient parameters which play significant role in producing 
GRACE TWS signal and have a significant correlation with 
TWS. Further, to monitor and predict floods, drought, or 
any possible environmental conditions in the future, we 
suggest having an up-to-date data of following grav-
ity observation of “GRACE-FO” based on satellite gravity. 
Additionally, increasing number of in situ measurements 
devices in GB region which in combination with GRACE-
FO measurements will increase accuracy of forecasting 
and trend analysis to manage water and hazard for down-
stream population and bio-diversity.
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