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Abstract
The article presents for the first time the synthesis of silver nanoparticles in an electric arc of high-voltage alternating 
current with a frequency of 50 Hz. In particular, the method and apparatus necessary for the preparation of nanoparticles 
in water solution is discussed. Current–voltage characteristics depending on the mutual distance between the electrodes 
are presented which show a very high stability of the generated discharge phenomena. The obtained nanoparticles 
were examined using various analytical techniques such as UV–Vis spectroscopy, dynamic light scattering (DLS), zeta 
potential, energy dispersive X-Ray analysis (EDS), X-ray diffraction (XRD), and X-ray fluorescence (EDXRF). The morphol-
ogy, surface and size of the obtained nanoparticles was carried out using transmission electron microscopy (TEM) and 
scanning TEM (STEM) equipped with the annual dark-field imaging scanning atomic-scale chemical mapping (STEM). The 
designed simple power supply unit consisting of an autotransformer and a microwave oven transformer (MOT) makes 
the preparation of silver nanoparticles both simple and economical.

Keywords Silver nanoparticles synthesis · Submerged arc discharge method · High voltage AC arc discharge · 
Alternating current

1 Introduction

Due to their biocidal, antibacterial and antiviral proper-
ties, silver nanoparticles are widely used in medicine and 
health care [1–4], although the applications in other fields 
of science and technology, such as in chemical analysis 
(SERS) [5–7] and electronics [8] are also very significant. 
Their specific uses strictly depend on the method of syn-
thesis which include: inert gas condensation [9–14], radi-
olysis [15–17], sol–gel method [18–20] ion implantation 
[21], chemical vapour deposition (CVD) [22], polymeriza-
tion [23, 24] or synthesis by chemical reduction from silver 
salts and organometallic precursors [25]. These commonly 
known methods belong to bottom–up approach of nano-
particles synthesis. The submerged arc discharge synthesis 
method described here, together with e.g. laser ablation 

[26, 27], belongs in turn to the top–down methodology in 
nanoscience and is considered both the simplest and the 
cheapest. It consists in creating an arc discharge between 
the silver electrodes immersed in a liquid medium. The 
generated high temperature associated with the short-
circuit current flow leads to ablation of the bulk material 
of the electrodes with a formation of small metal objects 
[28–32]. At present, most solutions for generating an arc 
between electrodes are based on the use of direct cur-
rent [33]. Unfortunately, such a solution is associated with 
a quite expensive electric current rectification system to 
maintain the stability of the power supply. In this com-
munication, instead of a low-voltage rectifier supply, we 
propose a solution based on the generation of a high-volt-
age arc in which the synthesis of silver nanoparticles also 
takes place. We observed that this solution accelerates the 
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process of producing nanoparticles due to the stabiliza-
tion the electric arc between the electrodes. To the best 
of our knowledge the presented solution based on MOT 
transformer seems to be the simplest method of making 
high voltage AC arc thanks to appropriate power systems, 
creates a stable arc between the electrodes and it is pow-
erful, and cost effective.

2  Materials and method

2.1  Materials

Silver rods with a purity of  ≥ 99.99% and a diameter of 
2 mm were purchased from Mint- Metals Poland and were 
used as electrodes. The submerged arc process was carried 
out in a distilled water with a resistivity of 18.2 Mohm/cm.

2.2  Analysis methods

The voltage parameters were measured using a DP-100 
high-voltage differential probe with the following param-
eters: accuracy ± 2%, the bandwidth of the DC 3 dB is 
100 MHz, differential input impedance 54 Mohm with a 
3.5 ns rise time. The current measurement was made using 
a PA-677 probe with a DC-1 MHz range up to 70 A. The sig-
nals were monitored with a Rigol MSO1074Z oscilloscope.

The absorbance spectrum of the colloidal sample was 
measured in the range of 320–900 nm, using a UV–Vis 
spectrometer Shimadzu-UV 1240 with distilled water as 
a reference. The size distribution and stability of AgNPs 
were performed by measuring DLS and Zeta potential 
measurements using Malvern Zetasizer Nano ZS90 instru-
ment. X-ray diffraction (XRD) analysis was conducted on 
a DRON diffractometer (Russia) using monochromatic Cu 
Kα radiation (λ = 1.5406 Å) operated at 50 kV and 40 mA at 
the accusation scan θ–2θ. The scanning was done in the 
2θ range of 5°–70°. The morphology, shape and size of the 
silver nanoparticles were examined by TEM technique with 
a Talos F200X. Atomic-scale chemical maps and energy-
dispersive X-ray spectra (EDS) were obtained using scan-
ning transmission electron microscopy STEM-EDS/JEOL 
JEM 2800. Elemental analysis chemical was performed 
using the EDXRF technique on an Epsilon 1 portable XRF 
Analyzer from Malvern Pananalytical.

3  Experimental details

The process of producing silver nanoparticles takes place 
in the current arc between two silver electrodes placed 
opposite each other at an angle of 60°. The electrodes were 
50 mm long and 2 mm in diameter and were immersed in 

water to a depth of 2 cm. Figure 1a shows a scheme of 
glassy reactor for the synthesis of nanoparticles a glassy 
vessel is filled with distilled water and equipped with a 
magnetic stirrer for uniform temperature distribution of 
the water medium and homogeneous distribution of the 
produced nanoparticles. The high voltage alternating cur-
rent arc was generated using a power supply (Fig. 1b). It 
consists of an autotransformer with an adjustable output 
voltage in the range of 0–230 V, which supplies the high-
voltage transformer typically used in microwave ovens, 
so-called MOT, and it allows the generation of an output 
voltage between the electrodes in the range from 0 to 
2 kV. The stepper motor precisely controls the position of 
the electrodes relative to each other. The measured dis-
tance between the electrode tips optimal for generating 
the electric arc of the discharge was 1.2 mm.

In the experiments, the output voltage of the auto-
transformer was set at 100 V, which generated a voltage 
of 1100 V on the secondary winding of the high voltage 
transformer (MOT). The process of synthesis of silver 
particles was carried out in the electric arc in two time 
regimes—for 5 min (sample A) and 20 min (sample B). The 
temperature of the 250 mL water medium was not stabi-
lized during the arc. Thereby it rose in the reaction vessel 
from 19 °C before the process to 32.5 and 63 °C during the 
5 and 20 min arc, respectively. The loss of weight of the 
electrodes is not uniform and was 0.0013 mg for the first 
one and 0.0011 mg for the second in a 5 min process. For a 
20 min arc, the weight loss of the electrodes was 0.0044 g 
and 0.0033 g, respectively. Thus the overall weight loss of 
the silver electrodes was 0.0024 g and 0.0077 g for the arc 
durations used. From the first mass of silver, 5.6  1014 spher-
ical particles with a diameter of 92 nm can be obtained 
and from the second one 1.80  1015 NPs.

4  Results and discussion

4.1  Current–voltage characteristics

Figure 2 shows the current–voltage waveforms during NPs 
synthesis in an AC arc. The open circuit voltage between 
the silver electrodes before starting the process was 1.1 kV 
AC. During the process, the maximum amplitude of the 
voltage between the electrodes decreases to 850 V (1700 V 
peak-to-peak voltage), and maximum current was set to 
0.8 A (1.6 A peak-to-peak current).

4.2  UV–Vis spectral analysis

The Ag nanoparticles concentration was controlled with 
the arc discharge time, which was 5 and 20 min. The 
formation of the Ag NPs during the HV AC process was 
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followed by change in the colour of the reaction solution 
from colourless by yellow to dark orange, as illustrate 
photographs in Fig. 3. The UV–Vis absorption spectra of 
the Ag NPs with different concentrations are shown in 
Fig. 4. The broad band with a maximum at 404 nm (sam-
ple A) derives from the phenomenon of surface plasmon 
resonance characteristic of silver nanoparticles [33]. The 
profile of the band with long absorption tail suggest 
the presence of not only spherical nanoparticles in the 
water but objects of various shapes. For sample B, the 
spectrum position slightly shifts to 406 nm and widens 
at ~ 500 nm, indicating a minor change in the size distri-
bution of the NPs.

4.3  Dynamic light scattering (DLS) and zeta 
potential results

The size distribution profile of the synthesized silver 
nanoparticles measured by the DLS method is shown in 
Fig. 5. The scattered signal confirms the broad particle 
size distribution which agrees well with the unsymmetri-
cal extinction peak in the long wavelength absorption 
region observed in the UV–Vis spectra, especially for 
sample B. Size distribution profiles reveal two popu-
lations of NPs for each sample with the average size 
around of 18 and 90 nm. The shorter synthesized col-
loid A shows a narrower size distribution. Also the zeta 

Fig. 1  Scheme of the appara-
tus for the synthesis of AgNPs 
in arc discharge: a electrode 
guide system: 1. arc discharge 
zone, 2. silver electrodes, 3. 
electrodes holder, 4. steeper 
motor, 5. glass vessel, 6. DI 
(deionized water), 7. Magnetic 
stirrer. b General scheme of 
power supply
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potential distributions have a similar position for both 
colloids: at − 20.4 for sample A, and − 22.31 mV for sam-
ple B (Fig.  6). The calculated average particle size is 
48.9 nm and 46.8 for a 5 min and 20 min sample, respec-
tively. In turn, the zeta potential of the synthesized Ag 
NPs is a sharp peak at − 20.4 for sample A, and − 22.31 mV 

for sample B (Fig. 6), but for the last one it is wider. These 
values suggests that the surface of the silver nanopar-
ticles dispersed in water medium is positively charged. 
High negative values are responsible for the repulsion 
between the particles and make the colloid very stable 
for at least months.

Fig. 2  Current–voltage charac-
teristics during nanoparticles 
synthesis as a function of time

Fig. 3  Silver nanoparticles col-
loids obtained after 5 (Sample 
A) and 20 min (sample B) of the 
AC discharge process
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4.4  Transmission electron microscope (TEM)

TEM images of the colloidal silver nanoparticles obtained 
in the HV AC arc discharge confirm their heterogeneity. 
Interestingly, they also show the lack of aggregates or 

large particles observed in syntheses by other methods 
in the current arc [34]. Although nanoparticles are mostly 
oval in shape (Fig. 7a), triangular or trapezoidal nanoparti-
cles are also clearly visible (Fig. 7b). The measured particles 
size varies from 20 to 100 nm, but their shape is not related 
to a specific size. Interestingly, TEM photographs taken at 
higher magnifications reveal a 4 nm thick shell around the 
obtained nanostructures.

4.5  Chemical maps of Ag NPs on the atomic‑scale 
by high‑angle annular dark‑field imaging 
(HAADF) using a scanning transmission electron 
microscope (STEM) technique

The atomic composition and morphology of the synthe-
sized NPs as well as the thin coating around NPs visible at 
higher magnifications (Fig. 7) was examined by the STEM 
method. Figure 8 presents the HAADF atomic-scale chemi-
cal maps. The shape of objects, which are of representative 
in size, is visualized only in the case of Ag, Cu, C, Si and O 
atoms. The presence of copper atoms is inherently related 
to the STEM measurement methodology and originates 
from the reflections of the copper mesh covered with 
amorphous carbon. The presence of Si and O may indicate 
the composition of the thin layer visible in the TEM image 

Fig. 4  UV–Vis spectra of synthesized Ag NPs at various concentra-
tions obtained during a 5-min (a) and 20-min (b) process in the HV 
AC arc measured in 1 mm path length cuvette. (404 nm), (406 nm)

Fig. 5  Dynamic light scattering 
size distribution by intensity of 
synthesized Ag NPs for 5 min 
(sample A) and for 20 min 
(sample B)
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(Fig. 7) and may result from the walls of the glass reactor. 
During the discharge in HV alternating current arc, disso-
ciation of water molecules with the formation of reactive 
 H• and  OH• radicals and dissociation of oxygen molecules 
dissolved in the aqueous medium with the formation of 
singlet oxygen may occur. Such species, due to their high 
reactivity, can be trapped on the Ag surface and finally sta-
bilize the colloid electrostatically. Energy dispersive spec-
trum of the synthesized Ag nanoparticles also shows the 
presence of silver (strong signal peak at 3 keV) as the basic 
component and cooper at 8 keV. The remaining elements 
such as O and Si, although were registered qualitatively 
are at trace level. The carbon atoms are the result of a thin 
amorphous layer covering the copper mesh.

4.6  X–Ray fluorescence (XRF) measurements

The XRF technique has been used complementary to EDS/
STEM to determine elemental composition of the silver 
colloid. Again, the presence of dominant Ag element is 
confirmed on XRF spectrum (Fig. 9). The spectrum contains 
peaks of silver:  Kα line at 22.16 keV and  Kβ line at 24.9 keV. 
Also characteristic silver L-line was observed with the 
L-absorption edge at 3.82 keV. In addition to the silver 
element, Si was also detected in trace amounts.

4.7  X‑ Ray diffraction (XRD) Studies

X-ray diffraction analysis is very important for determi-
nation the structure of the nanocrystals and their mor-
phology, as the nanoparticles have been produced in 
non-equilibrium conditions of very high temperature 
and ionizing voltage. Figure 10 shows the XRD pattern of 
the obtained nanoparticles. The diffraction clearly shows 
the characteristics reflection 2θ peaks at 38.2, 44.4, and 
64.6° corresponding to the (111), (200), (220) planes of 
fcc lattice of metallic silver, respectively [35], [36]. The 
average crystalline size of the silver nanoparticles was 
estimated using the Debye–Scherrer’s equation (Eq. 1) 
on the basis of determining the width of the peak (111) 
in Bragg reflection.

where D is the mean size of the crystallites, λ is the X-ray 
wavelength, β is the line broadening at half the maximum 
intensity (FWHM) in radians, 0.9 is the value of the shape 
factor and θ is the Bragg angle. The estimated average size 

(1)D =

0.9�

�cos�

Fig. 6  The Zeta potential of 
AgNPs colloidal solutions of 
sample A and sample B
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of the silver crystalline domains is 9 nm and is smaller than 
the size of nanoparticles observed from TEM images. This 
means that the nanoparticles growing in the HV discharge 
arc are made of smaller crystallites.

5  Summary

The presented solution consists in omitting the electric 
current rectification system in the process of electric arc 
generation for the synthesis of metal particles. Instead, the 
use of a high-voltage alternating current arc with a fre-
quency of 50 Hz can be successfully used to produce silver 

Fig. 7  Transmission electron 
microscopy images showing 
silver nanoparticles from AC 
high voltage arc discharge for 
5 min (Panel A) and 20 min 
(Panel B) process taken at vari-
ous magnifications
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Fig. 8  HAADF/STEM chemical mapping images of silver nanoparticles
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nanoparticles. During the current flow, the potential ampli-
tude between the silver electrodes was set to 850 V. The 
colloid is stable for at least several months under ambient 
conditions. TEM images show silver nanostructures of vari-
ous shapes and sizes including spheres, triangles and poly-
gons of the sizes between 10 and 120 nm. The presence 
of Si and O atoms in the solution and as the thin coating 
on Ag NP surface is intriguing. Accelerated electrons and 
ions at such a high voltage may have enough energy to 
etch silica walls of the reactor vessel. This is only a hypoth-
esis that should be verified. In this regard, more study is 
needed to elucidate the role of voltage and frequency 
parameters during the whole process of syntheses on the 
shape and size distribution. Further research should lead 
to a detailed explanation of the nanoparticle stabilization 
effect including both electrostatic as well as steric factors 

by introducing to the submerged medium various stabiliz-
ing agents. The new method of particle synthesis may also 
apply to other metals and semiconductors from which the 
electrodes will be made.
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