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Abstract
Constructing a prediction model of machining performance is useful to improve its process efficiency. Artificial neural 
network (ANN) has been widely used in prediction works, capable of solving complex problems with numerous param-
eters. The present study aims to describe the application of the ANN technique in predicting the machining performance 
of a natural material. Bovine horns were the selected natural materials. Bovine horns are sustainable, recyclable, and 
abundant source for industrial applications. The outputs of the predictive model were surface roughness and energy 
consumption, whereas the input data were spindle speed, depth of cut and feed rate of a face milling. It was found 
that the ANN-based prediction model of bovine horns produced a high accuracy prediction (95.4%). The outcome of 
this study may be referred by similar studies on other natural materials, supporting the global efforts in improving the 
industrialization of natural materials.
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1 Introduction

Determining an optimum condition of machining param-
eters is a crucial issue in manufacturing. Conventionally, 
a series of trials are conducted to formulate the optimum 
machining parameters, result in lowering material and 
process efficiency. Constructing a forecast model solves 
the limitation of conventional methods. However, the 
complexity of the machining process requires a compres-
sive understanding of the chosen modelling technique.

The prediction process is complicated because of the 
characteristics of the non-deterministic, multidimensional, 
non-linear nature of machining, and many other hardships 
in modelling the manufacturing process [1]. There are 
parameters that are highly challenging to predict owing 
to their stochastic nature, i.e. material non-homogeneity, 
chip formation, workpiece, tool and machine vibrations, 

tool wear and degradation [2]. Thus, the capability of the 
prediction tool determines the accuracy of the model.

To solve the machining parameters prediction prob-
lems, there are few techniques that are commonly prac-
tised, such as recurrent neural network (RNN) [3], support 
vector machine (SVM) [4], artificial neural network (ANN) 
[5], convolutional neural network (CNN) [6], fuzzy logic 
(FL) [7], and particle swarm optimisation (PSO) [8]. Among 
these methods, ANN is the most desired technology that 
has been employed in many types of engineering appli-
cations [9]. ANN is a popular solution method in a broad 
variety of knowledge fields, includes business [10, 11], 
engineering [12], and medicine [13].

ANN model is developed from the biological concept. It 
is comparable to human brain functions and mechanisms. 
The elements of this model are neurons, weighted inter-
connections, transfer functions, and activation rules. ANN 
is able to learn from a complex non-linear relationship that 
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makes it a robust mathematical tool for constructing a pre-
dictive model from a real-life application [14].

The related works depicting the capability of ANN in 
forecasting and optimising various machining process 
parameters which impact the quality of the machined 
components are listed in Table 1. The work by [15] depicts 
the advantages of employing ANN modelling than the 
traditional method in predicting machining time, sur-
face roughness and energy consumption. The study of 
[16] showed the success of applying ANN in machining 
the common engineering material. They investigated the 
application of ANN to predict surface roughness on the 
hard turning of AISI 5210 steel. On the other hand, utilizing 
ANN in predicting the machining process of non-engineer-
ing materials, such as natural materials, were described in 
[17–19].

The examination by [17] selected wood as the work-
piece material and looking at the pressure, machining 
speed, wood species, and abrasive types as the param-
eters for the ANN network construction. The examina-
tion confirms that surface roughness could precisely be 
anticipated using ANN in an abrasive machining process. 
A complementary study by [20] describes the ANN predic-
tion model for optimizing the process parameters to mini-
mize energy consumption in wood machining. Recently 
in 2018, an ANN construction by [18] was carried out on a 
bone milling process to predict the cutting force and the 
milling temperature by considering the spindle speed and 
feed rate.

Performing machining procedures on natural mate-
rials is developing into a challenge for the next era of 
machining process. Some works in recognizing the 
machining process of natural material were conducted 
on bamboo [19], and timber [21]. In the present applica-
tion, machining of the bovine horns was selected. It is 

a natural material that has unique mechanical proper-
ties with promising sustainability, recyclability, and bio-
degradability [22]. Unique mechanical properties with 
strength and durability help bovine horns to stand in 
extreme loading conditions [23]. It is frequently found 
for creating buttons, horn plates, toggles, and photo 
frames. The potential of bovine horns as the raw mate-
rial for other applications is still wide open. For instance, 
bovine horns may become an alternative material for 
bone graft procedure of veterinary supporting bone 
remodelling process of the fractured bones.

This study aims to describe the process of constructing 
a prediction model based on the ANN approach in sug-
gesting the cutting parameters of the bovine horns mill-
ing process. The subsequent sections describe the step-
by-step process in constructing an ANN model from the 
methodology and followed by a case study of machining 
bovine horn by a milling process.

2  Methodology of constructing ANN

Artificial neural networks are referred to as an intelligent 
technique with nonlinear and densely interconnected pro-
cessing elements called neurons [25]. It is one of the most 
popular methods for solving different fields of study with 
a remarkable capability to handle complex and nonlinear 
relationships. Several types of architectures are suggested 
for ANN construction. Among them, the multilayer percep-
tron (MLP) is the most widely used network architecture 
to make the predictions [20]. An MLP is designed with a 
combination of an input layer, an output layer and one or 
more hidden layers [26]. The mathematical representation 
of the prediction output is shown in Eq. 1.

Table 1  Related studies of ANN for predicting machining performance

BPN back-propagation neural network, FFN feed-forward neural network

Inputs Output Workpiece Method Accuracy (%) References

Cutting speed, feed rate, depth of 
cut

Surface roughness Engineering material BPN 94 [24]

Spindle speed, feed rate Mean force and temperature Natural material FFN and BPN 96 [18]
Pressure, machining speed, wood 

species, abrasive types
Energy consumption and surface 

roughness
Natural material FFN and BPN 93 [17]

Energy, torque, cutting time Cutting performance Natural material FFN and BPN 94 [19]
Temperature, humidity, dying time Moisture ratio Natural material FFN and BPN 99 [21]
Wood species, feed rate, cutting 

depth, number of cutters
Power consumption Natural material BPN 98 [20]

Spindle speed, feed rate, depth of 
cut and path spacing

Machining time, energy consump-
tion and surface roughness

Engineering material BPN 95 [15]

Cutting speed, feed rate, depth of 
cut

Energy consumption Engineering material FFN and BPN 95 [5]
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where Y is the output of the prediction model; Xi is the 
input variable; βj is the bias value for jth hidden neurons; 
wij is the representation of weight between ith input and 
jth hidden neurons; while bias for output neuron rep-
resented by θ; g and f refer to the activation functions. 
Graphical representation of Eq. 1 is shown in Fig. 1.

The first layer of an ANN model is used for collecting 
information called datasets. Then, the layer sends the data 
to the hidden layer, and after the hidden layer finishes the 
processing of this data, it transmits to the output layer 
referred to as output data. Weight factors are used for 
transmitting data from one neuron to other neurons. To 
obtain the optimum hidden neurons, the trial-and-error 
procedure is mostly used [27]. Several types of training 
algorithms are available, with the most common and 
preferable algorithm is referred to as a feed-forward and 
back-propagation algorithm [28]. Once the targeted error 
level achieves, the training process is stopped, and the 
optimum prediction model is ready to perform for further 
testing.

3  Procedures

3.1  Material and experimental setup

The first step to construct the ANN prediction model is to 
have a dataset. The datasets provide both the input and 
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]) output information. The input data shown in Table 2, was 
collected by empirically collecting the machining data 
of bovine horns with a full factorial design where experi-
ments are run at all possible interactions. Three fundamen-
tal parameters of milling with three levels were considered: 
spindle speed (S), feed rate (f) and depth of cut (d). Thus, 
the experiments were run based on 27 combinations. The 
bovine horns acquired from the regional sources (West 
Java Province in Indonesia) were utilized as the workpiece 
material. The as-received horns were manually prepared 
by cutting the base section to a size of 35 mm × 45 mm and 
20 mm before performing a face milling process (Fig. 2).

The details experimental setup including workpiece 
and tool path is depicted in Fig. 3. A HauwGen Zx7550z 
manual vertical milling drilling machine was used as the 
machining tool. An uncoated carbide end mill (Ø12 mm, 
4 flutes) was selected as the cutting tool for the experi-
ments. On each experiment, the cutting condition was 
maintained by performing flank wear inspection. A new 
cutting tool would be installed if the flank wear size 
exceeded 0.1 mm.

The output data was gathered from the power con-
sumption and the surface roughness of each sample. Typi-
cally, there are two techniques used to measure energy 
consumption: direct measurement technique by wattme-
ter or digital data logger [20, 29–31] and indirect meas-
urement technique by measuring to cutting force with 
dynamometer [32, 33]. The average energy consumption 
(kW) of each sample combination was measured through 
direct measurement technique by using a wattmeter 
(Peakmeter MS2205 3-Phase digital clamp meter) placed 
in the main electrical control panel of the machine. The 
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Fig. 1  A typical architecture of ANN model [20] Fig. 2  Workpiece sample preparation
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average surface roughness  (Ra) was determined by meas-
uring the machined surface of each sample with a surface 
roughness tester (Mitutoyo SJ-410). Figure  4 presents 
the typical surface of the bovine horn after face milling 
machining process.

3.2  Artificial neural network constructions

In this section, the whole process of developing an arti-
ficial neural network is described. The process flow of 

Fig. 3  The experimental setup 
for bovine horns machining. 
The cutting tool design and 
the relative motion between 
the workpiece and cutting tool 
(inserts)

Fig. 4  The surface of machined 
bovine horn workpiece in dif-
ferent machining conditions, 
a f155, s600, d2; b f155, s1400, 
d1; c f240, s860, d3; d f490, 
s1400, d1 (f = feed rate, S = spin-
dle speed, d = depth of cut) 
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constructing the ANN model is displayed in Fig. 5. The 
construction process divided into 4 stages as below:

1. Stage-1 Defining input and output datasets with data-
set extraction based on training and testing.

2. Stage-2 Training algorithm selection
3. Stage-3 Training and network optimisation and adjust-

ing parameters.
4. Final stage Obtaining the best network

The performed process of each stage is described 
below:

3.2.1  Stage‑1: Defining input and output datasets 
with dataset extraction based on training and testing

As the first stage of ANN model creation, input and output 
layers were defined accordingly. In this study, there were 
three inputs: spindle speed, depth of cut and feed rate. The 
outputs were defined as power consumption and surface 
roughness. Thus, there were three units in the input layers 
and two unit neurons as the output layers.

In the present study, the trial-and-error procedure has 
been adapted to obtain the optimal model. This procedure 
is simple and widely used [34]. Based on user’s knowledge, 
a promising architecture is emerged after comparing the 
performance of several candidates. The numbers of hidden 
layers and number of nodes in hidden layers was selected 
by the trial-and-error method until achieving the mini-
mum mean square error (MSE). As the results, the current 
ANN network architecture comprised 2 hidden layers, with 
25 units of neuron in layer 1 and 2 units of neuron in layer 
2 (Fig. 6). The collected data was then divided into two 
subsets namely training and testing. According to [27], the 
total combination of training and testing data ratio can be 
90%:10%, 85%:15% or 80%:20%. In this study, the propor-
tion of the data was 80% for training and the balance of 
20% for testing. This combination matched with the avail-
able data generated from the 27 experimental runs. The 
data used for testing was not used in the training phase. 
The feed-forward backpropagation algorithm was applied 
to the training set.

Define input and output parameters

Train, test data set extract from the

experimental results

Define Training Algorithm

Select weight and bias randomly

Adjust parameters for training of the network

1. Number of hidden layers

2. Number of neurons in hidden layers

3. Momentum factor

4. Transfer Function

Network validation

Update parameters

Increase iteration Error Goal Reached?NO
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Fig. 5  Flow chart of constructing an ANN prediction model
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Fig. 6  The artificial neural network architecture of the present 
study
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3.2.2  Stage‑2: Training algorithm selection

The feed-forward backpropagation (FFBP) neural net-
work algorithm was implemented as it has been widely 
used to train in various neural network applications. An 
FFBP neural network based on Levenberg–Marquardt 
was selected as the training method. The algorithm is a 
combination of two other algorithms, namely gradient 
descent method and the Gauss–Newton method [35]. 
With fast and stable convergence characteristics, the 
FFBP algorithm provides a numerical solution for mini-
mizing non-linear function problems [36]. Equation 2, 
provides the calculation of the Levenberg–Marquardt 
algorithm.

where k is the index for the number of iteration; � is the 
combination coefficient (always positive); j is the Jacobian 
matrix; I refers to the identity matrix.

3.2.3  Stage‑3: Training and network optimisation 
and adjusting parameters

According to the training rules of FFBP, training data is 
input into the neural network until output using FFN and 
then the error of the output neurons is propagated back-
ward. Due to the propagation of error, weights and biases 
are adjusted to minimize the remaining error between the 
actual and targeted outputs for further model improve-
ment, weights and bias can be calculated [11] by Eq. 3. 
Weights and bias were selected randomly and ranged 
between − 1 to 1 or − 0.5 to 0.5, and the judging criteria 
were based on the minimum cost function.

where wjk represents the weight factors that connects 
input nodes j to hidden nodes k; bk represents the bias for 
each of the hidden nodes k.

Equation 4, computes the activation functions [37]. The 
sigmoid function was employed for each activation of hid-
den nodes ( � is the slope parameter).

Combining the weight and bias for each input nodes 
(Eq. 3), pure linear activation function computed the 
output oi . Then the network calculated half of the mean 
square error as the last steps of forward-propagation. 
Therefore, the prediction was represented with the Eq. 5.
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1
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where E(W , b) refers to the cost function of this ANN 
model. Feed-forward and back-propagation were continu-
ously updated with weights and biases to find the local 
optima. Figure 7 shows the training process of the ANN 
model. It describes the process of finding local optima 
for the cost function. The slope is closer to zero when the 
model increases the iteration. The dataset that has been 
processed through the network by feed-forward and back-
propagation algorithm is called epoch. Epoch is an impor-
tant parameters in selecting the best performing network. 
The minimum value of gradient was found in epoch 5, 
where gradient represented the slope of local optima. 
Once whole dataset of the training passes through the 
neural network after feed forward and backpropagation 
is simply called an epoch. Epoch is one of the important 
hyper-parameters for performance of the network.

3.2.4  Final stage: obtaining the best network

To evaluate the performance of the model and to reach 
the error goal, the model parameters were adjusted. In this 
study, the mean square error (MSE) was employed as the 
performance function. The value of mean square error is 
represented in Eq. 6.

where ti refers to the measured value; tdi is the predicted 
value by the prediction model; N defines the total number 
of training. There are several factors affecting the accu-
racy of artificial neural networks model. Among them are: 
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Fig. 7  ANN model training in finding the local optima of the cost 
function
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layer produced the best result with the minimum train-
ing error of 0.0000557 and the testing accuracy of 95%. 
The best performance was achieved at epoch 5, while the 
value of MSE was 0.050176 for the testing datasets (Fig. 8). 
Typically, error value reduces with increasing of epochs. In 
the present case, after epoch-4, the error value of training 
and testing became stable. Hence, the best training per-
formance recorded at the epoch-5.

The predicted value upon selecting the best perform-
ing network and the respective experimental data set is 
compiled in Table 2. The error of each predicted data to 
the experimental data is also presented. This data would 
be further validated to provide a solid decision on the 
selected network.

To validate the proposed ANN model, a regression 
analysis was carried out. Figure 9 describes the regression 
analysis between the experimental data and the predicted 
data. The calculated regression value (R) for the training 
dataset was 0.999 (Fig. 9a), while the regression value of 
the testing dataset was 0.975 (Fig. 9b). Both R values are 
closer to 1 (one), indicating a sufficient accuracy of the 

Fig. 8  Performance of the selected ANN model as epochs varies

Table 2  The ANN prediction 
results with the respective 
experimental data and settings

Exp. run f (mm/min.) v (rpm) d (mm) Power consumption (P, kW) Surface roughness  (Ra, μm)

Exp. Predict Error (%) Exp. Predict Error (%)

1 155 600 1 0.958 0.958 0.031 0.842 0.845 0.356
2 155 600 2 1.009 1.014 0.532 1.696 1.481 12.676
3 155 600 3 0.977 1.016 3.876 1.675 1.339 20.059
4 155 860 1 1.070 1.069 0.037 1.336 1.336 0
5 155 860 2 0.964 0.965 0.145 0.837 0.837 0
6 155 860 3 1.062 1.060 0.122 0.897 0.917 2.229
7 155 1400 1 1.152 1.150 0.139 0.612 0.608 0.653
8 155 1400 2 1.141 1.139 0.158 0.797 0.795 0.250
9 155 1400 3 1.157 1.157 0.008 0.942 0.928 1.486
10 240 600 1 1.028 1.028 0.029 1.808 1.811 0.165
11 240 600 2 1.023 1.000 2.218 1.152 1.191 3.385
12 240 600 3 1.026 1.03 0.388 1.568 1.591 1.466
13 240 860 1 1.047 1.047 0.009 1.608 1.607 0.062
14 240 860 2 1.052 1.054 0.255 1.374 1.376 0.145
15 240 860 3 1.040 1.040 0.086 1.444 1.462 1.246
16 240 1400 1 1.125 1.112 1.087 1.098 0.875 20.309
17 240 1400 2 1.119 1.120 0.151 0.906 0.907 0.110
18 240 1400 3 1.115 1.117 0.205 1.287 1.285 0.155
19 490 600 1 1.021 1.020 0.019 1.221 1.226 0.409
20 490 600 2 1.020 1.021 0.107 0.754 0.762 1.061
21 490 600 3 1.026 1.092 6.043 2.344 1.849 21.117
22 490 860 1 1.031 1.031 0.067 1.376 1.382 0.436
23 490 860 2 1.042 1.043 0.095 1.113 1.132 1.707
24 490 860 3 1.060 1.060 0.056 2.229 2.246 0.762
25 490 1400 1 1.130 1.129 0.035 1.141 1.143 0.175
26 490 1400 2 1.132 1.260 10.187 2.759 2.441 11.525
27 490 1400 3 1.138 1.137 0.070 1.690 1.691 0.059

network architecture, training process, number of hid-
den layer, number of hidden neuron, and learning rate. 
Eventually, a model with the architecture of 3–25–2–2 
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selected model. Therefore, it is worth to say that the pro-
posed model has a good agreement between the pre-
dicted and the experimental data of energy consumption 
and surface roughness of the milled bovine horn.

4  Discussions

The predictive model has been constructed with a model 
error of around 5%, indicating enough capability in pre-
dicting machining performance. Notably, the present 
ANN networks can predict energy consumption and sur-
face roughness with high accuracy, as shown by the good 
correlation between the experimental and the predicted 
data. Similar results were also described by [38, 39], where 
the artificial neural network was employed to the natural 
material processing and manufacturing applications.

Despite achieving a good prediction, employing natu-
ral materials to machining comes with an additional chal-
lenge in controlling the mechanical properties of the raw 
horns. For instance, the hardness of the bovine horns 
is related to the biological structure [40] and the water 
contents [41]. Lower water contents and higher density 
contribute to higher hardness, leading to higher cutting 
force and power consumption. In the present study, the 
properties of the raw materials were controlled by form-
ing the workpiece to a standard dimension and extracting 
the workpiece material only from the base end of the raw 
horns. However, the variation of current prediction may 
be imparted from the anisotropy properties of the raw 
material.

The comparison of experimental data and the predicted 
data by ANN model are presented in Figs. 10 and 11. The 
predicted performances (i.e., surface roughness and power 
consumption) of each machining parameters combination 

were calculated using the ANN model. These combinations 
were used earlier to produce the experimental dataset.

Figure 10 describes the visual comparison between the 
experimental and the predicted data using the proposed 
prediction model. The predicted data is in good agree-
ment with the empirical data. However, the deviation on 
several points was still considerably wide. Experimental 
and predicted data at run 3, 11, 21 and 26 deviated with a 
maximum of 11%. This difference could be related to the 
non-isotropic characteristic of the bovine horns.

Surface roughness is the concern of any machining 
process. According to [42], determining optimum machin-
ing parameters are very important to improve machined 
product’s surface quality, reducing the cost of machining 
and remaining more competitive in the market. Therefore, 
it is beneficial for the producer of bovine horn products 

Fig. 9  Regression analysis 
result of the network estima-
tions, a training, b testing

Fig. 10  Comparison between the experimental and the  ANN-pre-
dicted energy consumption of bovine horns face milling
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to minimize the consumption of energy and improve the 
quality of the product surface.

Figure 11 depicts the results of prediction and actual 
data for the surface roughness of the machined compo-
nents. Similar to the energy consumption prediction data 
(Fig. 10), sufficient agreement between the predicted data 
and the empirical data is achieved. However, the devia-
tion at run 2, 3, 16, 21 and 26 were observed. Since sur-
face roughness is also determined by the characteristic of 
the workpiece, the non-isotropic condition of the bovine 
horns created this variation. However, the accuracy of the 
surface roughness prediction was in an acceptable range. 
Hence, it can be suggested that this model can predict 
surface roughness data of bovine horns.

Predicting energy consumption and surface roughness 
of a machining process with the involvement of a consid-
erable number of parameters is very time consuming and 
expensive. ANN solves this issue by saving the resource 
needed. Hence, this prediction model may significantly 
increase the productivity of the bovine horn product 
manufacturers by reducing their expenses in energy and 
setup time.

5  Conclusions

A study in predicting surface roughness, and energy con-
sumption of bovine horn after face milling process using 
an artificial neural network has been conducted. The fol-
lowing findings are obtained:

• The experimental and ANN predicted values exhibited 
a strong correlation.

• The proposed ANN model provided acceptable results 
with relatively high prediction accuracy (95.4%).

• The proposed ANN-based prediction model capable of 
predicting surface roughness and energy consumption 
of machining a bovine horn.

The present study provides additional evidence on the 
remarkable prediction performance of ANN. The current 
practices of predicting machining characteristic of engi-
neering materials by ANN could be extended to animal-
based materials, such as bovine horns. The industrial 
practitioners may gain an understanding of the machin-
ing set-up of bovine horns as described by the present 
study. Our findings may provide a solid foundation for 
future studies on the behaviour of bovine horns as the 
workpiece of the machining process. A higher adoption 
level of bovine horns as industrial products is expected, 
leading to increasing the production volume of industrial 
products made of bovine horns. Lastly, applying ANN pre-
diction model to other material removal techniques are 
worth to be conducted as the future application studies 
of ANN.
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