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Abstract

The discharge coefficient of an orifice is important for the outflow through the orifice. While it cannot be quantified
theoretically as the outflow through an orifice depends on a number of parameters such as the pipe pressure, the liquid
velocity and the shape and the area of the orifice. In this study, experiments and computational fluid dynamics (CFD)
simulations were performed to find out the factors influencing discharge coefficient and the corresponding mechanism.
The CFD simulation is based on Navier-Stokes equations combined with RNG k — ¢ turbulence model. The results show
that a negative exponential function could fit the relationship between orifice discharge coefficient, pipe pressure, and
orifice area more accurately. The relationship between the discharge coefficient of the orifice and the velocity was linear.
In general, the simulation results fit well with the experimental results, which indicates that CFD simulation could be
used to study pipeline leakage.
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Abbreviations he Frictional head loss, m
Qotal The inlet flow rate, m®/s u Discharge coefficient of orifices
Qout The outflow rate, m*/s Hy The outflow pressure in the pipeline, m
Qeng The outlet flow rate, m*/s F The surface tension
Across The area of the cross-section, m? o The water surface tension coefficient
k, The ration of the orifice area which l The perimeter of the orifice
represents the relative size of the orifice a The contact angle of the pipe wall
area h, The change of the water head
H, The upstream water head, m A Pipe section area, m?
P, Atmospheric pressure, P, k, k, = %
o) The water density, kg/m> d The pipe diameter, m
g The gravity constant, 9.8 m/s? k, k, = \/L_d
a, The kinetic energy correction factor of v The velgocity, m/s
the inlet flow k, k, = Aot
Veome The upstream velocity, m/s A The orifice area, m?
Pout The pressure of the shrinkage section
out of the orifice, P, Kar Kins Kys Ear
Ayt The kinetic energy correction factor of & O, 0, K] Coefficients that are all positive numbers
the orifice outflow Kl Kyhr Kno Eng
h,, Local head loss, m
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74 The discharge coefficient of the orifice
of Model Il

v A Ko Ao Positive coefficients

1, §,

u, U; The average velocities in different coor-
dinate axis, m/s

S; The source item

G, The turbulence production caused by
the mean velocity gradient

G, The turbulence production caused by
the buoyancy

Yu The influence of the compressible tur-
bulent flow pulsation expansion on the
total dissipation rate

O, a, Respectively the reciprocal of the effec-
tive turbulent Prandtl number of turbu-
lence energy k and dissipation rating €

H (H,+H,)/2

1 Introduction

Orifice outflow is a common hydrodynamic phenomenon
that occurs in various industries such as the chemical
industry, energy engineering, agricultural irrigation, and
hydraulic engineering. Particularly, the safety of the cur-
rent urban water supply network, suffering from frequent
incidents of pipe leakage and explosion, is a very serious
problem.Thus, in order to effectively reduce water leakage
in the pipe network, it is necessary to establish models
diagnosing water leakage and controlling water pressure.
To this end, the discharge coefficient in the orifice outflow
model must be determined.

Orifice outflow in a pipe is influenced by the pres-
sure, the velocity, the area, and the shape of the orifice.
Goodwin, Hiki, and May found that the outflow of water
increased with pressure [1-3]. However, the discharge
coefficient was not considered in their model. Germano-
poulos et al. made up for this oversight by introducing
the discharge coefficient related to the pressure to their
model [4, 5].

In the field of urban water supply, empirical formulas
have often been utilized to describe pipeline leakage. For
example, the discharge coefficient of the point model in
Chinais 0.421, while the coefficient of the model proposed
by Shinozuka equals 0.64. Thus, the discharge coefficients
used in leakage models differ significantly and cannot
accurately describe the leakage situation [6, 7].

Lateral velocity prevents liquid from turning at the
edge of an orifice, resulting in flow separation at the ori-
fice. Heggeman et al. found that orifice flow in a liquid
distributor was influenced by lateral velocity [8]. Through
a series of pipe section simulation experiments, Jia studied
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leakage under different pipe diameters, pressures and
leakage areas. This result showed that the influence of
water pressure and leakage area on leakage was interre-
lated, and their relationship was described by an’S’model
[9]. The study of Prohaska et al. indicated that as the ratio
of the orifice diameter to pipe diameter increased, the dis-
charge coefficient decreased and eventually reached an
asymptotic value with respect to the riser pipe [10]. And
the discharge coefficient is lower for the lager pipe with
the other same variables. Yu found that the discharge coef-
ficient decreased with an increase in lateral flow velocity
in the trough of a filled tower [11]. The lateral flow might
lead to large-scale maldistribution in trough-type liquid
distributors with larger throughput. Investigating the
flow characteristics of a liquid distributor could help to
avoid large-scale maldistribution. Astaraki’s showed that
when the length-width ratio of a rectangular opening was
larger, the turbulence generated at a corner had less effect
on flow reduction [12].

In this paper, to study the influence of pressure, velocity,
area, and orifice shape on the orifice outflow an orifice out-
flow experiment with replaceable pipe sections was con-
ducted. and the orifice outflow in a pipe was also assessed
through a computational fluid dynamics (CFD) simulation.
The fluid flow in the leakage pipeline includes the free flow
in the pipeline and the flow through the leakage orifice.
Therefore, the numerical model applied to the CFD simu-
lation is based on Navier-Stokes equations combined
with RNG k-€ turbulence model. The results show that the
experimental data perfectly match the CFD simulation
data. While experiments are expensive due to the costs of
experimental setup, CFD simulations can be performed
relatively easily. Moreover, CFD simulations have been
employed to solve hydraulic engineering problems suc-
cessfully. Hence, developing a simulation which is capable
of reflecting the results of actual experiments is of great
practical value [13-18]. The models presented in this paper
could be potentially applied in engineering applications,
such as leak control in the water supply industry, filled-
tower optimization in the chemical industry, and drip irri-
gation design in agricultural irrigation.

1.1 Experimental equipment and method
1.1.1 Experimental equipment

The purpose of the experiment is to investigate the influ-
ences of the pressure and velocity of water, the orifice area,
and the orifice shape on the orifice discharge coefficient.
To this end, an experiment setup which is able to simulate
the physical flow state and process of an orifice outflow
was designed as schematically displayed in Fig. 1.
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In the experimental setup, the upper water tank pro-
vided the inflow condition, and a collecting water tank
was under the orifice. The water in the collecting water
tank would flow into flume 1, while the downstream water
would flow into flume two at the end of the pipe. The
water in the flumes would flow back to the lower water
tank. The water in the lower tank could be pumped back to
the upper tank. In order to collect and measure the outlet
flow rate and the terminal flow rate of the pipe, measuring
cylinders were placed in flume 1 and 2. Piezometer tubes
were used to measure the upstream and downstream
pressure of the orifice in the experimental equipment.

Ghazali found that the relationship between flux
and pressure was related to the shape of an orifice [19].
A replaceable pipe section was thus adopted in this

Fig. 1 Experiment setup to
investigate pipe section leak-

experiment to explore the orifice shape effects. Valves
were provided on the upstream and downstream sides
of the orifice to control the working conditions. To obtain
high accuracy, the mass method was used to measure the
flow data.

Pipes with a variety of orifice shapes, including oval,
semi-oval and a small circle, were used in this experiment
(Fig. 2). The arc directions of semi-oval 1 and semi-oval 2
were different (assuming the ratio of the long axis to the
short axis of the oval is 2:1). In the experiment, the shape
and the area of the orifice was determined by a replaceable
pipe section, as shown in Fig. 3. The length of the replace-
able section was more than 20 times the pipe diameter,
and thus the normal outflow would be unaffected by the
fluctuation flow at the interface of the sections.
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1.1.2 Experimental method

The experiments with different hydraulic conditions of
the orifice were performed according to the following
procedures.

Step 1: the pressure, the area, and the shape of orifice
were set to be constant, while the velocities were altered
by adjusting the valves upstream and downstream of the
orifice to study the change of the outflow rate. In this step,
pressure, outflow rate and flow rate at the end of the pipe
were recorded.

Step 2: under constant orifice area and orifice shape,
experiments using different pressures were conducted.
The pressures were 2.35 cm, 2.85 cm, and 3.35 cm when
the shape of the orifice was oval (except under the condi-
tion when the orifice area ratio k, is 10%). The pressures
were 2.35 cm, 2.85 cm, 3.35 cm and 6.85 cm when the
shape of the orifice was oval, and the orifice area ratio k,
is 10%. When the shape of the orifice is semi-oval 1 and
semi-oval 2, the pressures were 2.35 cm, 2.85 cm and
3.85 cm. When the shape of the orifice was a small circle
and the orifice area ratio k, was 2.8 x 1073, the pressures
were 7.55 cm, 8.35 cm, and 9.35 cm. When the shape of the
orifice was a small circle, and the orifice area ratio k, was
0.11, the pressures were 6.85 cm, 7.55 cm, and 8.35 cm.
Step 1 should be repeated for every pressure.

Step 3: with a constant orifice shape, experiments using
different orifice areas were conducted. When the orifice
shape was oval, the orifice area ratios k, were 10%, 20%,
40%, 60%, and 80%. When the orifice shape was semi-
oval 1, the orifice area ratios k, were 20%, 30%, and 40%.
When the orifice shape was semi-oval 2, the orifice area
ratio k, was 40%. When the shape was a small circle, the
orifice area ratios k, were 2.8x 107> and 0.011. Steps 1 and
2 should be repeated for every orifice area.

Step 4: experiments using different orifice shapes were
conducted. Steps 1, 2 and 3 were repeated for different
orifice shapes (oval, semi-oval 1, semi-oval 2 and circle).

In this experiment, the main measurements are the
pressure (upstream and downstream), the orifice outflow
rate and the terminal flow rate. The total pipeline flow is
calculated by the orifice outflow rate and the flow rate at
the end of the pipe. The formula is as follows:

Qrotal = Qout + Qend (M

Veome = QtotaI/Across (2)

The detailed experimental conditions are present in
Table 1.
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1.2 Establishment of models and data analysis
1.2.1 Theoretical analysis of orifice outflow characteristics

To analyze and discuss experimental results, a theoreti-
cal explanation of orifice outflow characteristics is given.
As Fig. 4 shows, when the upstream water flows through
the orifice, a certain amount of flow would leak through
the orifice, and the rest continues downstream. The flow
lines in the section through the orifice are unparallel, and
thus the water flow continues to shrink until the flow lines
become parallel. This section is called the shrinkage sec-
tion outside the orifice. The shrinkage factor ¢ is the ratio
of the shrinkage section area to the outflow rate section
area.

The energy Eq. (3) between the orifice cross-section and
upstream cross-section is established according to the Ber-
noulli equation. The equation can be expressed as:

2 2
agV AotV
Hy+ Poj Jocome _ Pout | Fowtleome oy (3)

P9 29 rg 29
where H, is the upstream water head (m), P, is atmospheric
pressure (P,), V.ome is upstream velocity (m/s), P, is the
pressure of the shrinkage section out of the orifice (P,), v
is the average velocity of the shrinkage section out of the
orifice (m/s), h,, is local head loss (m), and h is frictional
head loss (m). Assumingzthat the water head of the orifice
outflow is Hy, = H, + %;me — h¢, an equation for the out-

flow rate can be expressed as follows:

Qout = HAou V' 29H, (4)

where A, is orifice area (m?), Q,,, is outflow rate (m*/s),
H, is the outflow pressure in the pipeline (m); u is the dis-
charge coefficient of the orifice, and its value is usually
0.60-0.62. However, the outflow in a pipe or a channel with
a transverse flow is significantly different from a general
orifice discharge. When the orifice is small, the effect of
the surface tension on discharge is great. This effect of the
surface tension on the outflow rate is described as follows.

Fi=0-1-cosa (5)

where F; is the surface tension, o is the water surface ten-
sion coefficient, | is the perimeter of the orifice; a is the
contact angle of the pipe wall.

The variation in the water head (h,) can be described
as follows:

F o-1-cos
h, = — = g:lcosh (6)
PgA pgA

The impact of the surface tension on the outflow pres-

sure is also expressed by 2—1
0
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Table 1 The experimental conditions

Condition

Shape of orifice

Outflow area ratio k,

Average pressure upstream and downstream Remarks

at the measuring point H (cm)

Condition 1

Condition 2

Condition 3

Condition 4

Condition 5

Condition 6

Condition 7

Condition 8

Condition 9

Condition 10

Condition 11

Oval

Oval

Oval

Oval

Oval

Semi-oval 1

Semi-oval 1

Semi-oval 1

Semi-oval 2

Small circle

Small circle

10%

20%

40%

60%

80%

20%

30%

40%

40%

2.8x1073

0.011

2.35
2.85
3.35
6.85
2.35
2.85
3.35
2.35
2.85
3.35
2.35
2.85
3.35
2.35
2.85
3.35
2.85
3.35
3.85
2.85
3.35
3.85
2.85
3.35
3.85
2.85
3.35
3.85
7.55
8.35
9.35
6.85
7.55
8.35

Axial ratio of 2:1

Fig.4 The flow conditions at

the orifice point

H,

Measuring point

Hy
Measuring point

Qtotal Qend
—  ——
Upstream @ Downstream
Qout
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To satisfy the needs of research, three dimensionless
numbers, namely ki, k,, and k,, were introduced.

ky == (7)

where k;, is the ratio of the pressure to the pipe diameter
and represents the average pressure; H (m) is defined as
the average of H, and H,, i.e., (H,+H,)/2, and d (m) stands
for the pipe diameter.

" Vad @

where k, is the flow velocity, and v (m/s) represents the
velocity of water; d (m) denotes the section diameter.

A

where k, is the ratio of the orifice area and represents the
relative size of the orifice; A, and A (m?) indicate the ori-
fice area and pipe section area, respectively.

Computational results indicate that the impact of sur-
face tension on the total head is less than 5% with a k,
greater than 0.2, while the impact on the outflow rate is
relatively large, up to 22%, with a k, less than 0.2.

0.8
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v
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Fig.5 The change of u with k, in different orifices

SN Applied Sciences

A SPRINGER NATURE journal

The equation for the outflow rate is
Qieak = MAut V29(Hy — hy). The effect of surface tension
on the value of Q_ is less than 5%, which can be ignored
in most engineering situations. Therefore, ignoring the
effect of surface tension would likely not influence the
results of this experiment.

1.3 Data analysis and fitting

According to the experimental data, there is a negative lin-
ear relationship between the discharge coefficient of the
orifice (u) and the velocity, as shown in Fig. 5. A linear func-
tion could be used to describe the relationship between
the discharge coefficient of the orifice (u) and the velocity.

In Fig. 5a-¢, different fitting curves correspond to the
oval, semi-oval 1 and semi-oval 2 orifices, the orifice area
of which are the same. This illustrates that the orifice shape
influences the discharge coefficient of an orifice.

Figure 6 shows that u increases with k, and k;, and the
relationship tends to slow. This indicates that there is a
positive correlation in how u is affected by the orifice area
and the pressure.

Figure 5 indicates that u is influenced by the shape
of the orifices, which means the equation of the model
changes with the shape of the orifice. This study focused

0.7 -\_\\ y=0. 84-0. 28x
M 064 .
0.51
04 03 06 0.9 12 15
. . o * .
(b) semi-oval 1, k,;=0.4, k;=1.76
0841 -\\\ y=0. 86-0. 08x
0.80 N
11091 N
\.
0.76 | \
03 0.6 0.9 12 15
k

(d) hole, k,=2.77 x 103 , k;=1.76
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Fig.6 Thech f 1 with k.
alr?d A e change of y with k, 0.631 y=0. 608-0. 29exp (*z.jx) 0.661 y=0. 653-0. SZGXB,,(,:—l—l—fI-(SX)
0.56 0.60+
yzi H
0a9] |/ 0.541
_/
0.0 03 . 06 0.9 1 2 k3 4

a) oval, k;,=1.76, k,=1.16, the change of u witl
1, ky=1.76, k,~1.16, the change of  with k,

on the equation of the oval orifice, which is called the oval
orifice Model I.

1.4 The establishment of oval orifice Model |

As pipeline pressure increases, it gradually becomes the
main factor affecting orifice outflow. If the outflow rate
loss caused by a transverse flow can be neglected, then
the value of u should approach 1. With a gradual increase
in the orifice area, it can be seen from the Fig. 6a that the
value of u is gradually approaching 1. Therefore, a nega-
tive exponential function could describe the relationship
between orifice discharge coefficient, pipe pressure, and
orifice area more accurately. Combined with the linear
relationship between the discharge coefficient of the ori-
fice and the velocity, the relationship between y, k;,, k, and
k, is as follows:

p=(1—re k) [0, - (1 - ke )] - 6, - (1 — K k,)]

(10)
where K, K, Ky, €, €., €, are coefficients that are all positive
numbers. Because the upper limit of uis 1, Eq. (10) can be
developed into:

p=(1—rKe 5R) (1 —xle ™k — Kk, + K0k, - e750kn)

(11)
where k;, k, and k,,, are coefficients that are positive
numbers.

Equation (4) shows that u is mainly influenced by the
upstream pressure H,; Thus k, could be replaced by «,,
(kn, = H,/d), which represents the upstream pressure. The
equation is developed as follows:

u=(Q- K-ae_‘faka) (1= Kme—fmkm —Kk'k, + Kk, - e~mkn)
(12)
where k4, &,; and k,,,; are positive coefficients.
After using the experimental data in the case of the oval
orifice to fit Model |, a unified equation can be obtained
as follows:

h

(b) oval, k,=0.1, k,=0.46, the change of u with kj,

u=(1-05e">%).(1-037e7*m — 0.2k, — 0.32k, - e~*)
(13)
The multiple correlation coefficient R? of Model | is
0.997. Figure 7 shows the degree of curve fitting.
Combined with Eq. (13), Eq. (2) can be developed into
orifice outflow Model I.

Quue = (1 — 0.5e73%a) . (1 — 0.37e7*m — 0.2k, — 0.32k, - &)
Aout \% ngO
(14)

Note that Model | has some limitations. Under condi-
tions of high velocity and low pressure, the real outflow
rate stops. But in Model |, the outflow rate is always greater
than zero. Also, the computational process is relatively
complicated because it needs to measure the upstream
velocity in the pipe.

1.5 The establishment of Model Il

. . A 2gH .
The linear correlation of 2t and 2uV29% 31 be seen in

total total

Fig. 8. The relationship between the outflow rate, the

0.8
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0.4
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0.0 . ; . ; . ; .
0.0 0.2 0.4 0.6 0.8 1.0
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Fig.7 The distribution map of computing data and experimental
data
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orifice area, the pressure, and the total flow rate is as
follows:

Qout = ”/Aout V29H — Qg

The above equation is Model Il. i’ is the discharge coef-
ficient of the orifice of Model Il. aQ,, measures the influ-
ence of the horizontal flow on the outflow of lateral ori-
fices, and a is the effective coefficient of the lateral orifices.

Orifice outflow Model Il is also the equation of the oval
orifice outflow. Figure 9a and b show the relationship
curve of ', k, and k;, in Model II. Figure 9c shows the rela-
tionship curve of a and k,.

Figure 9a and b indicate that u’ has a positive correla-
tion with k, and k;, and the rising trend gradually slows.
Figure 9c shows that a increases with k,, and the rising
trend gradually accelerates, which reflects the relationship
between a and the orifice area.

Orifice Model Il could be described as follows:

(15)

Qout = (1 - }(he_ihkh) * (1 - )(ae_jaka) . Aleak V ZgH - (ﬂed’ka - w)Q

(16)
where y,, A va Ay N, @, and w are positive coefficients, A
is the orifice area(m?), H is the orifice pressure (m), and Q
is the total flow rate (m3/s). After using the experimental
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data of the oval orifice to fit Model Il, an equation could
be obtained as follows:

Qleak = (1 - 0.2156_6‘3kh) . (’| — 0.446_4'1kﬂ)
- Aea V2gH — [0.12(e"7%) — 0.117]Q

The multiple correlation coefficient R?* of Model Il is
0.999, which shows the simulation results fit the experi-
mental data well. This model could be used to describe
the relationship between y’ and other factors accurately
and conveniently.

(17)

1.6 CFD simulation
1.6.1 The principle of the CFD model

Orifice outflow of a pipe includes free flow in the pipe and
flow at the orifice. Assuming that the flow is incompress-
ible, the governing equations of the flow are obtained by
using continuity equations and Navier-Stokes equations:
opu;
0

0X; (18)
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Fig.9 The change of u’and a with k, and k;,

of P+ =50 o T Hoxx T ox (19

i i

where p is the density of the fluid, u; and u; are the average
velocities in different coordinate axes, p is the pressure and
pu;u; is the Reynolds stress. S, is the source term.

The governing equation of the renormalization k — &
model is as follows:

dk _ o0
pdt ox;

I

ok
(akﬂeff)a—x] + G+ G, —pe =Yy (20)

I

de

de _ 0 [0 0 e
& ox; gHeft ox;

k
(21)

where G, is the turbulent kinetic energy due to the aver-
age velocity gradient, G, is the turbulent kinetic energy
due to buoyancy and Y), is the effect of the fluctuating
expansion of the compressible turbulent flow on the total
dissipation rate. These parameters are the same as those
in the standard k — € model. a; and a, are reciprocals of
the turbulent kinetic energy k and the effective Prandtl
number of the dissipation rate ¢, respectively.

R

13
+ C]EE(G/( + G3ng) - CZSp

0.691 y=0.69-0. 316exp (~1. 35x) .
_—
/
, d
1L 0661 /
0.63 ‘/
1 2 k 3 4

h

(b) k,=0.1, the change of ' with ky,

The formula for calculating the turbulent viscous coef-
ficient is as follows:

2 ~
d(ﬂ> 72— & (22)
\/57! VV3—1-Cv

where vV = ""Te”and C,=100.

The renormalization group k — € model could accu-
rately predict the effect of the effective Reynolds number
(vortex viscosity) on turbulent transport, which is helpful
for the simulation of low-Reynolds number and near-wall
flows. For high Reynolds numbers, Eq. (22) could be given
as: y; = pC, t—z,CM = 0.0845. This result is very close to the
semi-empirical constant derivation from the standard
k — e model, C, = 0.09 (Fig. 10).

1.6.2 The establishment of the CFD model

This study simulated Model | and Model Il by experimental
and numerical simulation, so the computing domain of
the model was set according to the experimental equip-
ment. The computing domain and the grid are shown in
Fig. 11.
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Fig. 10 The distribution map of simulation data of the model and
experimental data

Fig. 11 The computing domain of the CFD model

The computing domain was a circular tube (570 mm
long, 19 mm diameter and 3 mm thickness). The center of
the orifice was 38 mm away from the upstream flow. The
medium in the computing domain was the water of 25°
Centigrade, and the boundary conditions at the import
and the export of the model were both velocity inlet. The
boundary condition at the orifice was pressure outlet. As
the water at the outflow hole was exposed to the atmos-
phere, the pressure value was set to 0. The boundary con-
ditions at the piezometric surfaces of both sides were inte-
rior. The boundary conditions at other surfaces were set
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as well, which was no slip walls with velocities of 0. In the
computing field, Hex grid was adopted at the piezometric
surfaces of both sides and the two ends, while the rest of
the area used Tet grid. The grid at the orifice was finer to
make the description of flow conditions more precise.

1.6.3 Comparison of the simulation and experimental
results

The experimental data and the simulation results under
the same conditions of pressures and orifice areas are com-
pared in the curve of u — k,, as shown in Figs. 12, 13, 14,
15 and 16.The curves of experimental data and simulation
results fit well with a deviation of less than 10% (except for
Fig. 15). The experimental data curve trend was generally
consistent with the simulation curve, which indicated that
CFD could precisely describe the influence of velocities
on the orifice discharge coefficient. Figure 15 presents the
experimental data and results of the simulation have the
biggest deviation. This is mainly because the surface ten-
sion and viscous force had a great effect on the outflow at
the orifice when the orifice area ratio was 10%.

2 Discussion and conclusion

To investigate the effect of velocities on the outflow rate, a
piece of self-designed equipment was used to simulate an
orifice outflow under different pressures, orifice areas, and
shapes. After analysis, the relationships between outflow
rate and pressure, velocities, orifice areas, and shapes were
determined. The experimental results indicate that the dis-
charge coefficient of an orifice () could be affected by
velocities, pressures, orifice areas, and orifice shape. Spe-
cifically, u had a negative linear correlation with velocity,
increased with orifice area and pressure, and the relation-
ships tended to slow as u increases. Oval orifice outflow
Model | was obtained based on the experiment results.

Combined with the analysis of experiment results and
data fitting, oval orifice outflow Model Il was established,
which could accurately describe the relationships between
uand pressure, velocity, and orifice area.

The effects of velocities on the outflow rate under
different pressures and orifice areas could be obtained
through CFD simulation to analyze the flow condition at
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the orifice. The simulation results were consistent with
the experiment results, which could prove the accuracy of
the experiment and shows that the CFD simulation could
accurately describe the effect of velocities on the orifice
outflow in the pipe.

The results show that when the leak area is large (leak-
age area ratio k, is greater than 20%), CFD simulations and
experimental results would have small deviations. While
when the leak area is small, the two would have large
deviations. This is mainly because when the leak area is
small, the experimental results could be affected by vis-
cous force, surface tension, and leak cutting errors. The

0.6] o
——Simulation data
0.5 N Experimental data
0.4 e
H o3
0.2
0.1
09 10 1.1 112k1.'3 14 15 16 1.7
v
bk, =1.5

simulated results matched well with the experimental
results in general, indicating that CFD simulation could
be potentially used to study actual water supply pipeline
leakage.
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