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Abstract
This study is based on parametric selection and prediction of sweet potatoes starch drying using Regression Tree (RT), 
Support Vector Machine (SVM) and Neuro-Fuzzy (NF) soft-computing techniques. The drying experiments are conducted 
at Drying Temperature (DT): 40–60 °C, Drying Time (DTi): 0–780 min, Ambient Temperature (AT): 27.2–30 °C and Relative 
Humidity (RH): 70–80%. Exhaustive search model is used to determine the most and least relevant drying parameters. 
NF, RT and SVM programming codes are developed in Matlab 9.2 (2017a) with four, three and two-input variable com-
bination NFs (4-1NF, 3-1NF and 2-1NF), RTs (4-1 RT, 3-1 RT and 2-1 RT) and SVMs (4-1SVM, 3-1SVM and 2-1SVM) for the 
prediction of the starch drying. Exhaustive NF parametric analysis results show that DT-DTi-AT and DT-DTi are the most 
influential combined variables for three and two variables combinations respectively. DTi and RH are also the most and 
least influential parameters, respectively. The 3-1NF with neighbourhood radius 0.7 gave the uppermost correlation 
coefficient  (R2) 0.999; and the lowermost root mean square error as well as mean square error 0.0025 and 0.00000625 
respectively. The results obtained show that exhaustive search and 3-1NF models are suitable for the prediction of sweet 
potatoes starch drying.
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1 Introduction

Sweet potato (Ipomoea batatas L.) is a significant tuber 
crops in the world. China is globally ranked as the main 
producer of sweet potato; while Nigeria is categorised as 
the second producer in Africa and third in the world [1]. 
Sweet potato has been a high starch-yielding tuber crop 
with the advantage of harvesting twice in a year as cassava 
crop [2]. A high amount of sweet potato tuber harvested 
during the peak season is significantly deteriorating due 
to poor storability and low marketability. Recently, the 
government has emphasised the exportation of industrial 
product derived from agricultural produce in Nigeria. Thus, 
there is a need to transform the unprocessed sweet potato 

into a more usable and refined form, such as dried sweet 
potato starch, for industrial applications.

Starch is one of the essential ingredients in pharma-
ceutical, food, cosmetic and petroleum industries. Starch 
pastes are used as thickeners and other additive ingredi-
ents in food systems and pharmaceutical sectors [3–5]. It is 
a white and tasteless complex polymer, which is plentifully 
obtained in large quantities in roots and tubers such as 
cassava, yam, and potato [5–7]. Previous researches show 
that the starch from potato has a high hot paste viscosity, 
unlike cereal starches, which makes it preferable for the 
manufacture of adhesives [8, 9]. Starch is conventionally 
prepared from the source material through the extraction 
and drying processes. Among the unit operations involved 
in the production of dried starch, the drying operation 
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is fundamentally ultimate. It extends material shelf life, 
reducing its deteriorating potential and also decreases 
product mass-volume ratio and, consequently minimizes 
the transportation cost.

Drying is a complex solid–liquid separation process 
which involves moisture removal from the solid matrix of 
agricultural produce. Moisture removal from food mate-
rial requires thermal energy to create vapour pressure 
gradient between the material and ambient drying envi-
ronment. Amount of moisture removal from solid matrix 
occurs due to diffusion of water or water vapour through 
the solid structure; consequently, transient simultaneous 
heat and mass transfer occur at the food material surface 
[10, 11]. The migration of vapour from the food surface 
to the drying air and the transference of heat from the 
air to the product surface depend on the existing vapour 
pressure and temperature gradients, respectively. Drying 
operation has been used to preserve various agricultural 
products [12–14] and it was reported that reasonable per-
centages of moisture were removed from the materials.

The amount of moisture removed from food material 
during dehydration is affected by various parameters 
such as air drying temperature, air velocity, initial mois-
ture content, sample thickness and drying chamber rela-
tive humidity [15, 16]. Parametric study of the process is 
necessary so as to have better knowledge of process vari-
able importance and relevancy [17]. Reported that models 
are often used for the selection of the relevant variables 
involved in the process prediction and optimization of the 
product. Mathematical model describing drying process 
serves as a monitoring tool to achieve better control of 
the unit operation in order to protect the quality of the 
product [18]. Prediction of moisture removal during food 
drying has been achieved through empirical and soft-
computing techniques [19, 20].

Numerous soft-computational techniques such as 
neural-network, fuzzy logic, genetic algorithm, neuro-
fuzzy (genfis1, genfis2 and genfis3), support vector 
machine, decision tree, multi-linear regression have 
been applied for solving complex problems in various 
engineering researches. The ability of the techniques to 
establish the relationship between input/output variable 
without prior information, unlike physics models, about 
the process makes them useful in recent time. On con-
trary, theoretical models are cumbersome and difficult to 
solve due to the fact that most of the problems resulting 
to initial boundary-value equations. Countless process 
predictions have been achieved through soft-compu-
tational methods [21–23]. Forecasted performance of 
an orange juice spray drier using ANNs. Also, [24] com-
pared ANN approach with response surface methodol-
ogy (RSM) technique for modelling the quality param-
eters of spray-dried pomegranate juice [25]. Designed a 

fuzzy logic controller for grain drying in order to obtain 
the grain output moisture content near to the reference 
point in spite of disturbance [26]. Used an ANN model 
to determine drying behaviour of apples in the freeze-
drying process while [27] developed a fuzzy logic-based 
control system for a solar dryer.

Various researches have been conducted on sweet 
potatoes starch extraction [28, 29], drying [30, 31] and 
its applications [32, 33]. However, based on our scientific 
hunt, information about robust soft-computing predic-
tion and parametric analysis of starch drying is rarely 
found in the pool of literature. Soft-computing methods 
such as regression tree, adaptive neuro-fuzzy inference 
system and support vector machine can adequately 
diagnose and identify the interactions between process 
variables of complex and non-linear processes. Thus, this 
paper is structured and sectioned as follows: (1) starch 
extraction from sweet potatoes tuber and drying experi-
mental study of sweet potatoes starch (2) grid-partition-
ing neuro-fuzyy exhaustive search drying input para-
metric analysis for selecting the most and least relevant 
drying variables (3) sub-clustering neuro-fuzzy adaptive 
neuro-fuzzy, regression tree and support vector Matlab 
programming code development for the prediction of 
sweet potatoes starch drying.

2  Material and method

2.1  Sample collection

The sweet potato tubers used in this study was obtained 
from National Root Crops Research Institute, Umudike, 
Nigeria. The species of the sweet potato was called 
Orange Fleshed sweet potato. The tubers were washed 
in order to get rid of soil and dirt stick to the sample.

2.2  Starch extraction and chemical analyses

Starches were isolated according to the method of [5]. 
25 kg tubers were skinned, thoroughly clean with water 
and crushed. The peeled tubers were crushed in a locally 
fabricated grater. The crushed pulp was mixed with 
clean water and the fibre separated by passing through 
a 75 mm sieve. The mixture (starch milk) was settled for 
ten hours and the supernatant was decanted. The starch 
was washed repeatedly with fresh water. Then, the starch 
was moulded into definite geometry using a rectangu-
lar mould. The initial moisture content of the starch was 
evaluated in a drying oven at 105 °C for 48 h by AOAC 
method [34].
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2.3  Drying experimentation

Convective laboratory tray dryer (Heratherm Oven CP 
210,997), as diagrammatically shown in Fig. 1, was used 
for drying the starch. The dimensions of the drying cham-
ber were 360 × 620 × 460 mm and consist of 3 trays of 
327 × 405 mm. Heating elements were fixed at the inner 
back of the dryer. The degree of temperature of the drying 
chamber was meticulously monitored with a temperature-
based controller imbedded into the tray dryer. Air was 
sucked rom ambient environment and distributed into the 
dryer with a fan at the back of the dryer. The air velocity 
inside the chamber was measured as 1.5 m/s with a digital 
anemometer (Model PM6252A) with accuracy of ± 0.1. The 
dryer was allowed to preheat to the desired temperature, 
and the starch was spread onto the trays in single layer for 
a specified time. The ambient, inlet and outlet tempera-
ture and relative humidity of the dry air were measured 
with a squared multi-thermometer (Model TA298) with 
an accuracy of ± 0.1  °C. The components of schematic 
dryer diagram in Fig. 1 are as follows: (1) Outdoor door 
(2) Door latch cut out (3) Door latch and handle (4) Door 
joint subordinate (5) Levelling base (6) Nameplate (7) Air 
battle top piece (8) Support rail for wire mesh shelf (9) 
Shelf pivot (10) Fan cover (11) Door hook catch (12) Air 
baffle (13) Door seal (14) Stacking pad (15) Spring for air 
baffle (16) Temperature sensor (17) Exhaust air tube. The 

final moisture content of the dried starch was evaluated 
by AOAC method [34]:

where MC is the dry basis (db) moisture content in %; Wi is 
the weight of sample taken in g for drying at 105 °C; and 
Wf is the weight sample in g after drying at 105 °C.

The proximate compositions of dried starch at different 
temperatures was also determined by [34].

2.4  Exhaustive search and subclustering 
Neuro‑fuzzy modelling

2.4.1  Exhaustive search (ES) method for input selection

Drying temperature, drying time, ambient temperature 
and relative humidity are the four input attributes of the 
starch drying operation considered in this study. The 
predicted output variable is moisture content ratio. The 
experimental data set were then split into training data 
and checking data. The ‘exhsrch‟ function in MATLAB soft-
ware environment was used to execute the search within 
the input variables and select the most as well as the least 
relevant inputs that affect the moisture content ratio. ES 
builds an neural fuzzy model structure as shown in Fig. 2 

(1)MC =
Wi −Wf

Wf

× 100

Fig. 1  Schematic diagram of 
the dryer
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for combination of inputs and trained for one run; then, 
the performance of the model as reported.

2.4.2  Fuzzy subtractive clustering and model identification

The starch input variables (Drying Temperature (DT), Dry-
ing Time (DTi), Ambient Temperature (AT) and relative 
humidity (RH); and output response (moisture ratio) were 
clustered and converted to fuzzy rule base via subbclus-
tering technique in Matlab software. Clustering technique 
first estimates numbers of clusters, their centres and radii 
formed in a data set [23, 35]. Subclustering algorithm takes 
each data point from the vector space as cluster centre and 
also estimate density or potential of the cluster according 
to Eq. (2).

where � = 4∕r2
a
 and ra > 0 shows the locality length for 

each cluster midpoint. C∗
1
 = strength measure of data point. 

Equation (3) and (4) show the reduction of strength/poten-
tial measure for each cluster centre

Let

Also � = 4∕r2
b
 and denotes lenght of neighbourhood 

where the reduction occurs;  ra is called cluster length and 
‖.‖ means the Euclidean distance, Where  rb is a constant 
that marks in a considerable reduction in strength meas-
ures of the neighbourhood so as to reduce clusterdly clus-
ter centers. Equation (2) was used to generate the density 

(2)Ci =

m�
j

exp−�‖.‖xi−xj‖.‖

(3)Ci = Ci − C∗
1
exp−�‖.‖xi−x∗1‖.‖ .

(4)�
�
xi
�
= exp

4
�‖.‖xi − x∗

1
‖.‖�

r2
b

measure of each point and the data point with the highest 
density measure is allocated the next cluster centre. Then, 
the clusters’ data obtained in Eq. (2) was used for initializ-
ing the initial rules number and antecedent membership 
function for ascertaining the Fuzzy Inference System (FIS) 
[36]

2.4.2.1 Cluster radius determination and  consequent 
parameters estimation To determine the best cluster 
radius  ra, subclustering algorithm was implemented with 
various cluster radii of neighbourhood starting from o to 
1 with corresponding fuzzy inerence systems. The pre-
diction performance is estimated as validity index and 
expressed as:

where x and ŷ are the true data and the predicted response 
respectively.

The consequent variables (ai, bi) are determined from 
the identification parameter set by least-squares optimiza-
tion technique. The regressors (ξ) and regress (y) of model 
data and probability function of the FIS are shown below:

The variables of the logic rule belonging to the ith clus-
ter, ai and bi are collapsed into a single parameter vector �i:
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Fig. 2  A basic structure of the 
ANFIS
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This is the least solution of y = �e� + �, where param-
eters ai and bi are expressed as:

where θi, i = 1, 2…n, can be evaluated by the weighted 
least-squares technique.

2.5  Support vector machines (SVMs)

Support Vector Machine (SVM) is a product of statistical 
learning concept [37]. SVM structure is similar to ANN 
architecture with non-linear weight in the first layer and 
the linear operation in second layer [38]. SVM is used to 
forecast and predict input–output relationship of a set of 
system data such as (xi, yi)n,. Where xi is input variables 
Drying Temperature (DT), Drying Time (DTi, Ambient Tem-
perature (AT) and relative humidity (RH); while yi shows 
output variable (moisture ratio). Thus, SVM uses the func-
tion in Eq. 6:

where ∅(.) is a complex function by which x is related or 
plotted into the space, b and � denote a weight vector 
and a coefficient that are evaluated from the data. b and 
� are evaluated by minimizing the sum of the uncertainty 
in the first term of function (Eq. 8) and a nonliner term in 
the second term of function (Eq. 8).

So, Eq. (9) minimizes Eq. (7) subject to Eq. (11) the fol-
lowing expression where ∝i∝

∗
i
= 0,∝i∝

∗
i
≥ 0i = 1,… ,N and  

k
(
xi , x

)
 shows the inner product in the feature space. Equa-

tion 10 is an expression of the kernel function:

Different kernels such as linear, polynomial, radial basis 
function and Sigmoid were used in this investigation in 
order to determine the best kernel. ∝i∝

∗
i
 are gotten by 

maximizing Eq. 14 according to [39–41].
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2.6  Regression tree model

Sweet potatoes starch drying data were modelled using 
Recursive Partitioning (RP) algorithm. RP models are prod-
uct of Recursive Partitioning algorithm. The algorithm forms 
a tree by recursively dividing the training data into smaller 
subdivisions. The RP algorithm accepts as input variables DT, 
DTi, AT and RH of n data points, Dt =

{
xi , yi

}nt

i=1
 . Then, the test 

mode criteria termination was set and implemented; and 
test node t generated. These subdivision data entail the frag-
mented test s∗ in the node t, DtL

=
{
x
i
, yi ∈ Dt ∶ x i → s∗

}
 , 

and the remaining cases, DtR
=
{
xi , yi ∈ Dt ∶ xi↛s∗

}
 . Then, 

the greedy hill-climbing algorithm was used at each node 
and the best split test is considered according to some local 
criterion.

2.7  Statistical Indices for the performance 
of the models

Statistical parameters used to estimate the generaliza-
tion error so as to evaluate the performance of the models 
developed for the prediction. In the present work, RMSE 
(Root Mean Square Error), MSE (Mean Square Error) and the 
 R2 value (Correlation Coefficient) were used as presented 
below:

where dp and  op are the desired and calculated outputs 
respectively. The value of MSE and RMSE close to zero and 
the  R2 values close to one revealed the extent of reliabil-
ity of the models [42, 43]. Soft-computing Model’s evalu-
ation was explained based on ranges of RMSE by [44] and 
is given in Table 1.
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2.8  Diffusion coefficient determination

Fick’s second law is applied to sweet potatoes starch dry-
ing experimental data in order to determine the effective 
diffusion coefficient at different drying temperatures.

Equation 15 is solved analytically as reported by [18] 
and Eq. 16 is obtained:

Based on various assumptions, first term of Eq. 16 is 
considered and becomes:

The effective diffusion coefficient is calculated accord-
ing to Eq. 17 by plotting ln(MR) against the drying time.

3  Results and discussion

3.1  Proximate composition result

Figure 3 revealed proximate composition of dried starch at 
varying temperature. The ranges of the starch crude protein, 
fibre, ash amylose, at different temperatures, are 1.35–1.45%, 
0.3–0.39%, 0.21–0.28% respectively. It was observed from 
Fig. 3 that as the temperature increased, the crude protein 
content of the dried starch increased; this might be as a 
results of reduction in the starch moisture content as the 
temperature increases. It was also observed that as the 
drying temperature increased the crude protein and fibre 
increased. This occurrence might be as the result of evapora-
tion of moisture from the starch due to increased tempera-
ture gradient. In contrast, the starch ash content decreases 
as drying temperature increased as shown in Fig. 3. How-
ever, amylose content profile of the starch does not follow 

(15)
�c

�t
=

�

�x
D
�c

�x

(16)MR =
8

�2

∞∑
n=0

1

(2n+1)2
exp[−

(2n+1)2�2Deff

4L2
t

(17)ln(MR) =
8

�2
exp

[
−�2

Deff

4L2
t

]

the pattern. The highest and lowest amylose content was 
obtained at 55 °C and 40 °C. Similar result was obtained by 
[45] on the influence of drying techniques on the chemical 
and functional properties of different potato varieties.

4  Summary of experimental data statistics

Table 2 shows statistics of the starch drying experimental 
data: drying time  (X1), drying temperature  (X2), ambient 
temperature  (X3), relative humidity  (X4) and moisture ratio 
 (X5). The statistics comprises mean, standard error, mini-
mum, maximum, median, standard deviation, kurtosis, 
skewness and sum for each variable. From Table 2, skew-
ness for  X1,  X2,  X4 and  X5 lies between 0.16–0.72. Skewness 
revealed the evenness of the data dispersion; perfectly 
symmetric distribution that is regular involves normal 
skewness. However, positively skewed dispersion grouped 
to the left, with the tail extending to the right, while nega-
tively skewed dispersion grouped to the right, with the tail 
extending to the left [46]. Therefore, the data distribution 
curve for  X1,  X2,  X4 and  X5 variables is relatively symmet-
ric but the distribution data was not perfect and normal. 
The distribution was highly negatively skewed for  X3 with 
skewness less than negative one (< − 1). This implies that 
the data distribution for  X3 has scores bunched to the 
right, with the tail spreading to the left. The distribution 
curves for  X1,  X2,  X3  X4 and  X5 are platykurtic, because the 
kurtosis numeric values were less than 3 as indicated in 
Table 2. This suggests that the distribution curves for these 
variables are flatter and broader than a normal curve.

4.1  Parametric analysis

4.1.1  Parameter selection for one input

For parametric selection of starch drying investigation, 
four (4) exhaustive search ANFIS models were developed 
to explore the significance of each input factor on the 

Table 1  Ranges of RMSE to analyse models performance

Source [44]

Ranges of RMSE Performance

 < 0.009 Excellent prediction accuracy
0.009 < RMSE < 0.09 Good prediction accuracy
0.09 < RMSE < 0.5 Reasonable prediction
 > 0.5 Inaccurate prediction
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process. The importance of input variable is ranked/or jus-
tified based on the statistical evaluation of the developed 
models. Tables 3,4 and 5 show the results of RMSE and 
MSE for both the training and testing error of the model. 
The ranking of the models as shown in Tables 3,4 and 5 is 
also based on the regression error of the models. Table 3 

reveal that drying time  X2 is the most relevant variable as 
highlighted, while ambient temperature  (X4) is the least 
influential variable as depicted in Table 3. Fundamentally, 
drying time is greatly affecting drying process as endorsed 
by previous studies [47]. The ranking of importance of the 
starch drying independent variables is as follows drying 

Table 2  Descriptive statistics of 
input and output variables for 
the starch drying

Statistical index Drying 
tempera-
ture

Drying time Ambient 
temperature

Relative humidity Moisture ratio

Mean 48.94 198.63 75.69 28.43 0.24
Standard error 0.7 17.99 0.32 0.072 0.003
Median 50 150 76 28.5 0.243948
Mode 40 20 80 27.7 0.237879
Standard Deviation 6.83 175.41 3.15 0.7 0.032
Sample Variance 46.75 30,771.51 9.99 0.497 0.001
Kurtosis − 1.201 0.45 − 0.91 − 0.45 − 1.109
Skewness 0.16 0.72 − 0.28 0.036 0.26
Range 20 690 12 3.1 0.117839
Minimum 40 0 70 26.9 0.191664
Maximum 60 690 82 30 0.309503
Sum 4650 18,870 7191 2701.2 23.393459

Table 3  Exhaustive search 
regression errors (RMSE) for 
one-input combination

X1 temperature, X2 drying time, X3 ambient temperature, X4 relative humidity

ANFIS model Input RMSE (train) RMSE (test) MSE (train) MSE (test) Rank

Model1 X1 0.029 0.0292 0.000841 0.00085264 2
Model2 X2 0.0126 0.013 0.00015876 0.000169 1
Model3 X3 0.0322 0.0322 0.00103684 0.00103684 3
Model4 X4 0.0326 0.0326 0.00106276 0.00106276 4

Table 4  Exhaustive search 
regression errors (RMSE) for 
two-input combinations

X1 temperature, X2 drying time, X3 ambient temperature, X4 relative humidity

ANFIS model Input RMSE (train) RMSE (test) MSE (train) MSE (test) Rank

Model1 XIX2 0.009 0.0084 0.000081 0.00007056 1
Model2 XIX3 0.0176 0.0228 0.00030976 0.00051984 4
Model3 X1X4 0.0284 0.0364 0.00080656 0.00132496 6
Model4 X2X3 0.0098 0.0115 0.00009604 0.00013225 3
Model5 X2X4 0.0094 0.0104 0.00008836 0.00010816 2
Model6 X3X4 0.0245 0.0286 0.00060025 0.00081796 5

Table 5  Exhaustive search 
regression errors (RMSE) for 
three-input combinations

X1 temperature, X2 drying time, X3 ambient temperature, X4 relative humidity

ANFIS model Input RMSE (train) RMSE (test) MSE (train) MSE (test) Rank

Model1 X1 X2 X3 0.0029 0.0062 0.00000841 0.00003844 1
Model2 X1 X2 X4 0.0031 0.0133 0.00000961 0.00017689 2
Model3 X1 X3 X4 0.0083 0.0379 0.00006889 0.00143641 4
Model4 X2 X3 X4 0.0037 0.0063 0.00001369 0.00003969 3
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time > drying temperature > relative humidity > ambient 
temperature, as shown, in Table 3. It was observed that the 
error difference between the most and least variables is 
significant. However, there is no much difference between 
the second to the least and the least variable as shown in 
Table 3. It was observed from the results that the training 
and testing regression errors are comparable; therefore, it 
is an indication that exhaustive search fitting lacks over-
fitting. Thus, this implies that selection of more than one 
variable can be further explored.

4.1.2  Parameter selection for two and three‑input 
combinations

To investigate the optimal combination of two (2) param-
eters, six (6) possible exhaustive search NF models were 
developed and statistically analysed. Table 4 revealed the 
ranking of two-input combination influence on the starch 
drying. Combination of drying time and temperature is the 
most significant combination, as highlighted in Table 4, 
due to its lowest error achieved for the set of two inputs. 
Model 3, in Table 4, with combination of drying tempera-
ture and ambient temperature is the least ranked model. 
Obviously, model 3 shows the highest regression error 
among other models, therefore, the combination of the 
variables may have significant effect on the drying process. 
A plethora of previous researches [12, 21, 48–50] claimed 
and asserted that drying temperature and time are 
strongly influenced drying rate of agricultural produced. 
Therefore, the result obtained from this study shows good 
synergy and combined effect of drying air temperature 
and time on the starch drying.

Table 5 shows the parametric selection for three input 
combinations involved four (4) exhaustive search NF mod-
els which were statistically analysed. The result highlighted 
in Table 5 indicated that the combination of drying time, 
drying temperature and ambient temperature gave the 
most significant combination owing to the lowest error 
obtained for the three input combination using model 1 
in Table 5. This result shows that the combined effect of 
drying time, drying temperature and ambient tempera-
ture influence the starch drying rate. It was noticed from 
Table 5 that NF model 3 with a combination of drying time, 
ambient temperature and relative humidity gave the high-
est regression error and therefore this combination may 
have low or no effect on the drying process

4.1.3  Comparing the input parameter selection

The evaluation of the most significant combination of 1, 2 
and 3 input variables were based on the error of the train-
ing and testing values for the grid-partitioning exhaustive 
search model. It is noticed that as the number of relevant 

variable increases, the regression error decreases as shown 
in Fig. 4. The statistical errors for one, two and three input 
variable combinations were compared and three-input 
variable combination gave the lowest error at training and 
testing level as depicted in Fig. 4. This shows that three 
input combination has highest effect on the drying pro-
cess and the combination also enhances the prediction of 
moisture removal during the process. It was also observed 
that the error discrepancy between two and three input 
combination was not significant; therefore, any attempt 
to combine more than 3 variables resulted to model over-
fitting and complexity. Exhaustive search model complex-
ity leads to inaccurate representation of the process and 
this causes misleading results [51].

4.2  Results of regression tree, SVM and ANFIS 
models

In the Regression Tree (RT) model, Moisture Ratio (MR) 
was the dependent variable and Drying Temperature (DT), 
Drying Time (DTi), Ambient Temperature (AT) and relative 
humidity (RH) were the independent variables. Three dif-
ferent RT models, namely, fine, medium asnd coarse RT 
types, were used as shown in Table 6. The results of the RT 
models for MR prediction are shown in Table 6. Based on 
the RMSE results, all the model types with different input 
combinations have shown good predictions with model 
Fine Tree and input type 4-1 having the best output with 
a minimum RMSE and MSE of 0.011187 and 0.00012516 
respectively, while coarse tree with input type 4-1 indicat-
ing maximum RMSE and MSE. The  R2 result also showed 
that coarse tree with input type 4-1 had poor performance 
due to low value of  R2 while the other showed fair predic-
tions. It was also observed that in all the model types, the 
coarse tree models at all input types show the low predic-
tion. The RMSE and MSE values obtained from regression 

1 Input Variable 2 Input Variables 3 Input Variables 
Train 0.0126 0.009 0.0029 
Test 0.013 0.0084 0.0062 

0 

0.002 

0.004 

0.006 

0.008 

0.01 

0.012 

0.014 

Fig. 4  RMSE for the most significant combinations of parameters 
with 1, 2 and 3 inputs 1 input variable = temperature, 2 input vari-
able = drying time, 3 input variable = ambient temperature
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tree models were compared with previous studies on soft-
computing predictive models; and comparable with exist-
ing works. On contrary, the  R2 values were not similar but 
far from previous investigation results.

Table 7 shows SVM results with six model types (linear, 
quadratic, cubic, fine Gaussian, medium Gaussian and 
fine Gaussian SVM) for all the input types. The result for 
the RMSE revealed that quadratic SVM for input type 4-1 
and 3-1, cubic SVM for input type 4-1, 3-1 and 2-1 and 
medium Gaussian SVM for input type 3-1 and 2-1 showed 
excellent and high prediction accuracy while the others 

showed good prediction accuracy in their RMSE values. 
The RMSE and MSE are close to zero as indicated in previ-
ous studies [22]. The  R2 values of the model showed that 
Cubic SVM 4-1 and 3-1 showed excellent prediction perfor-
mance while quadratic SVM 4-1, 3-1 and 2-1, coarse Gauss-
ian SVM 4-1, medium Gaussian SVM 3-1 and 2-1 and fine 
Gaussian SVM 2-1 showed good prediction performance 
in their  R2 values; whereas Linear SVM 4.1 and 2.1, medium 
Gaussian SVM 4.1 and fine Gaussian SVM 3.1 displayed fair 
performance. Fine Gaussian SVM 4.1 and linear SVM 3.1 
have poor performance with Linear SVM 3.1 predicting the 
poorest value. This indicated that Support Vector Machine 
Cubic model gives outstanding predictions despite the 
input combinations for both the RMSE and  R2 values while 
linear SVM do not offer good predictions in all the input 
combinations

Table 8 shows subclustering ANFIS models with dif-
ferent radii of influence ranging from 0.6 to 1 as indi-
cated in model types. Statistical parameters, RMSE,  R2 
and MSE, show the degree of agreement between esti-
mated and measured results of the three ANFIS mod-
els (ANFIS4-1, ANFIS3-1 and ANFIS2-1) as indicated in 
Table  8. All the ANFIS structures, with different input 
types and model types are statistically and rankly excel-
lent except ANFIS4-1 with radius of influence 0.6 as 
revealed in Table  8. For 4NF-1 model types,  R2 values 
ranged from 0.932 to 0.99, RMSE values from 0.0039 to 
0.0131, and MSE values from 0.00001521 to 0.00017161. 
As it was also observed from Table 8, 3NF-1 model has  R2 
values ranging 0.9626–0.999, RMSE values ranging from 
0.0025 to 0.0088, and MSE ranging from 0.00000625 to 

Table 6  Regression Tree (RT) model results

RT4-1 = 4 inputs and 1 output, RT3-1 = 3 inputs and 1 output, 
RT2-1 = 2 inputs and 1 output

Input 
type

Model 
type

RMSE R2 MSE Perfor-
mance

RT4-1 Fine tree 0.011187 0.89 0.00012516 Good
RT 4–1 Medium 

tree
0.015911 0.77 0.00025317 Good

RT 4–1 Coarse 
tree

0.024274 0.47 0.00058924 Good

RT 3–1 Fine tree 0.015864 0.77 0.00025167 Good
RT 3–1 Medium 

tree
0.016746 0.75 0.00028044 Good

RT 2–1 Fine tree 0.013394 0.84 0.0001794 Good
RT 2–1 Medium 

tree
0.016583 0.75 0.000275 Good

RT 2–1 Coarse 
tree

0.018523 0.69 0.00034311 Good

Table 7  Support vector 
machine (SVM) model results

SVM4-1 = 4 inputs and 1 output, SVM3-1 = 3 inputs and 1 output, SVM2-1 = 2 inputs and 1 output

Input type Model type RMSE R2 MSE Rank

SVM4-1 Linear SVM 0.015149 0.79 0.00022949 Good
SVM 4–1 Quadratic SVM 0.0084172 0.94 7.084e-5 Excellent
SVM 4–1 Cubic SVM 0.0074697 0.95 5.5722e-5 Excellent
SVM 4–1 Fine Gaussian SVM 0.01888 0.68 0.00035646 Good
SVM4-1 Medium Gaussian SVM 0.013296 0.84 0.00017678 Good
SVM 4–1 Coarse Gaussian SVM 0.011672 0.88 0.00013625 Good
SVM 3–1 Linear SVM 0.062045 2.47 0.0038496 Good
SVM 3–1 Quadratic SVM 0.0094437 0.92 8.9183e-05 Excellent
SVM 3–1 Cubic SVM 0.0070272 0.96 4.94E-05 Excellent
SVM 3–1 Fine Gaussian SVM 0.015206 0.79 0.00023123 Good
SVM 3–1 Medium Gaussian SVM 0.0083571 0.94 6.9841e-5 Excellent
SVM 3–1 Coarse Gaussian SVM 0.012888 0.85 0.00016611 Good
SVM 2–1 Linear SVM 0.015721 0.78 0.00024715 Good
SVM 2–1 Quadratic SVM 0.012292 0.86 0.00015109 Good
SVM 2–1 Cubic SVM 0.009595 0.92 9.2064e-5 Excellent
SVM 2–1 Fine Gaussian SVM 0.011388 0.88 0.00012968 Good
SVM 2–1 Medium Gaussian SVM 0.0094649 0.92 8.9585e-5 Excellent
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0.00007744. All the statistical values found for 3NF-1 
are generally close to acceptable range; however, 3NF-1 
model with radius of neighbourhood of 0.7  (R2 = 0.999, 
RMSE = 0.0025 and MSE = 0.00000625) produced the 
best prediction among the studied ANFIS model. This 
indicted good agreement between estimated and meas-
ured results from 3NF-1 model. The performance of 2NF-1 
model with influence radius 0.7  (R2 = 0.991, RMSE = 0.0043 
and MSE = 0.00001849) is better than other radii of neig-
borhoods as indicated in Table 8. It was noticed from all 
the ANFIS models in Table 8 that the best results were 
obtained at radius of influence 0.7. Comparing all model 
input types in Table 8, the best prediction and estima-
tion was attained by 3NF-1 model. The statistical results 
obtained from this investigation are consistent and similar 
to previous studies [21, 22].

4.3  Comparison of models

Based on MSE and  R2 values ranking, the results showed 
that ANFIS 3-1 is considered as the best model for the 
prediction of starch drying MR. It can be seen from RT, 
SVM and ANFIS results (Tables 6,7,8) that the second to 
14th best models were mostly found as ANFIS models. 
The excellent performance of ANFIS is due to the fact that 
ANFIS model is a composite model comprising linguistic 
representation of fuzzy logic and leaning ability of artifi-
cial neural network. Reported similar preference for ANFIS 
model performance among different soft-computing 
models in the study. However, the 15th ranked model is 
SVM model, while the RT models found to be the 22th-
30th ranked model, nevertheless, the RMSE and MSE are 
closed to zero as indicated in Table 6.

4.4  Drying kinetics and diffusion coefficient 
determination

Figure  5 shows the drying curve of sweet potatoes 
starch at different drying temperatures (40–60 °C). It 
was observed from Fig.  5 that moisture equilibrium 
content of higher temperature was achieved at lower 
drying time; while longer time is required at lower tem-
perature. It is evident that the lowest moisture contents 
were achieved at 55 °C and 60 °C respectively as shown 
in Fig. 5. The effect of temperature on moisture content 
in this study is similar to previous investigation [19, 29]. 
Figure 6 showed the result of linear fitting of ln (MR) 
against drying time (t) at different temperatures so as to 
obtain different slopes for estimating different effective 
diffusion coefficients. Correlation coefficients  (R2) of the 
fittings at varying temperature are ranging from 0.928 

Table 8  ANFIS sub-clustering 
model results

ANFIS 4–1 = 4 inputs and 1 output, ANFIS 3–1 = 3 inputs and 1 output, ANFIS 2–1 = 2 inputs and 1 output

Input type Model type RMSE R2 MSE Performance

ANFIS4-1 ANFIS 0.6 0.0131 0.932 0.00017161 Good
ANFIS 4–1 ANFIS 0.7 0.0039 0.990 0.00001521 Excellent
ANFIS 4–1 ANFIS 0.8 0.0047 0.9898 0.00002209 Excellent
ANFIS 4–1 ANFIS 0.9 0.0067 0.9786 0.00004489 Excellent
ANFIS 4–1 ANFIS 1 0.0076 0.9723 0.00005776 Excellent
ANFIS 3–1 ANFIS 0.6 0.005 0.9878 0.000025 Excellent
ANFIS 3–1 ANFIS 0.7 0.0025 0.999 0.00000625 Excellent
ANFIS 3–1 ANFIS 0.8 0.0027 0.9966 0.00000729 Excellent
ANFIS 3–1 ANFIS 0.9 0.0047 0.9895 0.00002209 Excellent
ANFIS 3–1 ANFIS 1 0.0088 0.9626 0.00007744 Excellent
ANFIS 2–1 ANFIS 0.6 0.005 0.9882 0.000025 Excellent
ANFIS 2–1 ANFIS 0.7 0.0043 0.991 0.00001849 Excellent
ANFIS 2–1 ANFIS 0.8 0.0067 0.9785 0.00004489 Excellent
ANFIS 2–1 ANFIS 0.9 0.008 0.9692 0.000064 Excellent
ANFIS 2–1 ANFIS 1 0.0031 0.9358 0.00000961 Excellent
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Fig. 5  Moisture content variation with time at different tempera-
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to 0.982 as shown in Fig. 6.  R2 values obtained from this 
study are close to one, showing the reliability of the the 
fitting. Moreover,  R2 values for the linear fitting is com-
parable with the earlier investigations [17, 19].

Figure 7 shows the variation and distribution of mois-
ture diffusion coefficient with drying temperatures. The 
effective diffusivities of sweet potatoes starch drying 
range from 1.78 × 10–10 to 3.8810–9 m2/s at temperature 
40–60 °C as evident in Fig. 7. It was also noticed that the 
highest diffusivity was achieved at highest temperature; 
while the lowest temperature gave the lowest rate of 
moisture transfer from the starch. The findings from this 
study is related to the existing works [5, 15].

5  Conclusion

In this study, exhaustive search grid partitioning NF was 
used to select relevant input parameters for the prediction 
of starch drying performance.. Exhaustive NF parametric 
analysis results show that DT-DTi-AT and DT-DTi are the 
most influential combined variables for three and two vari-
ables combinations respectively. DTi and RH are also the 
most and least influential parameters, respectively. Among 
the combinations, three input combination DT-DTi-AT was 
selected as the optimal combination for the drying pro-
cess. The 3-1NF with radius of influence 0.7, among the 
models, gave the highest correlation coefficient  (R2) 0.999, 
lowest MSE and RSME 0.0025 and 0.00000625 respectively. 
The results obtained show that exhaustive search and 
3-1NF models are suitable for the analysis of sweet pota-
toes starch drying.

This study is limited to soft-computing model develop-
ment for the prediction of sweet potatoes starch. Further 
studies are therefore needed for the application of the 
neuro-fuzzy model as the dynamic equation in the fuzzy-
based controller design for sweet potatoes starch dryer. 
In addition, techno-economic analysis of sweet potatoes 
starch drying aspect is also recommended for further 
study.
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