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Abstract
Good knowledge of travel patterns is essential in transportation planning. Cellular network data as a large-scale passive data 
source provides billions of daily location updates allowing us to observe human mobility with all travel modes. However, 
many transport planning applications require an understanding of travel patterns separated by travel mode, requiring the 
classification of trips by travel mode. Most previous studies have used rule-based or geometric classification, which often 
fails when the routes for different modes are similar or supervised classification, requiring labelled training trips. Sufficient 
amounts of labelled training trips are unfortunately often unavailable in practice. We propose semi-supervised classification 
as a novel approach of classifying large sets of trips extracted from cellular network data in inter-city origin–destination pairs 
as either using road or rail. Our methods require no labelled trips which is an important advantage as labeled data is often not 
available in practice. We propose three methods which first label a small share of trips using geometric classification. We then 
use structures in a large set of unlabelled trips using a supervised classification method (geometric-labelling), iterative semi-
supervised training (self-labelling) and by transferring information between origin–destination pairs (continuity-labelling). 
We apply the semi-supervised classification methods on a dataset of 9545 unlabelled trips in two inter-city origin–destination 
pairs. We find that the methods can identify structures in the cells used during trips in the unlabelled data corresponding to 
the available route alternatives. We validate the classification methods using a dataset of 255 manually labelled trips in the 
two origin–destination pairs. While geometric classification misclassifies 4.2% and 5.6% of the trips in the two origin–des-
tination pairs, all trips can be classified correctly using semi-supervised classification.

Keywords  Cellular network data · Travel mode classification · Semi-supervised learning

Introduction

Transportation planning and management on strategic, tac-
tical and operational levels require a good understanding 
of historic and present mobility patterns. Commonly, travel 
surveys and traffic counts are used to obtain data on mobil-
ity patterns. Unfortunately, these data sources are expensive 
to collect and thus usually very limited in their volume and 
variety giving only partial insights. Further, travel surveys 
are suffering from decreasing response rates (Schulz et al. 
2016).

Meanwhile, new large-scale passive data sources provid-
ing information on travel patterns have emerged. Cellular 

network data as a passive data source collected by cellular 
network operators provides large-scale observations of peo-
ple’s movements and, thus, a comprehensive overview of 
travel patterns with all travel modes (Calabrese et al. 2011; 
Gundlegård et al. 2016). Datasets of GPS tracks can provide 
information on travel patterns as well, but unlike cellular 
network data these datasets usually cover fewer users (Bar-
bosa et al. 2018) and often not all travel modes. They are 
usually collected using specific apps and only for users who 
have activated the data collection, which possibly introduces 
bias. For example, using data from only one of the cellular 
network operators in Sweden with around 20% of the mar-
ket share, we can observe about 1 billion events and extract 
more than 23 million trips during one week. The data, thus, 
provide a significant sample of all trips made.

For many applications not only the total mobility patterns 
are of interest, but also an understanding of the mobility 
patterns with each travel mode. Examples are the analysis 
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of road traffic flows and railway passenger flows. Under-
standing how different transportation modes are used is also 
a key to facilitating multi-modal transportation planning. 
Obtaining the modal split of trips between cities is important 
to identify potential travel demand that could be shifted to 
a different mode. Augmenting trips extracted from cellu-
lar network data with necessary metadata such as the travel 
mode has thus been pointed out as a significant challenge for 
enabling the use of cellular network data as a data source for 
practical transportation planning (Anda et al. 2017).

Existing mode classification methods for GPS trajectories 
are usually not applicable to cellular network data. In cel-
lular network data, only an indirect approximate position is 
given through the cells used and their known antenna loca-
tions. Therefore, the data are typically noisier and of lower 
temporal resolution compared to GPS data. Classification 
methods need to be adapted to and use cellular network 
data’s specific characteristics to perform well. Using the 
specific characteristics of cellular network data is generally 
understudied in the literature that deals with mode classifica-
tion from cellular network data. Most proposed methods are 
using simple rule-based or geometric approaches classifying 
each trip using only that particular trip’s data (Huang et al. 
2019). These methods perform poorly in cases where the 
travel modes are hard to distinguish.

Supervised classification methods, which could give an 
improvement in these cases, have not been considered in the 
literature, with a few exceptions (Xu et al. 2011; Breyer et al. 
2021). A major reason for this is that they require labelled 
training data, which is rarely available in practice. On the 
other hand, usually, large amounts of unlabeled data are 
available. The emerging concepts of semi-supervised learn-
ing show that patterns in unlabeled data can be used for solv-
ing classification problems (van Engelen and Hoos 2019). 
In the context of cellular network data, to the best of our 
knowledge, these techniques have so far only been used by 
Bachir et al. (2019b), who achieved very promising results 
with a semi-supervised classification method involving cel-
lular network data combined with travel mode priors from 
a household survey.

In this paper, we aim to classify inter-city trips as made 
by rail or road using different semi-supervised learning 
assumptions. This paper’s main contributions are twofold: 
First, we show how semi-supervised methods can improve 
mode classification compared to rule-based or geometric 
methods, which are the most commonly used methods in the 
literature. We show that the proposed semi-supervised meth-
ods can perform better than these methods in challenging 
cases where the routes of different modes are similar. Sec-
ond, we advance the practical usability of supervised learn-
ing for mode classification. The main reason why supervised 
and semi-supervised methods are not commonly used is the 
lack of necessary labeled training data. We show that the 

need for such labeled training data can be eliminated using 
semi-supervised labeling methods based on some sensible 
learning assumptions.

The scope of this paper is to show how semi-supervised 
methods can be used to classify inter-city trips as made by 
rail or road. We focus on these modes, as they are the most 
common modes of inter-city travel. Unlike air traffic, the 
infrastructure for these modes are often more or less co-
located and travel times can be similar. In these cases, it is 
challenging to classify trips by travel mode.

The remainder of the paper is structured as follows. 
Sect. 2 introduces the mode classification problem and 
previous related work. In Sect. 3 a geometric mode clas-
sification method is given and Sect. 4 presents methods of 
mode classification using semi-supervised learning. Using 
the dataset described in Sect. 5, the methods are compared 
and validated in Sect. 6. Finally, Sects. 7 and 8 discuss and 
conclude the findings.

Preliminaries

Cellular network data consist of location updates that are 
recorded inside the operator’s infrastructure. Each location 
update consists of an anonymised user ID, a timestamp and a 
cell ID. Several types of events, not only necessarily related 
to physical movements, can trigger location updates (Gun-
dlegård 2018). Here, we assume that the cellular network 
data not only contains Call Detail Records (CDR) triggered 
by phone calls or messages but also other events such as 
periodic events and location area updates. Given that the 
antennas’ positions and/or the coverage areas of the cells are 
known, the location updates give an approximation of the 
user location over time. The data are typically noisy and of 
much lower and more varying resolution in time and space 
than GPS tracks.

Cellular network data may contain updates also when 
users are not moving. To analyse travel patterns, it is, 
therefore, required to first extract trips, that is movements 
between two stops. We describe a trip by the list of cell IDs 
used during the trip which we call the cellpath

as well as the trip start time ts(T) and the trip end time te(T) . 
The trips used in this paper have been extracted using a stop-
based trip extraction method as described in Breyer et al. 
(2020); other methods methods are discussed in Alexander 
et al. (2015); Calabrese et al. (2010); Graells-Garrido et al. 
(2018); Alexander et al. (2015); Breyer et al. (2017) among 
others.

(1)T = [cs, c1, c2,… , ce],
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Mode Classification of Cellular Network Data

It is generally a feature of cellular network data that trips 
made with all travel modes and for all purposes or activities 
can be observed. However, this is also limiting the useful-
ness for many applications in traffic planning and model-
ling, which require the data to be enriched by metadata such 
as travel mode. The problem of travel mode classification 
has been gaining attention recently. In a systematic review, 
Huang et al. (2019) found that most of the proposed methods 
can be described as simple rule-based methods making use 
of geodata. These methods may perform poorly in challeng-
ing OD-pairs where several modes have similar routes. Fur-
ther, Huang et al. (2019) point towards a lack of validation of 
the mode classification for individual trips as many studies 
have only compared aggregated mode share statistics.

Given a set of extracted trips TO,D between city O and city 
D, we define the mode classification problem as follows: 
Given a trip T ∈ TO,D , find the mode probabilities p(m|T) 
for m ∈ {road, rail} . The mode probability p(m|T) is the 
probability that m is the main mode of the trip, meaning 
that mode m has been used for the major part of the trip’s 
distance. We assume that all trips are made by either rail 
or road (where the road mode includes private cars, buses, 
etc.), as they are the only available options for the OD-pairs 
considered in this paper. For OD-pairs where options such 
as air or water (ferry) traffic are viable options, the set of 
modes needs to be extended accordingly. We can distinguish 
the following four categories of methods to classify a set T 
of trips by travel mode:

(1) Rule-Based Classification.  A trip T ∈ TO,D is classi-
fied using predefined rules based on the characteristics of the 
particular trip to classify. Kalatian and Shafahi (2016), for 
example, use the travel speed to distinguish between modes.

(2) Geometric Classification. A trip T ∈ TO,D is classified 
by comparing the geometry of the trip with the geometry 
of infrastructure (such as the railway network) or available 
route alternatives for each mode. In addition to the cellu-
lar network data, these methods also use geometric data 
describing the transport infrastructure. Examples are found 
in Qu et al. (2015); Phithakkitnukoon et al. (2017); Breyer 
et al. (2021) among many others.

(3) Supervised Classification. A trip T ∈ TO,D is classi-
fied using a supervised classification method which has to 
be trained using a set of labelled trips T∗

O,D from the same 
OD-pair with the correct modes known. Examples are found 
in Breyer et al. (2021); Xu et al. (2011).

(4) Semi-supervised Classification. A trip T ∈ TO,D is 
classified by identifying patterns in the large set of unla-
beled trips TO,D together with a small set of labelled trips 
T
∗

O,D which is labelled manually or automatically using 
another method (pseudo-labelling). An example of a 

semi-supervised method is the cluster-then-label approach 
used in Bachir et al. (2019b).

Approaches (1) and (2) can be applied using only unla-
belled data. However, (1) fails when the trip characteristics 
are not different enough between trips of different modes or 
when the data quality is too low. Approach (2) fails when the 
routes for different modes are very similar. Approach (3) can 
sometimes achieve better classification results in the above 
situations (Breyer et al. 2021), but requires enough labelled 
for the same OD-pair, which is most often not available in 
practice. This paper presents new methods using approach 
(4).

Semi‑supervised Classification

A lack of sufficient amounts of labelled data to train super-
vised classification methods is not unique to the classifi-
cation problem considered in this paper (Zhou 2017). The 
field of semi-supervised classification methods deals with 
methods for problems where there is only a small amount of 
labelled data but a large amount of unlabelled data. Accord-
ing to van Engelen and Hoos (2019), semi-supervised 
methods may be used if the the distribution of the large 
set of unlabelled observations p(x) contains some informa-
tion about the posterior distribution p(y|x), where x is an 
observation and y the label of x. Different semi-supervised 
learning methods make different assumptions about which 
information the unlabelled data contains about the posterior 
distribution. We present those semi-supervised assumptions 
in Sect. 4.1 and discuss how they can be used for the mode 
classification of trips extracted from cellular network data.

Semi-supervised classification methods can be divided 
into inductive and transductive methods (van Engelen and 
Hoos 2019). Inductive methods yield a classification model 
that we can use later to classify new previously unseen 
observations. A popular type of inductive semi-supervised 
methods are wrapper methods, which extend supervised 
classification methods. Self-labelling, for example, is a 
wrapper method that labels the unlabelled observations 
iteratively (Triguero et al. 2015). Another approach is build-
ing on unsupervised methods as in the cluster-then-label 
approach (Bachir et al. 2019a). Transductive semi-super-
vised methods such as graph-based methods obtain labels for 
a particular set of observations without providing a general 
classification model (Subramanya and Talukdar 2014).

Semi-supervised classification methods have been suc-
cessfully used to classify trajectories from GPS data (Yu 
2020; Dabiri et al. 2020). These methods are using detailed 
features, such as speed, acceleration, jerk and turn rates. 
Kalatian and Farooq (2020) demonstrated a semi-supervised 
approach to classify trajectories from WiFi data by travel 
mode involving features specific to this type of data such 
as signal strengths. These methods can unfortunately not be 
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applied to cellular network data as the used features are not 
available in a comparable way and as the resolution in space 
and time is much lower compared to GPS data.

Bachir et al. (2019b) have introduced a first semi-super-
vised approach for classifying trips extracted from cellu-
lar network data. They propose a method that associates 
mode probabilities with each cell in the cellular network 
using a semi-supervised approach involving road and rail 
infrastructure geodata. The probabilities are combined with 
prior mode probabilities for the different home areas from 
a household survey using Bayes’ theorem to classify indi-
vidual trips by travel mode. While the aggregated validation 
of the mode-specific OD-flows is promising, the study does 
not provide validation of the modes estimated for individual 
trips. Further, updated household survey data on modal share 
may not always be available and so far no semi-supervised 
method only using cellular network data and infrastructure 
data has been proposed in the literature.

Geometric Mode Classification

This section presents a geometric mode classification 
method, which can also be used to generate pseudo-labelled 
trips for semi-supervised classification. The method clas-
sifies the mode by comparing a trip T to route alternatives 
found for each mode.

Route Set Generation

The aim of the route set generation is to find a set of route 
alternatives R(T ,m) for each mode m ∈ {road, rail} that 
could have been used for trip T. A route R ∈ R(T ,m) is 
described by its geometry based on the road or rail infra-
structure used and its travel time t(R).

To generate the set of rail routes R(T , rail) , we use the 
OpenTripPlanner routing engine1 using the positions of the 
first and last cell in T as the origin, respectively, destination. 
We include all route alternatives within a departure window 
of from 15 min before to 120 min after the trip’s estimated 
start. This is to account for inaccuracies in the estimated 
trip stat time as well as in the estimated time for accessing 
the first bus stop or train station. The routes may include 
access modes (including bus and car), but at least half of the 
route’s distance must use a train line. The rail route set may 
be empty or contain up to three route alternatives depending 

on how many routes OpenTripPlanner could find that fulfil 
the criteria above.

For the road route set R(T , road) , we use a road net-
work of major roads from OpenStreetmap2 with the free-
flow travel time cl based on the speed limit as the link 
cost for a link l. For each trip, the road route set consists 
of two routes. The first of these routes is the fastest route 
between the origin and destination cell of the trip. As 
users might not always follow the fastest route alterna-
tive, we also generate a second route alternative called the 
magnetic route similar to the method described in Breyer 
et al. (2018). This route is obtained using a shortest path 
calculation on the same network but with modified link 
costs. For a cellpath T, the modified link cost for link 
l is calculated as cm(l, T) = 0.8n(l,T) ⋅ cl , where n(l, T) is 
the number of cells in the cellpath T overlapping with 
link l. The effect of using these modified costs is that the 
obtained route is likely to follow the cellpath closely. Fig-
ure 1 shows an example where the magnetic route follows 
the cellpath closer while having a significantly longer 
travel time than the fastest route.

Classification by Proximity to Routes

Using the route sets for a trip T introduced in the previous 
section, we can classify the travel mode by proximity to 
routes. The method is based on two assumptions:

–	 The likelihood L(T|R) of observing cellpath T when 
using a given route R decays with the distance between 
the cellpath and the route.

–	 The likelihood L(R) that a user uses the route alterna-
tive R when travelling with a certain mode decays with 
the travel time t(R) compared to the travel time of the 
fastest route alternative of the same mode.

The first assumption is motivated by the cellular net-
work’s characteristics, where the observation of a cell 
whose estimated coverage overlaps with the route is very 
likely. In contrast, the observation of a cell far away is 
very unlikely. The second assumption is a behavioural 
assumption also used in mode choice models (Paulssen 
et al. 2014). Without this assumption, there would be a 
risk that a magnetic route using slow minor roads close 
to the railway would be selected even when the trip was 
made by rail.

1  http://​www.​opent​rippl​anner.​org. 2  http://​www.​opens​treet​map.​org.

http://www.opentripplanner.org
http://www.openstreetmap.org
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Fig. 1   Example of route alterna-
tives for a trip from Norrköping 
to Stockholm with travel time. 
Note that two of the three rail 
routes use the same railway line 
but with different travel times 
due to different itineraries (dif-
ferent departures and transfer 
times). The shaded areas show 
the coverage areas of all cells 
used during the trip

The classification is done in two stages (see Algo-
rithm 1). If the route alternatives of all modes were com-
pared together, a mode with many (even similar) route 
alternatives would have an unjustified advantage. To 
avoid this, we only keep the best route for each mode in 

the algorithm’s first stage. For each route alternative, 
we estimate the posterior likelihood that this route was 
used by the joint likelihood L(T ∩ R) ∶= L(T|R) ⋅ L(R) , 
where L(R) ∶= e

−�⋅(
t(R)

ts
−1) is the route prior based on the 

travel time relative to the fastest route for the mode and 
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L(T�R) ∶=
∏

c∈T e
−�⋅d(c,R) = e−�

∑
c∈T d(c,R) is the likelihood to 

observe the cellpath T given the route with d(c, R) being the 
Euclidean distance between cell c and the closest point on 
route R. Note that d(c,R) = 0 if the route is passing through 
the cell (described by its estimated coverage area) while oth-
erwise the distance is measured from the cell’s boundary. 
We assume that the observation of the cells are independent 
events and multiply the likelihood of all observed cells. We 
use � = 5 and � = 0.15 , which give a reasonable decay of 
the likelihoods with increasing distance. As the cell coverage 
areas should, in most cases, cover the used route, the likeli-
hood of observing a cell c should decrease fairly quickly 
when d(c,R) > 0 , while still allowing smaller error as a tol-
erance due to the coverage areas being an estimate. In the 
second stage of Algorithm 1, the mode probabilities p(m|T) 
are calculated by comparing the best route for each mode.

The calculation according to Algorithm 1 is illustrated 
in Table 1 for the trip in Fig. 1. The best route for the road 
mode selected in Stage 1 is the magnetic route 1, as it is 
much closer to the cellpath T despite its longer travel time 
compared to the fastest road route (route 1). There are two 
routes with the same geometry for the rail mode that are 
equally close to T. Due to the prior L(R), the faster route 3 
is selected as the best route for the rail mode. In Stage 2 the 
best routes for each modes are used to calculate the mode 
probabilities p(rail|T) = 0.9995 and p(road|T) = 0.0005.

Semi‑supervised Mode Classification

Geometric classification can misclassify trips when the route 
alternatives are geometrically very close, the used cells have 
large coverage areas, or few location updates have been 
made during the trip. It may also fail if the route set gener-
ated did not include the used route. The semi-supervised 
mode classification methods presented in this section aim 
to work better in these situations. Semi-supervised classi-
fication classifies T not only using the information for that 
particular trip but also patterns from unlabelled trips TO,D 
in the same OD-pair that are associated with the different 
travel modes. We present three classification methods using 
semi-supervised labelling, which are based on different 
semi-supervised learning assumptions.

Semi‑supervised Learning Assumptions

The goal of semi-supervised classification is to improve 
classification using a large set of unlabelled observations, 
in our case unlabelled trips (Zhu and Goldberg 2009). This 
is based on the premise that the unlabelled trips contain pat-
terns which can be related to different travel modes. van 
Engelen and Hoos (2019) describe three semi-supervised 
learning assumptions that are used in semi-supervised clas-
sification methods. For the mode classification problem we 
can formulate them as follows: 

	 I.	 Smoothness: If two trips have similar cellpaths they 
are likely to have the same travel mode.

	 II.	 Manifold assumption: Even though cellpaths are 
high-dimensional, they lie on lower-dimensional 
structures in the feature space (manifolds). Cellpaths 
on the same manifold usually share the same travel 
mode.

	 III.	 Low-density: If there are many trips with similar 
cellpaths, they likely have the same travel mode. It 
follows that the decision boundary between travel 
modes should have few cellpaths close to it.

In addition to a large number of unlabelled trips that fulfil 
one of the above assumptions, semi-supervised classifica-
tion also requires a small set of labelled trips. As labelled 
data are typically often not available in the case of cellular 
network data. Therefore, the semi-supervised methods pre-
sented in Sect. 4.2 make use of additional assumptions spe-
cific to cellular network data to obtain pseudo-labelled data: 

	 IV.	 Geometric likelihood: Some trips can be classified 
likely using geometric classification and can thus be 
used as a set of pseudo-labelled trips.

	 V.	 Continuity: A labeled trip passing through cities 
A–B–C can be used as a training trip for OD-pair 
A–B.

Assumption IV may not always hold, in particular, in chal-
lenging OD-pairs where the routes for different modes are 
spatially very close and thus no or few trips can be classified 
with high likelihood. In these cases, using Assumption V 
can be considered to obtain pseudo-labelled trips. It enables 

Table 1   The values used in the 
geometric mode classification 
for the trip shown in Figure 1. 
In Stage 1 of Algorithm 1, 
the routes marked with * are 
selected as the best route for 
each mode

Route m t(R)
∑

c∈T d(c,R) L(R) L(T|R) L(T ∩ R)

1 Road 98 min 582.2 km 1.0000 1.18 ⋅ 10
−38

1.18 ⋅ 10
−38

2* Road 140 min 38.2 km 0.1159 0.0033 3.77 ⋅ 10
−4

3* Rail 139 min 12.7 km 1.0000 0.8269 0.8269
4 Rail 154 min 12.7 km 0.5821 0.8269 0.4813
5 Rail 163 min 600.0 km 0.4152 7.68 ⋅ 10

−40
3, 19 ⋅ 10

−40
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learning from trips in a different overlapping OD-pair that is 
easier to classify by transferring information from another 
OD-pair.

Semi‑supervised Labelling

We present three semi-supervised mode classification 
approaches of inter-city trips extracted from cellular net-
work data (see Fig. 2) using different semi-supervised label-
ling techniques. Following the taxonomy introduced by van 
Engelen and Hoos (2019) all three methods are inductive 
wrapper methods as they use an existing supervised method 
as part of the classification process. The methods are 
also using feature extraction as a method of unsupervised 
preprocessing.

Geometric-labelling (GL) is using geometric classifica-
tion (see Sect. 3) to obtain a small set of pseudo-labelled trips 
out of the set of unlabelled trips TO,D . Using Assumption IV, 

only trips classified likely are pseudo-labelled in this step 
(see Sect. 4.3). Feature extraction is then used to describe 
each trip using a small number of features instead of the 
complete high-dimensional cellpath (see Sect. 4.4) based 
on Assumption II. A supervised classification method (see 
Sect.  4.5) is trained exploiting Assumption  I using the 
pseudo-labelled trips transformed to the lower-dimensional 
feature space. The trained supervised method finally classi-
fies each trip by travel mode.

Self-labelling (SL) starts with the same steps as Geomet-
ric-labelling and is, thus, also using Assumptions I, II and 
IV. Additionally, it is also using Assumption III as follows. 
After the supervised classification method’s initial training 
using the pseudo-labelled trips from geometric classifica-
tion, the method is trained iteratively again using a new 
training set. This training set consists of the trips classi-
fied with a high probability p(m|T) in the previous iteration. 
This semi-supervised technique is known as self-labelling 

Fig. 2   Overview of the proposed mode classification methods using semi-supervised labelling
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(Triguero et al. 2015). Self-labelling is related to Assump-
tion III as it has the effect of moving the decision boundaries 
towards low-density areas while more trips are labelled. We 
are using three training iterations for this method with the 
following trips considered as labelled: 

1.	 pseudo-labelled trips from geometric classification
2.	 all trips classified with p(m|T) ≥ 0.99 in iteration 1
3.	 all trips classified with p(m|T) ≥ 0.99 in iteration 1 or 2

The previous two methods focus on classifying unlabelled 
trips in the same OD-pair, which can still be problematic 
when the routes of several modes are very close, making the 
initial geometric mode classification unreliable. We propose 
a third labelling method called continuity-labelling (CL) 
which is using Assumption V (in addition to Assumptions I, 
II and IV) to transfer information from another overlapping 
OD-pair which is easier to classify to an OD-pair that is 
hard to classify. In the schematic example in Fig. 3, pseudo-
labelling using geometric classification between A and B is 
problematic as the route alternatives are close. Instead of 
only using trips between A and B, however, we can use trips 
from longer overlapping OD-pairs such as between A and C 
for training the mode classification between A and B. Thus, 
we can benefit from the section between B and C, which is 
easier to classify geometrically due to the clear separation 
of routes. We illustrate the idea using the simple case of 
training the classification method for an OD-pair from O to 
D using trips from another manually selected OD-pair from 
O′ to D′ . However, it would be possible to use trips from 
many different OD-pairs that share parts of their routes with 
the routes in the OD-pair to classify. Apart from the differ-
ence that the geometric pseudo-labelled trips are taken from 
another OD-pair than the one to classify, continuity-labelling 
works in the same way as geometric-labelling (see Figure 2). 
Note that in the feature extraction (see Sect. 4.4), only those 
antennas common in the OD-pair to classify are considered.

Pseudo‑labelling Using Geometric Classification

Semi-supervised classification requires, besides large 
amounts of unlabelled data, a small set of labelled data. 
Manually labelled trips are not realistic to obtain for each 

OD-pair in practice. Therefore, the classification methods 
presented in Sect. 4.2 are all starting by obtaining a number 
of pseudo-labelled trips using the geometric classification 
(see Sect. 3.2) of the set of unlabelled trips TO,D . To obtain 
an adequate set of labelled training trips, we select likely 
classified trips as follows: 

1.	 From TO,D keep trips where a route is found for both 
modes.

2.	 From the remaining trips keep those where the mode 
likelihood L(m|T) is among the top � = 20% (upper quin-
tile) among the trips with the same predicted mode.

3.	 From the remaining trips keep only those with mode 
probability p(m|T) ≥ � = 0.6.

Without (1), there is a risk that trips are included where 
the route set generation failed to find a route for one of the 
modes, which then would be prioritised as the other mode 
will have p(m|T) = 1.0 . Then, (2) makes sure that only the 
trips with the best matches with the found route and thus 
high possibility that this mode was used are kept. Using an 
absolute threshold for L(m|T) could be considered but might 
not lead to enough training trips in any OD-pair. Finally, (3) 
excludes trips that are very close to the decision boundary, 
causing the classification to be uncertain. The thresholds � 
and � have been set to generate good training data sets. The 
parameters and selection criteria might need to be adjusted 
to work for many different OD-pairs.

The reason to not only use trips that can be classified 
certainly (for example � = 0.6 ) is that this systematically 
excludes routes that are harder to classify as there is a route 
of another mode that is similar. However, the semi-super-
vised methods can only work reliably if trips on all mani-
folds (corresponding to route alternatives) are included in 
the set of pseudo-labelled trips. Even if the route used was 
not in the route set, p(m|T) can still be high. This is the case 
when L(rail|T) and L(road|T) are both low but still different 
enough for p(m|T) to be high for one of the modes. Using 
step (2), these trips are excluded from being pseudo-labelled.

Feature Extraction

Each trip needs to be represented by a feature vector to run 
a supervised classification method. To represent each trip by 
its cells in the cellpath, we first convert the set of trips TO,D 
into the binary n × m matrix X where n is the number of trips 
in TO,D and m the number of unique cells. We only include 
cells used by at least 2% of the trips to exclude cells that are 
not associated with any usual route in the OD-pair. Row i 
of X corresponds to the feature vector for trip Ti ∈ TO,D and 
we define

A B C

Fig. 3   Schematic example where the classification of trips between 
cities A and B can be improved using trips between A and C as these 
can be classified more likely using geometric classification as rail 
(orange) or road (blue)
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The number of unique cells m may be in order of thousands 
depending on the OD-pair, which is problematic for super-
vised learning. Training supervised classification with many 
features requires a large amount of training data. Otherwise, 
the model will suffer from over-fitting (or even be under-
determined if n < m ). One approach to reduce dimensional-
ity is feature selection, which is about choosing only a subset 
of features to use in the model. Here, this would mean select-
ing the cells that distinguish best between modes. However, 
even for trips using the same route, the exact cells used 
may vary considerably, considering that they depend on the 
interaction between the cellular network and the particular 
mobile device. Selecting a subset of cells would mean that 
all information would be lost for trips that do not use any of 
the cells in the selected subset of cells.

Instead of feature selection, we use feature extraction, 
which can be seen as a method of unsupervised preprocess-
ing. Methods of feature extraction, which use information 
from a dataset of unlabelled observations, are one of the 
tools used in semi-supervised learning (van Engelen and 
Hoos 2019). The goal of the feature extraction method is to 
transform the m-dimensional feature vector of all trips to a 
k-dimensional feature space, that is Xi ∈ {0, 1}m ↦ Yi ∈ ℝ

k , 
k < m . A feature extraction method reduces dimensional-
ity yet preserving significant information about the origi-
nal observations. This allows revealing lower-dimensional 
manifolds on which the high-dimensional feature vectors 
lie based on Assumption II. The feature extraction method 
should also maintain smoothness (Assumption I), that is, 
for any p, q ∈ 0… n if Xp ≈ Xq , then also Yp ≈ Yq . Meth-
ods for feature extraction are embeddings, autoencoders and 
decomposition methods (van Engelen and Hoos 2019; Vin-
cent et al. 2010). Some methods, for example, the embed-
ding method t-SNE (Maaten and Hinton 2008), transform a 
given set of observations to the lower-dimensional feature 
space directly. Other methods, such as Principal Component 
Analysis (PCA) as a decomposition method, generate a gen-
eral transformation function. A transformation function can 
be used later-on transform new unseen observations to the 
new feature space. A disadvantage of PCA is that it cannot 
handle large sparse matrices efficiently.

We are using Truncated Singular Value Decomposition 
(SVD) to extract lower-dimensional features for each trip 
(Manning et al. 2009, Chapter 18) which can handle sparse 
matrices. SVD provides a matrix decomposition X = U�VT , 
where U is called the left-singular vectors, � a matrix that 
contains the singular values on its diagonal and V the right-
singular vectors. In Truncated SVD, we use Vk , the k × n 
matrix which contains the first k rows of V. We call Vk the 
SVD loadings, which if X would be centred, are equal to 

(2)Xi,j =

{
1 if j ∈ Ti
0 if j ∉ Ti.

the first k PCA loadings (Wall et al. 2003). Similar to PCA, 
we obtain a lower-dimensional matrix Y = XVk using these 
loadings. For a given observation Xi , we call the linearly 
transformed features Yi = XiVk its SVD components. Using 
the first k values of V as loadings, the low-dimensional rep-
resentation still contains large parts of the information in the 
original feature vector. By running the SVD decomposition 
once for each OD-pair and direction using the full set of 
unlabelled trips TO,D , the decomposition can make use of the 
manifold assumption (Assumption II). As Truncated SVD 
tries to approximate the original matrix, trips using similar 
cells will still be close in the new feature space, and the 
transformation thus maintains smoothness (Assumption I).

Supervised Classification

All methods in Sect. 4.2 are performing the final classifica-
tion of all trips using supervised classification. In principle, 
it is possible to use any supervised classification method for 
this step. We are using Linear Discriminant Analysis (LDA), 
which is a standard method for supervised classification 
(James et al. 2013, Chapter 4). It uses the training trips to 
obtain linear decision boundaries in the feature space. After 
training, LDA can be used for classification and estimates 
mode probabilities p(m|T) for each mode for a given trip T. 
The LDA model is using the first k features extracted using 
truncated SVD (see Sect. 4.4). The concept of using dimen-
sion reduction of cellpaths using PCA followed by LDA 
classification was earlier described as a supervised classi-
fication method in Breyer et al. (2021). The more features 
are used, the more detail of the cellpaths is kept. Using too 
many features, on the other hand, increases the risk of over-
fitting. The LDA model is trained using the pseudo-labelled 
trips (in all three labelling methods). In later iterations of 
self-labelling, training continues using the trips classified 
with high mode probability p(m|T) in the previous iteration, 
which moves the decision boundary towards low-density 
regions based on Assumption III.

Dataset

We have used the semi-supervised classification methods 
presented in Sect. 4.2 to classify trips in two inter-city OD-
pairs in Sweden. In the first OD-pair between Norrköping 
and Stockholm, the main rail route and the main road route 
are spatially well separated. However, the OD-pair is chal-
lenging to classify by mode as there also is another regional 
rail route that is very close to the main road route. The sec-
ond OD-pair is between Norrköping and Linköping, which is 
shorter and has the main road and rail route separated by at 
most four kilometres. The cellpaths in this OD-pair contain 



32	 Journal of Big Data Analytics in Transportation (2022) 4:23–39

1 3

thus fewer cells and many of these cells cover both the rail 
and road route.

The raw cellular network data cover three days during fall 
2018. The data contains billing data and location updates 
extracted from the core network following the terminology 
used by Gundlegård (2018) and includes periodic, loca-
tion area (LA), routing area (RA), tracking area (TA), and 
cell updates. We processed the data using a remote-access 
setup as suggested by de Montjoye et al. (2018), where the 
code is brought to the data, and only the final results are 
exported. After an initial data cleaning to remove fast ping-
pong events (back and forth between antennas), we extracted 
trips using a stop-based trip extraction as described in Breyer 
et al. (2020). A stop is detected when a user stayed inside 
a two-kilometre radius for at least one hour, and all events 
between two stops are considered a trip. We have defined 
origin and destination zones, as shown in Fig. 4. The trips 
starting and ending in those zones are included in the set 
of trips in the OD-pair TO,D . Table 2 gives the number of 
trips extracted in each OD-pair after removing a small num-
ber of trips (2.8% for Norrköping–Stockholm and 2.7% for 
Norrköping–Linköping) without any updates between ori-
gin and destination. An additional set of 3329 unlabelled 
trips in the OD-pair between Linköping and Stockholm (via 
Norrköping) is used to obtain pseudo-labelled trips to train 
the continuity-labelled classification between Norrköping 
and Linköping.

In addition to the unlabelled trips, the authors also col-
lected a smaller set of their own trips during 2019 in the two 
OD-pairs and labelled each trip manually with the actual 
travel mode used for the trip. This set of labelled trips is only 
used for validation, that is, to evaluate if the semi-supervised 
methods trained on the unlabelled data classify the trips in 
the small set of labelled trips correctly. The labelled set is 
not representative of the whole population and limited in its 

variety, but a high test error on those trips indicates that a 
classification method is not working correctly.

Results

We have used geometric classification (G) (see Sect. 3.2) 
and the three semi-supervised labelling methods geometric-
labelling (GL), self-labelling in two iterations (SL1, SL2) 
and continuity-labelling (CL) (see Sect. 4.2) to classify the 
unlabelled dataset described in Sect. 5. We apply training 
and classification once for all trips from O to D and once 
for all trips from D to O direction. However, we present the 
results aggregated for each OD-pair, including both direc-
tions. The following sections present the results for feature 
extraction and classification. Finally, we have used the 
trained classification methods also to classify the small set 
of labelled trips (see Sect. 5) to validate the methods.

Feature Extraction

There are in total 204 (Norrköping–Linköping), respectively, 
558 (Norrköping–Stockholm) unique cells used by trips in 
the OD-pairs. All three semi-supervised labelling methods 
use a representation of the trips by k = 3 extracted features 
instead of the full cellpath for the supervised classifica-
tion (see Sect. 4.4). While three features are not enough to 

Fig. 4   The two inter-city OD-
pairs and their most typical road 
and rail routes

Table 2   Number of trips in total for each OD-pair in the dataset both 
unlabelled and labelled (only used for validation)

OD-pair Distance Unlabeled Labeled

Total Rail Road

Norrköping ⇔ Stockholm 160 km 2426 17 7
Norrköping ⇔ Linköping 45 km 7119 209 22
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recover the exact cellpath information (see Fig. 5), they have 
shown to be enough to distinguish the different route alter-
natives as lower-dimensional manifolds. Using too many 
features has shown to lead to over-fitting and worse clas-
sification results. The SVD loadings V3 (see Sect. 4.4) for 
each cell are illustrated in Fig. 6 for trips from Stockholm to 
Norrköping. Cells along the main road route are associated 
with high values for the first loading component and low 
values for both the second and third component. Trips on 
the upper rail line can be associated with high values for the 
second loading component and negative values for the third 
component. Trips on the lower rail line are associated with 
cells with high values for the first component and positive 
values for the second and third components.

Classification

Figure 7 shows all trips in the dataset by their second ver-
sus third SVD component. We show those components as 
they showed slightly clearer separation of clusters than, for 

example, the first versus the second component. For each 
method, Figure 7 shows the predicted mode of each trip. 
For the semi-supervised labelled methods also the training 
trips used are shown in the plot. For Norrköping–Stockholm, 
the trips form three clusters, which can be associated with 
the three route alternatives. The left cluster corresponds to 
road trips, the lower right cluster to the upper rail route and 
the top right cluster can be associated with the lower rail 
route (compare Fig. 6). For Norrköping–Linköping only 
two less clearly separated clusters are visible as expected 
as there is only one reasonable rail and road route, which 
also are close in space. Hence, Fig. 7 illustrates the use of 
the manifold assumption (Assumption II) when extracting 
lower-dimensional features.

Comparing the predicted modes, we find that geometric 
classification seems to classify trips in the top right cluster 
almost randomly (see Fig. 7). This might be because the 
lower rail route and the road route are pretty close in space. 
Geometric-labelling, in contrast, uses the likely classified 
trips from geometric classification as training trips and 

Fig. 5   Cumulative explained 
variance depending on the 
number of SVD components. 
The red line marks the variance 
explained by three components

Fig. 6   The SVD loadings V
3

 
for cells used for trips from 
Stockholm to Norrköping. For 
increased visibility, only a 
sample non-overlapping cells 
are displayed
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classifies all trips in the cluster as made by rail. Self-label-
ling continues then using the trips classified with high prob-
ability p(m|T) as training trips. After the second iteration, 
almost all trips are added to the training set. For continuity-
labelling, the training trips used to classify trips between 
Norrköping and Linköping are instead obtained using trips 
from the geometric classification of trips between Stockholm 
and Linköping (which are passing through Norrköping).

The difference in likelihood for the two modes indicates 
how certain the classification is. For Norrköping–Stock-
holm, we find a relatively clear separation between modes 
(see Fig. 8). With each iteration of self-labelling, the sepa-
ration becomes even clearer. This illustrates how self-label-
ling uses the low-density assumption (Assumption  III). 
For Norrköping–Linköping, we have a much more unclear 
separation between the travel modes, which indicates that 
the classification is more uncertain and the OD-pair more 
difficult to classify. However, by making use of Assump-
tion V, continuity-labelling seems to be able to separate bet-
ter between the travel modes than the other methods.

Summarising the classification of all trips, we can esti-
mate the modal split in the OD-pairs (see Fig. 9). Addi-
tionally, Fig. 10 shows the share of trips that have been 
classified with the same mode when comparing a pair 
of methods. For both OD-pairs, the agreement is lowest 
between geometric classification and all other methods. For 
Norrköping–Linköping up to 25% of the trips are classified 
differently using self-labelling compared to geometric classi-
fication. We find only minimal differences between geomet-
ric-labelling and self-labelling. For Norrköping–Linköping, 
classification using continuity-labelling leads to a higher 
road share. Even though continuity-labelling showed bet-
ter separation between travel modes (see Fig. 8), this does, 

Fig. 7   Predicted mode for trips in the two OD-pairs and the training 
trips used represented by their second and third SVD components. 
Trips used as pseudo-labelled training trips are marked with a black 
circle. Note that in the case of continuity-labelling these trips come 
from the overlapping OD-pair used for training that is Linköping–
Stockholm

Fig. 8   Histogram of the 
difference in likelihood 
L(road|T) − L(rail|T) as esti-
mated by the different methods 
for all unlabelled trips
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however, not necessarily mean that the classification is more 
accurate.

Validation

The classification above was done for unlabelled trips, and 
therefore, it is not possible to draw definitive conclusions 
about the quality of the mode classification. To validate the 
trained methods, we use a smaller dataset of labelled trips 
(see Sect. 5). We classify the labelled trips using the trained 
models (that is, the SVD loadings and the LDA decision 
boundaries) obtained in Sect. 6.2. The labelled trips have 
not been seen by the models during training and are thus 
an independent test set. Geometric classification failed to 
classify 5.6% of the labelled trips Norrköping–Linköping 
correctly, while the semi-supervised methods classified 
all trips correctly except for the second iteration of self-
labelling which misclassified one trip (0.4%). This shows 
that the classification improved using semi-supervised 
learning methods compared to geometric classification. For 
Norrköping–Stockholm, both geometric classification and 
self-labelling in iteration 2 failed to classify the only trip 
on the lower rail route correctly. The fact that self-labelling 
decreases in performance in the second iteration could indi-
cate a problem of over-fitting when too many trips are added 
as training trips. Continuity-labelling classified all labelled 
trips correctly between Linköping and Norrköping, which 
shows that it is possible to use training data from a differ-
ent OD-pair using Assumption V. Comparing continuity-
labelling and geometric-labelling, we find that the two meth-
ods predict different modes for 10% of the unlabelled trips 

between Norrköping and Linköping (see Fig.10) even though 
both had no test error for the labelled trips. The labelled trips 
were, hence, too few to determine which of the two methods 
performs better. The better separation between travel modes 
(see Fig. 8) and the fact that the modal split is closer to a 
travel survey from May 2014, which found a modal split 
of 24% for rail in the OD-pair (Region Östergötland 2014) 
indicate that, in fact, the continuity-labelling could be more 
accurate. It is also reasonable to assume that the vast major-
ity of users are using the same mode when travelling back 
and forth on the same day. When users made two trips on the 
same day in the OD-pair (travel back and forth), geometric-
labelling predicted the same mode for the two trips in 70% of 
cases. Continuity-labelling predicted the same mode for the 
two trips in 87% of cases, which might also indicate that the 
classification using continuity-labelling was more accurate 
than geometric-labelling.

All trips misclassified by the semi-supervised methods 
are very close to the decision boundary (see Fig. 11), indi-
cating that mode probabilities p(m|T) returned by the LDA 
are a good indicator of the certainty of the classification. 
Using self-labelling for Norrköping–Linköping, we see that 
the first iteration increase separation between travel modes 
compared to geometric-labelling. However, the second itera-
tion introduces an error probably as it over-fits to the large 
number of training trips used in that iteration (see Fig. 7), 
which likely also contains some misclassified trips. Simi-
larly to the unlabelled trips (see Fig. 8), also for the labelled 
trips, none of the methods that we tested can find a very 
clear separation for the more challenging OD-pair between 
Norrköping and Linköping.

Fig. 9   Modal split resulting 
from classifying all trips in the 
set of unlabelled trips using dif-
ferent classification methods

Fig. 10   Share of trips in the set 
of unlabelled trips classified 
with the same mode for each 
pair of methods (agreement)
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Discussion

Semi-supervised learning can be used to improve classi-
fication when an unlabelled dataset fulfils one or more of 
the semi-supervised learning assumptions (see Sect. 4.1). 
The results in Sect. 6 show that the mode classification of 
inter-city trips extracted from cellular network data can be 
improved using semi-supervised classification compared to 
geometric classification.

Geometric classification may fail to classify trips cor-
rectly, particularly when the routes for both modes are close 
to or inside the coverage area of all used cells of a trip such 
that the distance to the route alternatives does not provide 
clear evidence for one of the modes. The reason why the 
semi-supervised labelling methods perform better than geo-
metric classification can be summarised as follows: First, 
some likely geometric classified trips are selected as pseudo-
labelled training trips (Assumption IV). The feature extrac-
tion represents each trip such that the lower-dimensional 
manifolds that correspond to the route alternatives, which 
are embedded in the cellpath information, are revealed 
(Assumption II). The remaining trips in the same cluster 
are classified using the training trips and a supervised clas-
sification method using Assumption I. In short, the methods 
learn which patterns in the cellpath are associated with a 
particular travel mode.

In the two tested OD-pairs, Assumptions I and II seem 
to hold well and can be used to improve the classification. 
Truncated SVD provided a good representation of the cell-
path using few features allowing to classify trips as rail and 
road. For even shorter trips and more detailed modes other 
methods to extract features such as autoencoders (Vincent 
et al. 2010) could be investigated that might even better rep-
resent the cellpath using few features. When using Assump-
tion IV, we found a trade-off between only including trips as 
pseudo-labelled where the geometric classification is accu-
rate, but on the other hand, including representatives of all 
manifolds (routes alternatives) in the training data. We try 
to achieve that using thresholds for both L(m|T) and p(m|T). 
However, more OD-pairs need to be tested to find general 
criteria to select the trips to pseudo-label.

Self-labelling also makes use of Assumption III, which 
lead to better separation between travel modes in some cases 
(see Fig. 8). However, adding too many trips as pseudo-
labelled can be counterproductive and make the classifica-
tion worse (see Table 3). Improving the criteria for trips to 
be pseudo-labelled in each iteration or limiting the number 
of trips pseudo-labelled in each iteration might help. Instead 
of a fixed number of iterations, a stop criterion could be 
used.

With continuity-labelling, we demonstrate that infor-
mation from another overlapping OD-pair can be used for 

training. If a section of the other OD-pair is easier to clas-
sify geometrically, this may allow discovering cell patterns 
that could not be discovered otherwise and thus improve the 
classification. However, this is only true if the continuity 
assumption V is fulfilled in the particular case. That means 
that the trips of the same main mode in both OD-pairs share 
parts of the routes. If there is, for example, separate rail 
infrastructure for long-distance and short-distance trains, 
using continuity-labelling may instead worsen the classifi-
cation. We demonstrated continuity-labelling classification 
using another manually selected OD-pair for training. How-
ever, this could be done automatically by selecting trips for 
training from all OD-pairs that have many cells in common 
with the trips in the OD-pair to classify. Further improve-
ment could be made by combining continuity-labelling with 
self-labelling.

Additional improvement of the classification performance 
could likely be made by making use of the order and time 
information of the location updates in addition to which cells 
have been used. Instead of using LDA as the supervised 
classification method, for example, a Markov chain could 
be used to describe how users typically switch between cells 
given training trips of a specific mode. In this paper, we 
focused on classifying the main mode of each trip. More 
attention could be devoted to separately classify the main 
mode and possible access modes used during a trip. In con-
nection to this, it would be interesting to investigate how 
other modes than rail and road can be classified, such as air 
and water-bound traffic.

In this paper, we have mainly used two semi-supervised 
concepts: feature extraction and self-labelling. However, 
these are not the only concepts that could be used to classify 
trips by travel mode. A cluster-then-label approach could, 
for example, be used to group similar trips into clusters that 
could then be labelled using pseudo-labelled trips. Another 
cluster-then-label approach could be to identify clusters of 
antennas (instead of trips) associated with a specific mode as 
proposed by Bachir et al. (2019a). Another relevant approach 
could be using graph-based semi-supervised classification 
by building a graph based on the similarity of trips (van 
Engelen and Hoos 2019).

The mode classification problem is closely related to the 
route inference problem aiming to identify the most likely 
route in the transportation network used for a given trip. 

Table 3   Test error on the small set of labelled trips using different 
classification methods

OD-pair Test error

G GL SL1 SL2 CL

Norrköping ⇔ Stockholm 0.042 0 0 0.042
Norrköping ⇔ Linköping 0.056 0 0 0.004 0
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For one travel mode, there may be several route alternatives 
(as in the example in Fig. 1), and we found that it is crucial 
that the geometrically pseudo-labelled trips include repre-
sentatives of all route alternatives to facilitate the supervised 
classification. Ensuring that all routes are represented can 
be difficult, and a better solution might be to consider the 
two problems jointly. For example, we might obtain route 
alternatives per OD-pair and classify each trip by the route 
alternative used, which then could be associated with a 
travel mode. Besides route and mode classification, semi-
supervised learning methods have potential use for other 
related problems, such as the classification of trip purpose 
or activities.

The use of cellular network data based on a large sam-
ple of users allows to obtain a comprehensive overview of 
mode-specific travel patterns. It can also be updated much 
faster than traditional travel surveys. However, there are two 
main limitations: First, the classification may be unreliable 
for very short trips and travel modes which use similar or 
even the same infrastructure. For example, it may be very 
difficult to distinguish bus, tram and car trips in an urban 
context. Second, cellular network data does not include any 
socioeconomic attributes about the users. As suggested by 
Andersson et al. (2022), this problem could be handled by 
combining cellular network data and travel survey data.

Conclusions

In this paper, we showed how semi-supervised methods can 
be used for the classification of trips extracted from cellu-
lar network data by travel mode. We proposed three semi-
supervised labelling methods based on multiple learning 
assumptions. The proposed classification methods require 
no labeled training data. This enables the practical use of 

the methods in the common situation where such labeled 
data is unavailable.

The results for the tested OD-pairs indicate that the pro-
posed methods perform better than geometric classification 
using different semi-supervised learning assumptions. The 
limited amount of labelled validation data for the two tested 
OD-pairs was, however, not enough to conclude whether any 
of the three methods generally performs best. Continuity-
labelling demonstrated the potential of propagating informa-
tion between OD-pairs, which is a concept useful for appli-
cations beyond mode classification. A major challenge when 
using the proposed methods is to define the criteria to select 
the trips to include in the training set (pseudo-label). On the 
one hand, only trips where the label is likely to be correct 
should be included. The results for self-labelling showed 
that adding too many trips as pseudo-labelled can lead to 
worse performance due to over-fitting. On the one hand, all 
different route alternatives should be represented to achieve 
the best classification accuracy. The criteria that we propose 
needs to be tested on more OD-pairs to make sure that they 
can be applied generally.

The proposed classification methods allow classifying 
trips by travel mode even in challenging OD-pairs where 
pure geometric classification would often fail. This enables 
traffic planning applications requiring mode-specific travel 
patterns to benefit from the large amounts of observations 
from cellular network data being a faster and less expen-
sive data source compared to travel surveys. In future work, 
it would be interesting to investigate how semi-supervised 
methods work for the the classification of even shorter trips 
and more detailed travel modes than rail and road. Semi-
supervised methods also have large potential for solving 
related problems such as trip extraction, route inference and 
travel purpose classification of cellular network data.

Fig. 11   Histogram of the 
difference in likelihood 
L(road|T) − L(rail|T) for the 
manually tagged validation trips
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