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Abstract
One purpose of target tracking is to estimate the states of targets, and unscented Kalman filter is one of the effective algorithms
for estimating in the nonlinear tracking problem. Considering the characteristics of complex maneuverability, it is easy to
reduce the tracking accuracy and cause divergence due to the mismatch between the system model and the practical target
motion model. Adaptive fading factor is an effective counter to this problem, having been instrumental in solving accuracy
and divergence problems. Fading factor can adaptively adjust covariance matrix online to compensate model mismatch
error. Moreover, fading factor not only improves the filtering accuracy, but also automatically adjusts the error covariance in
response to the different situation. The simulation results show that the adaptive fading factor unscented Kalman filter has
more advantages in target tracking and it can be better applied to nonlinear target tracking.

Keywords Adaptive fading factor · Target tracking · UKF · Accuracy

1 Introduction

Kalman filter algorithm can derive the optimal estimation
of state under conditions involving linear-Gaussian assump-
tion, which is based on the known systemmodel, observation
model and statistics of noises. When they are inconsistent
with target behaviormodel, the estimation errorwill increase.
Singer model can express the acceleration of maneuver as a
time-dependent process [1], which conforms to actual target
motion. By adjusting the frequency coefficient of maneuver-
ing to achieve better tracking effect, it has been widely used
for nonlinear system [2, 3]. The “current” statistical model
was proposed as a representative of adaptive tracking algo-
rithm [4]. In this model, the acceleration noise is assumed to

B Peng Gu
gpszseu@163.com

Zhongliang Jing
zljing@sjtu.edu.cn

Liangbin Wu
lbwu0105@126.com

1 School of Aeronautics and Astronautics, Shanghai Jiao Tong
University, Shanghai, China

2 AVIC Leihua Electronic Technology Research Institute,
Wuxi, China

be Rayleigh distribution, and the distribution of state noise
is updated in real time through mean value of acceleration.

In the process of target tracking, if the systemmodel devi-
ates from their actual values by unknown random bias, the
virtual noise is usually used to reduce confidence level of
the filter to the system model, but it is difficult to deter-
mine how much virtual noise to be added. At this time, we
should consider abandoning the previous observation data,
and pay more attention to the newly generated observation
value, so that the filter has better performance. Researchers
have proposed a variety of solutions for this problem. The
adaptive fading Kalman filter (AFKF) [13, 14] uses the fad-
ing factor to suppress the memory length of the filter, so as to
make full use of the new measurement and reduce the influ-
ence of the old measurement. However, the expressions of
these methods are complex; so, they have real-time perfor-
mance problems. Thus, this paper proposes a newmethod for
overcoming the problem to obtain the fading factor. In this
method, the covariance of the innovation is used to adap-
tively change the fading factor which adjusts the weight of
innovation in real time, so as to reduce the influence of the
old measurement on the estimation. In this paper, the fad-
ing factor is integrated into unscented Kalman filter to form
adaptive fading factor unscented Kalman filter (AFUKF). In
general, we can put weight of fading factor on the prediction
covariancematrix, so that the output value of the estimation is

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s42401-020-00071-w&domain=pdf


2 Aerospace Systems (2021) 4:1–6

closer to the actual value.Meanwhile, the adaptivemethod of
the fading factor is described in detail throughout this paper.

2 The unscented Kalman filter

For the general nonlinear maneuvering target tracking, tech-
niques for nonlinear filtering typically involve classic estima-
tion methods such as extended Kalman filter (EKF) [5] and
Quadrature Kalman filter (QKF) [6] which is approximated
by Gauss Hermite quadrature criterion. When the nonlinear-
ity of the system is too severe, piecewise linear application of
EKF degrades performance to the nonlinear tracking prob-
lem. The extended Kalman filter (EKF) propagates mean
value through the linearization of the nonlinear conditions.
As the EKF uses the first-order terms as an approximation,
linearization errors will rise if neglected higher-order terms
begin to dominate. However, sampling points of QKF will
grow exponentially as the spatial dimension increases. Thus,
QKF is certainly not suitable for high-dimensional cases.

The core of unscented Kalman filter (UKF) is UT trans-
formation, which is a method for calculating the statistics
value of random variable to avoid nonlinear transformation
[7, 8].The fundamental idea is found on the intuition that it is
easier to approximate the probability distribution and statis-
tical variables with finite variables than it is to approximate a
nonlinear transformation [9, 10].The principle of UT trans-
formation is that a set of points (sigma points) are selected
according to a certain rule in the original state distribution.
This makes the mean and covariance of these points equal
to the mean and covariance of the original state distribution.
When the sigma points are put into state equation and obser-
vation equation, the statistics can be obtained from small
scale nonlinear transformations. The optimal state estimates
and their covariance matrix can be derived using the statis-
tics of the transformed points [11]. The estimation process is
summarized in Table 1 for one cycle.

Repeating the cycle for the next time, the current state esti-
mation and covariance matrix are obtained as input sources
to the estimation processes.

Here, x̂i (k|k − 1) is the one-step predicted state, f (·)
is the nonlinear state function,Qk is the Gaussian process
noise,Rk is the Gaussian measurement noise,h(·) is the
measurement function,λ is the adjustable scalar.P(k|k −
1) is the one-step predicted covariance,

√
(n + λ)P(k|k − 1)

is the ith row or column of the matrix square root of
(n + λ)P(k|k − 1),Pzz(k|k − 1) is the predicted innovation
covariance,Pxz(k|k − 1) is the predicted cross-correlation
matrix,Wi is theweight that is associatedwith the ith point,�i

is a scalar.

3 Adaptive fading filter method

3.1 Fadingmemorymethod

When the system model is not accurate or mismatch arises
between system model and reality, the current observations
only play a small role in correcting the estimation. While
the previous observations cause the tracking error and filter
divergence, the fading memory algorithm is to redistribute
the current observation and improve the robustness of the
filter:

Pxz(k|k − 1) � α

2N∑

i�0

Wi (x̂i (k|k − 1)

− x̂(k|k − 1))(ζi (k|k−1) − ẑ(k|k − 1))T + Qk�P̂ + Qk .

(1)

Assume thatα � 1, the fadingmemory algorithm is equiv-
alent to the unscentedKalman filter, where P̂ is the state error
covariance in the ideal situation where the system model
completely matches the moving target, i.e., with Qk � 0.
At this time, the fading factor can alter the coefficient of the
state covariance according to the current observation data.
The deviation of higher degree between the system model
and actual target state can make the coefficient larger. To
compensate for the estimation error caused by the model
mismatch, the observations must be given a higher degree of
confidence level. When α is too large, the estimation eventu-
ally converges to the observation value which may cause the
loss of accuracy of the state estimation.

3.2 Adaptive fading factor method

The actual error between target state and prediction model
results in model mismatch. The near measurement contains
more dynamic model information of targets; thus, the new
measurement information mainly corrects state estimation
error effects to improve the filtering robustness. In this situa-
tion, the fading factor are introduced into unscented Kalman
filter, where ρ is a prior coefficient,αk calculation involves
the following formulae [12]:

Sk+1 �

⎧
⎪⎨

⎪⎩

v1v
T
1 k � 0

ρSk + vk+1v
T
k+1

1 + ρ
k ≥ 1,

(2)

N � Sk+1 − R, M � Pzz − R, (3)

λk � trace(N )

trace(Pzz(k|k − 1))
, (4)

αk�
{

λk λk ≥ 1

1 λk < 1 .
. (5)
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Table 1 The unscented Kalman
filter Prediction stage

For i � 1 : L

x̂i (k|k − 1) � f (x̂(k − 1) + �i
√
(n + λ)Pi (k − 1))

End

x̂(k|k − 1) �
2N∑
i�0

Wi x̂i (k|k − 1)

P(k|k − 1) �
2N∑
i�0

Wi (x̂i (k|k − 1) − x̂(k|k − 1))(x̂i (k|k − 1) − x̂(k|k − 1))T + Qk

Update stage

For i � 1 : L

x̂i (k|k − 1) � x̂(k|k − 1) + �i
√
(n + λ)P(k|k − 1)

ζi (k|k − 1) � h(x̂i (k|k − 1))

End

ẑ(k|k − 1) �
2N∑
i�0

Wi ζ i (k|k − 1)

Pzz(k|k − 1) �
2N∑
i�0

Wi (ζi (k|k − 1) − ẑ(k|k − 1))(ζi (k|k − 1) − ẑ(k|k − 1))T + Rk

Pxz(k|k − 1) �
2N∑
i�0

Wi (x̂i (k|k − 1) − x̂(k|k − 1))(ζi (k|k − 1) − ẑ(k|k − 1))T

K (k) � Pxz(k|k − 1)P−1
zz (k|k − 1)

x̂(k|k) � x̂(k|k − 1)+K (k)(z(k) − ẑ(k|k − 1))

P(k|k) � P(k|k − 1) − K (k)Pzz(k|k − 1)K (k)T

The innovation covariance reflects the effect of the cur-
rent error. The innovation covariance and predicted state
covariance will increase due to themismatchmodel. Accord-
ing to Eq. (1), the innovation covariance adjusted by αk

can be regarded as the prediction state covariance adjusted
by λk . Therefore, the effect of mismatch information in
dynamic system can be compensated by adjusting the value
of Pxz(k|k−1). Covariance Pzz can be used as an evaluation
criterion to judge the uncertainty of state prediction in the
process of filtering. Meanwhile, vk+1 is prediction residual
error that can be obtained from observation, corresponding
to the error of state estimation. It can be seen that whether
covariance divergence is likely to occur can be determined
by the value of αk . It demonstrates that the real-time covari-
ance of state estimation is larger than the covariance of state
prediction when αk > 1. At this time, we need to make some
adjustments to the system model. The weight of the current
observation can be increased by the fading memory algo-
rithm.According to the property description of Sk+1, adaptive
method of fading factor for UKF called AFUKF algorithm
can be established to diminish error covariance when the
estimation error is caused by model mismatch. The adaptive
fading factor unscented Kalman filter is summarized in Table
2.

Repeating the cycle for the next time, the current state esti-
mation and covariance matrix are obtained as input sources
to the estimation processes.

Here, x̂i (k|k − 1) is the one-step predicted state, f (·)
is the nonlinear state function,Qk is the Gaussian process
noise,Rk is the Gaussian measurement noise,h(·) is the
measurement function,λ is the adjustable scalar.P(k|k −
1) is the one-step predicted covariance,

√
(n + λ)P(k|k − 1)

is the ith row or column of the matrix square root of
(n + λ)P(k|k − 1),Pzz(k|k − 1) is the predicted innovation
covariance,Pxz(k|k − 1) is the predicted cross-correlation
matrix,Wi is the weight that is associated with the ith point
and �i is a scalar.

4 Simulation

The proposed AFUKF is applied to the target tracking sys-
tem as compared to given UKF algorithm and Sage-UKF
algorithm. The radar observation station is set at the origin
of coordinate in space of two-dimensional scenario, where
the target makes the approximate S-type maneuver. The non-
linear system equation and observation equation of the target
motion are described as follows:

xk+1 �
⎛

⎝
1 T (αT − 1+e−αT )/α2

0 1 (1 − e−αT )/α
0 0 e−αT

⎞

⎠xk + Qk, (6)

zk �
⎡

⎣

√
x2k + y2k

arc tan(yk
/
xk)

⎤

⎦+

[
vrk

vak

]
, (7)
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Table 2 The adaptive fading
factor unscented Kalman filter Prediction stage

For i � 1 : L

x̂i (k|k − 1) � f (x̂(k − 1) + �i
√
(n + λ)Pi (k − 1))

End

x̂(k|k − 1) �
2N∑
i�0

Wi x̂i (k|k − 1)

P(k|k − 1) �
2N∑
i�0

Wi (x̂i (k|k−1) − x̂(k|k − 1))(x̂i (k|k − 1) − x̂(k|k − 1))T + Qk

Update stage

For i � 1 : L

x̂i (k|k − 1) � x̂(k|k − 1) + �i
√
(n + λ)P(k|k − 1)

ζi (k|k − 1) � h(x̂i (k|k − 1))

End

ẑ(k|k − 1) �
2N∑
i�0

Wi ζ i (k|k − 1)

Pzz(k|k − 1) �
2N∑
i�0

Wi (ζi (k|k − 1) − ẑ(k|k − 1))(ζi (k|k − 1) − ẑ(k|k − 1))T + Rk

Pxz(k|k − 1) � αk

2N∑
i�0

Wi (x̂i (k|k − 1) − x̂(k|k − 1))(ζi (k|k − 1) − ẑ(k|k − 1))T

K (k) � Pxz(k|k − 1)P−1
zz (k|k − 1)

x̂(k|k) � x̂(k|k − 1)+K (k)(z(k) − ẑ(k|k − 1))

P(k|k) � P(k|k − 1) − K (k)Pzz(k|k − 1)K (k)T

Sk � ρSk−1+vkv
T
k

1+ρ

N � Sk − R, M � Pzz − R

λk � trace(N )
trace(Pzz (k|k−1))

αk�
{

λk λk ≥ 1

1 λk < 1

Table 2 Comparison of RMS
for different methods Method Position (m) in X Position (m) in Y Velocity (m/s) in X Velocity (m/s) in Y

UKF 289.99 402.62 60.02 101.46

SAGE-UKF 275.05 383.97 49.60 91.22

AFUKF 205.45 314.99 18.93 55.89

where xk and yk represents the horizontal position and verti-
cal position of the target, vrk and vak represent position noise
and azimuth noise of the observation, respectively, Qk is the
process noise:

Qk � 2ασ 2

⎛

⎝
q11 q12 q13
q21 q22 q23
q31 q32 q33

⎞

⎠, (8)

where

q11� 1

2α5
(1 − e−2αT + 2αT +

2α3T 3

3
− 2α2T 2 − 4αT e−αT ),

q12�q21 � 1

2α4 (1 + e−2αT − 2e−αT + 2αT e−αT − 2αT + α2T 2),

q13�q31 � 1

2α3 (1 − e−2αT − 2αT e−αT ),

q22 � 1

2α3 (−3 + 4e−αT − e−2αT + 2αT ),

q23 � q32 � 1

2α2 (1 − 2e−αT + e−2αT ),

q33 � 1

2α
(1 − e−2αT ),
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Fig. 1 Real target trajectory

where α � 1 is the frequency of maneuvering, σ � 1 is the
scale factor, T � 1 is the sampling period.Rk is the observa-
tion noise.

Rk �
(
r2 0
0 az2

)
, (9)

where r � 60, az � 0.02.
As shown in Fig. 1, the flight path is used for simula-

tion analysis. In the rectangular coordinate system, the target
position can be regarded as the input state of the system. The
vector s0 � [x0, y0] is used to describe the initial target posi-
tion, where xk and yk represent the horizontal position and
vertical position of the target, respectively, the initial position
of the target is s0 � [30, 000, 20, 000][30, 000, 20, 000], the
initial velocity and acceleration can be derived from the posi-
tion and time using two-point differencing method.

Root mean square (RMS) tracking error provides a quan-
titative estimate of how close the target position actually is
to the true target position. The performance of each of the
algorithms was assessed using 50 Monte Carlo runs, which
are shown in Figs, 2, 3, 4 and 5. The system model deviates
so far from the actual motion model when the target turns
suddenly; the AFUKF performs better than the traditional
methodswhich rapidly degrades the accuracy of the estimate.
This experiment verifies the feasibility of adaptive fading fac-
tor unscented Kalman filter in practical application, and the
αk value changes with the mismatch model error, which can
achieve the real-time identification effect.

The AFUKF algorithm proposed in this paper uses the
fading factor to adjust the statistical properties of the system
noise in real time for estimating target states. It can effec-
tively solve the problem that the estimation error increases
due to themismatch between the systemmodel and the actual

Fig. 2 The position RMSE in X coordinate for different methods over
time

Fig. 3 The position RMSE in Y coordinate for different methods over
time

model to ensure a quicker convergence and enhance the accu-
racy of estimation. As shown in Table 2, the RMS errors of
position and velocity of the AFUKF algorithm are signifi-
cantly smaller than those of standard algorithms. Simulation
results show that the AFUKF algorithm is significantly better
than the standard UKF Algorithm in accuracy and stability
of estimation, and the state estimation is also closer to the
real target state.

5 Conclusion

This paper describes the problem of mismatch between the
systemmodel and the practical targetmotionmodelwhen tar-
get enters the maneuver in tracking. To solve this problem,
adaptive fading factor unscented Kalman filter algorithm is
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Fig. 4 The velocity RMSE in X coordinate for different methods over
time

Fig. 5 The velocity RMSE in Y coordinate for different methods over
time

proposed to reduce the errors of estimation. The method of
obtaining fading factor by innovation covariance is simple in
calculation, and it avoids a largenumber of numerically inten-
sive calculations. It overcomes some problems in traditional
calculation method and can be used in complex multi-target
tracking scenario. In addition, the algorithm demonstrates
the feasibility of adaptive fading factor from the perspec-
tive of prediction covariance and actual covariance to avoid
the calculation of Jacobianmatrix of nonlinear and the devia-
tion caused by the first-order linearization. Simulation results
show that the proposedmethod is an effectiveway to improve
the tracking accuracy than the traditional methods.
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