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Abstract
New data specific to COVID-19 are emerging quickly on key issues of immunity and prevention, but past research in coronavirology and
for other human pathogens (e.g., Mycoplasma pneumoniae) has been available and of great relevance. Considerable study of endemic
human coronaviruses has shown that neutralizing antibody correlates with protection, but effective clinical protection is variable for
subsequent virus exposure. Animal coronavirus research has emphasized the importance of local mucosal protection (especially IgA) and
systemic responses. Animal model and human post-infection studies for SARS-CoVandMERS-CoVare largely corroborative. Whether
for passive therapeutic strategies or vaccination, these findings provide a template for COVID-19. Many approaches to vaccination have
emerged, and there may be more than one vaccine that will be applied, but individualized obstacles and concerns for administration,
efficacy, and safety are inevitable. Regardless of safeguards or promises thatmay be understood from laboratory or vertebrate experiments,
observations from large-scale human trials will ultimately prove to shape themedical future. Focus on commonmucosal immunity can be
underrated, and equally or more, focus on lactogenic immunity may be underestimated. In understanding both passive immunity and
protection, the body is already primed to educate us with decisions of what constitutes protection and harm. This review provides key
insights that drive hypotheses into how the instinct of immunity and the intelligence of the maternal component of the common mucosal
immune system has already guided us and may continue to do so effectively into a bright and safe future.
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Introduction

The magnitude of the COVID-19 pandemic has pushed the scien-
tific community towards expeditiously creating novel vaccines,
andmany have progressed through various stages of development
[1, 2]. The speed of progression and the inherent desire to succeed
have raised some controversy [3, 4]. Nevertheless, remaining fun-
damental issues are whether an effective timely vaccine can be
produced and whether safety acceptability is met. There is consid-
erable science that reflects on many issues of relevant immune
responses in both coronavirology and other infection models.
Vaccines are often assessed through simplified vaccination and

challenge (experimental or natural infection) protocols. Yet, the
immune response after natural infection provides considerable in-
sight that should be considered before vaccines are produced and
trialed. A selection of these insights are highlighted herein. The
potential contributions of mucosal immunology and the adaptive
maternal immune response are discussed as a prelude to how
SARS-CoV-2-related immunity can be better understood. It is
thereafter hypothesized that lactogenic immunity will model key
immune responses that should be sought after vaccination or nat-
ural infection.

Comparative Microbiology Provides Insight
into COVID-19

Mycoplasma pneumoniae as the Non-viral Model for
COVID-19 Vaccinology?

M. pneumoniae is pleomorphic, cell wall-less, and among the
smallest of bacteria. The DNA genome is approximately
816 kB. Coronaviruses are among the largest RNA viruses
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and genomes vary ~ 26–31 kB. M. pneumoniae is predomi-
nantly a respiratory pathogen but has potential to cause a va-
riety of pathological systemic and immune responses. There
are many lessons to be learned from M. pneumoniae experi-
mentation that bear relevance to coronavirology and to SARS-
CoV-2 research. It is remarkable how the problems emerging
with SARS-CoV-2 vaccine development pattern those previ-
ously demonstrated in M. pneumoniae studies of past.

Several animal models emerged for M. pneumoniae espe-
cially hamster, murine, and simian versions. The Golden
Syrian hamster model was most utilized for M. pneumoniae,
and this has now been proven useful for SARS-CoV and
SARS-CoV-2 [5–7]. Vaccine studies in both animal models
and humans emerged decades ago for the bacterium. Initially,
it was proposed that passive immunity with polyclonal
antisera of homologous or heterogeneous sources could pro-
tect from live bacterial challenge, but that protection was var-
iable [8, 9]. Although the maximal time for lung disease in
hamsters after initial challenge peaked at 10–14 days analo-
gous to humans, second infections were accompanied by an
accentuated lung pathology within 3–5 days [10]. The latter
however was not unique to re-infections. Further studies
found early hyperaccentuated pulmonary pathological re-
sponses in the context of second challenges with heat-killed
bacterium, cell-free extracts, primary immunization with
inactivated bacterium or component vaccination, and aviru-
lent protein–deficient mutants [10–13]. Fernald and col-
leagues found that the majority of immune cellular reactivity
in the recall accentuated responses was considerably less rep-
resented by antibody-producing lymphocytes [14]. As well as
recruiting non-antibody-producing white blood cells, pathol-
ogy was also accompanied by perivascular immune infiltrates
[11, 14]. Confusing in these studies was that although re-
infected hamsters had early pathology, their lungs were either
deplete of or had markedly reduced late bacterial numbers
[10]. Thus, when animals were examined after 10–14 days,
when once infected animals had maximal pathology, it was
thought that protection had been afforded [15]. An under-
standing of the early accentuated response may not be ob-
served if it occurred so early. Accentuated pathology was
not seen after infectious challenge of animals that were given
hyperimmune polyclonal antibody [9]. Attempts with oral
vaccination with killed whole bacterium with or without ad-
juvants were associated with less histopathology and no recall
events, but did not reduce bacterium in lung tissue [10, 16,
17]. It was not resolved as to whether the latter observations
were due to protection or immunological tolerance. No such
enhanced pathology was observed in early studies with pri-
mates [18, 19]. There were several methods for scoring lung
pathology in hamster models, but the more sophisticated were
necessary to reliably show differences when using small num-
bers of animals [20]. Such scoring was also used in the study
of SARS-CoV lung pathology [21]. Others have recently

proposed from murine models that induced IgG can prevent
lung disease, but IgA is more important for protection in the
upper respiratory tract [22]. Both M. pneumoniae–associated
polysaccharides and glycolipids were also assessed as immu-
nogens; a polysaccharide fraction was said to protect hamsters
in subsequent challenge, but early accentuated responses were
not looked for [23].

Many of the above findings were a prelude to what has
more contemporaneously been designated “antibody-mediat-
ed enhancement” (ADE) [24]. In animal models for SARS-
CoV, early accentuated disease after live post-vaccination
challenge proved to represent a significant obstacle [21, 25,
26]. Wan and colleagues have recently contemplated on the
mechanisms for the latter [27]. Such phenomena were also
found in other coronavirus studies and in other vaccine studies
[28–32].

SN Compr. Clin. Med. (2020) 2:2670–2683 2671

Experimental human infection was easily achieved, al-
though more severe disease was apparent when the strain
was low passage [33]. In a different era, vaccine studies (both
pediatric and adult) evolved very quickly and after inaugural
potency studies were conducted in animal models [34–43].
Methods of inactivation proved to affect vaccine efficacy,
and thus formalin-inactivated whole-cell vaccine was most
often used [41]. One study found that volunteers who
responded less to the vaccine subsequently developed worse
disease after challenge [35]. The latter was thought initially to
represent a hypersensitization to the vaccine but was often
carried forward later as a possible human equivalent of
ADE. Regardless, most subsequent formalin-inactivated vac-
cine trials in thousands of subjects did not show similar ac-
centuated reactivity to subsequent infection [41]. Most vac-
cine trials showed protection against infection but with mild to
moderate efficacy. One large-scale study was a prominent
exception, however, and bronchitis and pneumonia protection
were estimated at 87% and 66% respectively [41]. With a
formalin-inactivated pentavalent vaccine which included M.
pneumoniae, neutralizing antibody to the bacterium reached
titers of 1:40 [44]. There was a dose-response effect, but the
potential for the virus components as immune boosters forM.
pneumoniaewas not determined.With such results, these vac-
cines did not become mainstream even for high-risk
groups. In the current era, such vaccine efficacy would
clearly rival the efficacy of current influenza vaccines
which have been widely adopted.

One of the most pressing questions, however, was whether
there could be a serological or similar marker that could pre-
dict protection after natural infection or vaccine success. In the
field of virology, virus neutralization was often being used as
that marker. In mycoplasmology, neutralization studies took
on various names [45]. The latter included growth inhibition
(GI), metabolic inhibition (MI), tetrazolium reduction inhibi-
tion (TRI), plaque reduction, inhibition microscopy, and
mycoplasmacidal activity. In the hamster model, GI, MI, or
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TRI antibodies appeared to correlate with protection, although
some studies were complicated by lack of consideration for
hyperaccentuated early responses [34, 35]. Other antibody
measures such as complement fixation or indirect hemagglu-
tination were not good predictors [34]. Furthermore, protec-
tion was also correlated with the quality of anamnestic re-
sponse after infection challenge post-vaccination. In the sim-
ian model, small trials found that MI antibodies did not corre-
late with protection after formalin-inactivated vaccine [18].
Assessments in human natural infections or volunteer vaccine
studies also examined serological markers for protection
[35–43]. The existence of naturally acquired GI antibody cor-
related with some protection in volunteers [46]. Such protec-
tion was said to correlate better with this neutralizing antibody
compared to complement-fixation antibodies [37]. Formalin-
inactivated vaccine induced small increments in GI antibod-
ies, and it necessitated multiple dosing [35, 39]. Nevertheless,
it appeared that such antibody status correlated with protection
[35, 37, 41]. Some found that this antibody could last for
nearly 2 years [41]. There was a better MI antibody response
post-vaccination if previously existing such antibody was nat-
urally had [38, 39]. MI antibodies could not be demonstrated
by some for sputa or nasal washes after formalin-inactivated
vaccine [38]. Others found respiratory IgA after vaccination
correlated better with protection than the presence of
serum antibody [40]. For some nearly 8000 volunteers,
formalin-inactivated parenteral vaccination gave protec-
tion for pneumonia, but not bronchitis; no hyperreactive
recall responses were apparent [43].

One of the underrated studies was that of Katsura and col-
leagues [47]. In a murine model, animals were infected intra-
nasally. Enzyme immunoassay immunoglobulin G persisted
for nearly a year in both infected infant and adult mice.
Protection from rechallenge was proposed but assessed only
with quantitative bacteriology rather than lung histopatholo-
gy. Maternal mice afforded protection through feeding their
offspring. Newborn mice from uninfected dams were also
protected by feeding from previously infected dams, but new-
borns from infected mice were not protected when fed from
uninfected dams. Protection was deferred to IgG rather
than IgA, but the studies nevertheless were important in
potentially opening relevant avenues. That is, corrobora-
tion of such findings could therefore help define protec-
tive immunity and target more critical epitopes. A re-
peat of such studies would relook at whether newborn
animals with lactogenic protection are capable of devel-
oping early recall lung pathology and furthermore
would also relook at correlating protective antibodies
with further analyses of systemic versus mucosal immu-
noglobulins. There is promise since some mucosal anti-
Mycoplasma pneumoniae sIgA antibodies may be found
in human breast milk which vary from systemic anti-
bodies [48, 49].

Key Applications from Animal Coronavirology

There are several animal coronaviruses that have been consid-
erably studied in regard to mucosal and passive immunity, and
the following key findings bear relevance.

Porcine Transmissible Gastroenteritis Virus and Respiratory
Coronavirus

Infections from these pathogens present with varying enteric
and respiratory illnesses. This discussion uses transmissible
gastroenteritis virus (TGEV) as the model for these two virus-
es albeit they bear some antigenic relatedness. In a TGEV
infection model, intestinal neutralizing IgA develops, and
there is progressive increase in serum neutralizing antibody
[50–52]. Wild-type virus protected both gilts and their off-
spring [50, 53]. Colostrum could neutralize live virus and
prevent challenge infection. Wild-type infection produced
more neutralizing IgA than IgG, and IgA presence correlated
better with protection. In colostrum, neutralizing antibody in-
cluded IgG, IgA, and IgM [54]. Post-challenge colostral IgA
had greater neutralizing capability than IgG and IgM [55]. The
greater the infectious inoculum for sows, the higher the neu-
tralizing capacity of both serum and milk [56]. The higher the
neutralizing capacity, the greater the protection for piglets.
With oral infection, IgG was prominent in serum and lung,
but IgA was prominent in intestinal fluid; neutralizing anti-
body lasted for months. In the colostrum-milk transition, there
was a decrease in IgG while IgA increased proportionately
[57]. Secretory IgA was found to enhance virus cellular at-
tachment, but the subsequent neutralization of virus prevented
entrance [58]. Intramammary inoculation of live TGEV
protected offspring via milk more than parenteral immuniza-
tion [59]. Attenuated live TGEV could induce high neutraliz-
ing titers in milk [60]. Infectious challenge after the latter was
followed by an anamnestic neutralizing response. Vaccination
with attenuated or non-attenuated live vaccines led to neutral-
izing lactogenic antibody which increased survival of
piglets after wild-type challenge [61]. It was suggested
that the gastrointestinal-mammary linkage was more im-
portant in st imulat ing lactogenic IgA than the
respiratory-mammary linkage [57].

Specific epitopes on the spike (S) protein carried more
potential for inducing protective antibody than N or M pro-
teins, and it was proposed that anti-S immune responses were
responsible for lactogenic immunity [52]. Unique studies with
Salmonella-expressed viral spike protein, Lactococcus-
expressed viral spike protein, and recombinant IgA showed
that virus neutralization could be achieved [62–64]. Of note,
5% of human milk samples contained IgA to TGEV
[65]. Transgenic mice which are created to express
TGEV-neutralizing monoclonal antibody can facilitate
lactogenic responses [66].
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Cross-protection occurs for TGEV and porcine respiratory
coronavirus (PRCV) [53, 57, 67–69]. The mechanisms of
protection of offspring are again related to IgA production in
colostrum and milk. Milk-derived neutralizing antibody could
map S protein domains that were likely more important than
others [68]. Delivery route of viral antigen has bearing
on the more prominent mucosal site for protection [70].
Saif and colleagues reviewed lactogenic immunity in
these model systems [70, 71].

Porcine Epidemic Diarrhea Virus

Among many porcine coronaviruses, porcine epidemic diar-
rhea virus (PEDV) causes epidemic enteritis. Wild-type virus
infection confers protection and did so more than an attenuat-
ed strain [72]. Infection induced production of IgA which
correlated with intestinal protection. Serum antibody develops
alongside mucosal production proportionately. Neutralizing
antibody to spike protein could be mapped [73].
Neutralizing antibody was found to be higher in colostrum
and milk than serum and was more likely to include IgA
[73]. Such neutralizing antibodies have the tendency to extin-
guish slowly after parturition [73]. Lactogenic immunity was
ascribed to the common mucosal immune system and defined
as the “gut-mammary axis” [71, 74]. Repeat infections pro-
vide incremental protection.With preceding lactogenic immu-
nity, inactivated vaccine provoked increases in existing neu-
tralizing antibody [75]. Further studies on the method of vac-
cine delivery and boosting illustrated the potential gain that
could be present [75, 76]. Nevertheless, orally administered
vaccine proved superior, albeit there are a number of host
variables that influence vaccine efficacy [77].

Bovine Coronavirus

Bovine coronavirus (BCV) causes enteric and respiratory dis-
ease, although debilitating enteritis is of considerable conse-
quence in calves. First infections were found to protect against
repeat infections [78]. IgA was dominant in feces and mucosal
secretions. Second infections augmented IgA (including mu-
cosal) and led to IgG which reacted with most viral proteins
except N and E1. Colostrum was found to have high antibody
levels of E2 and E3 proteins [79]. It was determined that
responses to viral proteins varied according to the level of
antibody pre-existing in colostrum. Cattle could maintain
long-lasting IgA systemically and at the mucosal level includ-
ing nasal secretions [80]. Egg yolk and colostrum powders
prepared from inactivated BCV-vaccinated hens and cows
respectively could protect calves when the products were en-
tered into milk [81]. These powders contributed very high
titers of neutralization.

A recent review of BCV and porcine respiratory coronavi-
rus pathogenesis and its application to SARS-CoV-2 was

published [82]. Also relevant to human coronavirology,
Han et al. provided evidence that bovine coronavirus–
like virus could infect humans and potentially create
cross-protection [83].

Murine Hepatitis Virus

Murine hepatitis virus (MHV) can cause respiratory, enteric,
and systemic disease. Newborn mice acquire serum IgG and
intestinal IgA from previously infected dams [84]. While pro-
tective, initiation of feeding must occur in anticipation of chal-
lenge and continue thereafter [85]. If maternal mice are infect-
ed orally, both IgG and IgA are produced. If dams are immu-
nized with killed vaccines, newborns acquire IgG but are not
protected [85]. Fab fragments of antibody are protective in
themselves, and spike protein can induce a protective immune
response [86, 87]. Transgenic mice that expressed a single
neutralizing monoclonal antibody to MHV could fully protect
suckling mouse litters [88]. These studies generally lack ob-
servation for early accentuated disease in immunization-
challenge or challenge-rechallenge studies.

Canine Coronavirus

Canine coronavirus causes enteric disease in dogs. Animals
infected either naturally or under experimental conditions de-
veloped fecal IgA [89]. Administration of oral attenuated vac-
cine led to more IgA than if the animals were inoculated
intramuscularly.

Infectious Bronchitis Virus

Infectious bronchitis virus of poultry is associated with mainly
respiratory illness. There can be viral persistence in animal
populations presumably due to serotype variation. Orr-Burks
et al. found IgA mucosal responses after live-attenuated vac-
cination [90]. Primary infections resulted in IgA responses,
but repeat infection was followed by modest incremental
IgA but dominant IgG. IgY and IgA can be transferred to
offspring through eggs [91].

Duck Enteritis Virus

Infection of ducks with an attenuated strain is associated with
a strongmucosal IgA reactivity and an IgY dominant response
in serum [92]. As IgA and IgA-positive plasma cells increase
in the intestine, viral load proportionately decreases.

Turkey Coronavirus

This virus causes enteritis and systemic symptoms. Infection
in young poults provokes intestinal IgA [93]. Serum IgA in-
crements correlate with intestinal IgA.



It must be re-emphasized that many studies lacked obser-
vations for challenge-rechallenge or vaccination-challenge-
directed early accentuated immunological reactivity.
Nevertheless, through clinical observation which assesses ex-
perimental animals by a variety of physiological parameters,
no deterioration is usually described.

Key Applications from Human Coronavirology

Human Endemic Respiratory Coronaviruses

Many relevant findings emerged of mucosal and passive im-
munity for human endemic respiratory coronaviruses. Much
of the latter focused on OC43 and 229E which were discov-
ered decades ago [94] In the SARS era, NL63 and HKU1were
d i s c o v e r e d [ 9 4 ] . B o t h 2 2 9 E a n d NL 6 3 a r e
Alphacoronaviruses but share as little as 65% genomic iden-
tity. OC43 and HKU1 are Betacoronaviruses but are suffi-
ciently distinct. HKU1 was found to have greater homology
with MHV. It is recognized that an antibody-independent in-
hibition for coronaviruses can exist in sera [95]. There has
long been speculation about cross-reactive antibodies between
human coronaviruses for conserved domains, but there is po-
tential for humans to be infected with animal coronaviruses
which may or may not also share conserved epitopes. For
example, workers in poultry processing have higher antibody
levels to IBV [96]. Some patients with SARS had increments
of antibody to OC43, 229E, and NL63, but those with endem-
ic seropositivity to the latter three coronaviruses did not have
SARS-CoV antibody [97]. Potential for cross-reactivity to
confuse serological status was discussed for an outbreak [98].

Neutralizing antibody exists in general populations for
OC43 and 229E [99, 100]. Other antibody prevalences corre-
late variably with neutralizing antibody [101, 102]. It was
unclear whether other methods of antibody detection for these
viruses could be cross-reactive with MHV [102]. It was also
unclear if other measures of antibody (e.g., complement fixa-
tion, hemagglutination-inhibition) could confirm exposure,
protection, or both [103–105]. In seroepidemiological studies,
OC43 antibody was more prevalent than that for 229E [104].
Seroprevalence studies for 229E were method dependent
[106]. For those with rises for these other antibodies, simulta-
neous elevations of neutralizing antibody occurred in 28–67%
[103]. In a student population, levels of neutralizing 229E
antibody did not influence re-infections as judged by comple-
ment fixation seroconversions [100]. Increasing neutralizing
antibody after re-infection was inversely related to pre-
infection levels, but about 2/3 who were found to shed virus
with active infection had significant rises in neutralizing anti-
body. Others found protection to correlate with the level of
complement-fixing antibody for OC43 [104]. For children
who were found to have diagnostic serological responses to
229E, approximately 1/3 had previous antibody [107].

Despite the finding of high endemic seroprevalence for
OC43, 229E, NL63, and HKU1, there was a corre-
sponding much lower frequency of related IgA detection
in nasopharyngeal samples [108].

Investigations specific to 229E have yielded several in-
sights. For a multiyear period, the prevalence of neutralizing
antibody varied 11.1–26.7% [109]. If the degree of seroposi-
tivity was low to a homologous strain, the patient was more
susceptible to subsequent infection. Subjects were resistant to
re-infection with a homologous strain but susceptible to het-
erologous strains. For volunteer infections, presence of circu-
lating and local neutralizing antibody provided protection
[110]. Presence of IgA shortened viral shedding, but nasal
total protein concentrations correlated with protection. For
nine volunteers who did not manifest illness or have serolog-
ical increments after infection, five shed virus. There was a
poor correlation of serum and nasal IgA. Low quantitations of
serum and nasal IgA were associated with increased viral
shedding, but nasal IgA appeared to be more important. In
another volunteer study, low levels of pre-existing antibody
correlated with increased susceptibility to challenge [111]. Re-
infection 1 year later with a homologous strain was associated
with lower viral shedding. Those not evidently infected with
initial challenge were successfully infected 1 year later but
suffered a more mild illness. The degree of protection to re-
infection 1 year later correlated with the amount of nasal IgA.
Variation in neutralizing antibodies to 229E was associated
with regional and structural S1 protein changes [112].

Middle East Respiratory Syndrome

Model studies with MERS-CoV have been difficult since an-
imal hosts were generally uncommon apart from rhesus mon-
keys. A mouse model was used to assess the parainfluenza
vector vaccine [32]. Protective and neutralizing antibody was
induced. Vaccine increased survival after challenge. Vector
vaccine was superior to inactivated vaccine. Despite the latter
protection, both vaccines were associated with increased his-
topathology after live challenge.
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Antibody to MERS-CoV spike protein is commonly found
after human infections [113]. For mild infection, neutralizing
antibodies less likely occur. Severe infections can be associ-
ated with longstanding neutralizing antibody, whereas mild
infections may not induce neutralizing antibody or may have
short-lived responses [114]. In a small group of patients, long-
term neutralizing antibody ≥ 1/20 dilution was present for up
to 34 months [115]. For South Korean isolates of MERS-
CoV, it was found that mutations in the spike protein over
time were associated with less neutralization than would be
for the initial wild-type [116]. Increased IgA and IgG in nasal
secretions were associatedwith less respiratory virus excretion
[117]. Increased neutralizing antibody in serum correlated
with lesser respiratory viral RNA [118].
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One study found an example of a humanOC43 infectionwhere
cross-reactive antibody to MERS-CoV was determined [113].

Severe Acute Respiratory Syndrome

Given that SARS-CoV is of similar lineage to SARS-CoV-2,
it would seem intuitive that much should be learned from the
experience with SARS. Indeed both animal model and human
studies have contributed very key information. The method
for determining neutralization can evidently have significant
impact on the titer, but several assays have been produced
[119, 120]. Despite a correlation, conventional neutralization
assays may yield apparent titers in lower dilution than
pseudotype virus assays (e.g. , S protein–bearing
pseudoviruses with murine leukemia virus) [121]. S protein
has been the focus for component vaccination. Monoclonal
antibodies to S protein neutralize virus in vitro [122]. Such
antibodies can define critical S protein sequences.

In mice, passive serum neutralizing antibody prevented re-
infection [123]. In hamsters, neutralizing monoclonal antibodies
reduced infectivity [124]. Equine anti-SARS-CoVFab fragments
protected in the hamster model [125]. Human monoclonal anti-
bodies produced in mice neutralized a pseudotype virus; the
antibody had anti-S protein properties [126].

A number of serological methods have been used to assess
antibody post-vaccine or post-infection, and there is correlation
with neutralizing antibody [127, 128]. Human neutralizing anti-
body peaks at approximately 5–8 weeks and diminished with a
half-life of 6.4 weeks [129]. Such antibody was quantitatively
less if the patient’s disease had been prolonged. Seronegativity in
the context of RT-PCR respiratory specimen–positive patients
was seen. Prolonged presence of neutralizing antibodywas found
with variable kinetics [130]. For convalescent sera of infections,
neutralizing antibody could be found up to 7 months post-
infection and up to titers ranging from 1:200 to 1:475 [131].
Others found titers of 1:1–1:1000 after 6 months [132]. Long-
term neutralizing antibody could be detected in up to 40% of past
SARS patients with titers of 1:10–1:99 by 3 years [133]. Patients
surviving SARS tended to have higher neutralizing antibodies in
the short term, and these targeted S and N proteins [134]. Some
non-neutralization assays may be more sensitive for determining
anti-SARS-CoV antibody variably for up to 3 years [135–138].

Convalescent patient sera post-infection recognize a limit-
ed number of synthetic short viral peptides [139]. Neutralizing
antibody may be associated with S protein antibody, but anti-
gens that did not resolve in gel gradients were also involved in
the genesis of neutralization [140]. The latter study stimulated
thought on whether all protective antigens are necessarily pro-
tein components. Neutralizing antibody to S protein can rec-
ognize both native and denatured versions [141]. The human
anti-SARS-CoV immune response has been mapped with re-
combinant proteins, and there was generally good reactivity to
proteins S, 3a, N, and 9b but not to proteins E, M, 3b, 6, and 7

[142]. Of S, 3a, N, and 9b, only antibody to S gave neutraliz-
ing antibody efficacy. Antibody to S protein receptor-binding
domain (RBD) was neutralizing [137]. Others found good
human IgG responses to S and N proteins, but again neutral-
ization better correlated with the response to S protein [143].

Rabbit antisera to proteins S andM rendered neutralization but
not antisera to protein N [144]. A recombinant parainfluenza virus
vector vaccine induced a high titer of neutralizing antibody if the S
protein was included but not when M, E, or N proteins were
introduced alone [145]. The recombinant bearing S protein was
also said to be protective in the mouse model, but early accentu-
ated inflammation was not examined. Recombinant S protein–
expressing Lactobacillus casei could induce serum and mucosal
antibodies [146]. The oral route of administration was superior to
nasal. S protein sequences of relevance promoted the formation of
neutralizing antibody. It must be acceded however that neutraliza-
tion escape mutants can be elicited under experimental conditions
[147]. Ankara vaccinia vector–expressing S protein gave partial
protection [148]. This vector promoted the development of neu-
tralizing antibody [149]. Unfortunately, this vaccine also led to the
hyperaccentuated response after challenge in a ferret model which
some have labelled as antibody-dependent enhancement (ADE)
[150, 151]. The latter research had followed what had been pre-
liminarily determined as protection in a live challenge-rechallenge
model [152]. Using another virus-based vector bearing S protein,
Deming et al. found that protection failed and enhanced histopa-
thology was induced [153]. The combined use of two vector vac-
cines in sequence boosted neutralizing antibodies compared to the
single use of each vector [154].

Formalin-inactivated vaccine with adjuvant given intranasally
to mice induced high titers of neutralizing antibody [155]. Such
antibody was also found in the tracheal/lung lavage. IgA was
also found in lung wash but again only if the vaccine was ad-
ministered with adjuvant. Both adjuvant and route of immuniza-
tion have considerable impact on neutralizing antibody genera-
tion [156]. In another murine experiment, killed virus vaccine
produced better titers of neutralizing antibodies compared to an
adenovirus-vectored vaccine, but the latter provoked the devel-
opment of serum IgA [157]. Formalin-inactivated vaccine in-
duced serum and mucosal antibodies in monkeys [158]. IgA
could be detected in nasal washes, and there was a dose-
response for the overall vaccine effect.

Given the propensity for early accentuated responses in
animal models, a live-attenuated vaccine was produced that
was defective in the E gene [159]. The latter raised protective
antibody and was seemingly spared of early recall immune
phenomena. Others have attempted to engineer peptide-
based vaccines for the S protein that spare the potential for
presumed ADE [160]. S protein vaccines in hamsters induced
fecal IgG and IgA antibodies [161]. Repeat vaccination and
adjuvant promoted the humoral response. The antibodies gen-
erated were neutralizing, and there was no apparent post-
challenge enhancement.
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Trials of specific human vaccines are not detailed herein, but
there are studies of COVID-19 immunity that otherwise merit
discussion. Most have focused on post-infection humoral im-
munity as a diagnostic marker especially with commercial
kits. Of over 700 sera from uninfected patients, no neutraliz-
ing antibodies were found [162]. Severe disease was associat-
ed with earlier anti-SARS-CoV-2 antibody, and peak neutral-
izing antibody arose by approximately 2½ weeks. Stereotypic
antibody responses to SARS-CoV-2 led some to believe that
there should be cross-reactivity with SARS-CoV in the con-
stant RBD [163]. In both humans and animals, such cross-
reactivity was suspected to be due to non-neutralizing anti-S
antibody again likely relating to a conserved region
[164]. Cross-neutralization was however uncommon.
Advances in technology will allow for the creation of
templates for various virus proteins that can be used to
determine specific immunoreactivity [165].

Several animal models of COVID-19 have emerged [166].
In the rhesus monkey, neutralizing antibody correlates with
protection in re-infection [167]. Human monoclonal antibod-
ies that recognize the RBD and S trimer conformations gave
passive protection in mice and monkeys [168]. Monoclonal
antibodies from convalescing patients can have both preven-
tative and therapeutic effects [169]. Such data appear to have
been the harbinger for the recent findings of Abolghasemi
et al. in which convalescent patient sera provided some partial
disease mitigation [170]. Liu and others have developed neu-
tralizing monoclonal antibodies [171].

In humans, S-specific antibody is dominant and correlates
with neutralization [172]. The latter study assessed T helper
immunity in convalescent sera and found that the T helper
phenotype can potentially differentiate patients with strong
neutralizing responses. There was lower specificity for RBD.
Others found a correlation between neutralizing antibody and
virus-directed T cells [173]. Human monoclonal antibodies
that neutralize virus or pseudovirus especially recognized the
RBD [174]. Reactive T cells in patients with COVID-19,
SARS, and controls were found to have some cross-reactive
potential with human endemic respiratory coronaviruses and
animal coronaviruses of the Betacoronavirus lineage [175].
SARS-CoV-2 memory cells were found in convalescent pa-
tients. Weisberg et al. have found diversity in immune re-
sponses contingent on the nature of presenting disease [176].

Arvin and colleagues remind us of the potential for ADE,
but caution as to whether that seen in other model systems
necessarily has the same pathogenesis as for any that may be

seen for SARS-CoV-2 or for what had been experienced with
SARS-CoV [178]. It should also be cautioned that the mech-
anism of this phenomenon may not necessarily be that which
is commonly postulated for ADE. Furthermore, as the inten-
sity of COVID-19 may evolve into what some have said is an
immunological storm, the ADE phenomenon has been entered
into discussions about the immediate pathogenesis, even after
first infection. There is jeopardy in simply assuming that such
events parallel the post-vaccination ADE or similar events.

An Integration of Immune Instincts
and Maternal Intelligence for COVID-19

As studies in SARS-CoV-2 immunity and vaccinology
emerge, it is never too late to learn from the past, and the
common mucosal immune system has much to say. That sys-
tem is the gateway to instinctual adaptive responses which
include by example the maternal immunity that is sufficiently
intelligent to discern how protection should be distinguished
from harm. Data from SARS,MERS, or nowCOVID-19 have
and will continue to corroborate the latter.

From a purist’s perspective, neutralizing antibody post-
infection or post-vaccination presents the best humoral im-
mune correlate with protection at this time [179]. Mucosal
sIgA and systemic IgG at this time also best correlate with
local and peripheral protection respectively. Some patient ex-
posures to infection or vaccination do not generate protective
antibodies. Some exposures may be followed by low-grade
protection or anamnestic responses much later. High levels
of protective antibody measures can follow infection or vac-
cination and may last for years. Although the latter have a
good correlation with protection, this is not an all-or-none
effect. Even in the best case scenario, high neutralizing anti-
bodies diminish over months to years. There is general belief
that protection best correlates with antibody that is directed to
domains on the S protein and a few others alone or together.
Even if fundamentally true, the latter does not exclude protec-
tion that may arise from antibody or other immune responses
to non-protein antigens or protein-containing antigens
that do not withstand laboratory-based denaturation
events in immunolabelling studies. Simultaneous study
of related cell-mediated immune responses is imperative
both theoretically and practically.

Repeat immunizations, titration of tolerable dosing, routes
of administration, and adjuvancy will all have their influential
roles in particular contexts. Inactivated whole-cell vaccines
will be achieved, but the best approaches to administration
and the duration of protection are indeterminate at this time.
The method of virus inactivation that thereafter greatly influ-
ences antigen presentation will be one of the major hurdles
towards fine-tuning efficacy and safety. Other forms of vacci-
nation are potentially many, and there are sufficient nuances
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A vesicular stomatitis virus-S vector has induced neutral-
izing antibodies in mice [177]. Passive transfer of these anti-
bodies protects mice, and vaccination decreases both pathol-
ogy of lung disease and viral load. It was suggested the RBD
site was being targeted.



among them that present complex logistic issues for immune
generation and safety. In general, the approaches to vaccina-
tion may vary the nature of response systemically, at the mu-
cosal level, or both. Where do we want the protection to be-
gin? Vaccine variability will determine whether the products
will facilitate primary prevention or foster protection in the
pathways of immunopathogenesis post-infection, or both.
For protection, route of immunization can affect subsets of
the common mucosal immune system differentially. Each of
the respiratory mucosa, gastrointestinal mucosa, or lactogenic
factory may be productive of protective antibody but quanti-
tatively variable. Each of the latter can also share that immu-
nity with other mucosal sites. For a predominantly respiratory
infection, nasal and oropharyngeal sIgA is a prime candidate
for being the first level of defense. Oral vaccination carries
potential jeopardy even when seemingly protective—is the
effect due to protection or is the common mucosal immune
system simply developing an antigenic immunotolerance?

What level of protection is acceptable? Themajor influenza
vaccines are routinely recommended and accepted, and yet
year-to-year protection is quite variable and at times ap-
proaching only 35–75% protection for a given strain in a given
year. For COVID-19, the ongoing pandemic and the future
severity of illness will determine how vaccine uptake should
be promoted and whether it will be an ongoing requisite. Time
will also tell whether the phenomenon of escape mutation or
genetic drift will alter the patterns of SARS-CoV-2 presence
and immune recognition.

Phenomena of early accentuated and potentially harmful
immunopathology after re-infection or vaccination are real.
Whether called ADE generically, or whether ADE is only a
subset, it must be assessed both in laboratory and vaccine
trials. What is promising in this regard, however, is that there
are clear solutions should it be observed. Taking M.
pneumoniae research as a strong example, early findings of
vaccine adversity in humans and animal models had been
fully or partially overcome. Although not adopted, the very
large trials of inactivated M. pneumoniae vaccine were not
associated with such an adverse event. What is also reassuring
is that passive immunity, whether parenteral or lactogenic,
was not largely associated with such pathology in model sys-
tems. Conceptually, the latter should open up the theme of
passive immune treatment considerably. That SARS-CoV-2
is an intracellular pathogen provides one measure of cloaking
from the start. Mobilization of virus from cell to cell in func-
tional syncytia may prove to be the second viral cloaking
device. The latter then brings us full circle to the importance
of attempting to target primary prevention.

In vitro experiments, animal models, and early phases of
vaccine trials in humans offer correlates that are critical to
assimilate, and may predict what to expect or avoid, but ulti-
mately large-scale human trials are required. The latter are

Conclusion

Effective and relatively safe vaccine(s) for COVID-19 will
emerge. There is simply too much scientific ingenuity for this
not to happen. What is not clear is whether vaccines will be
highly protective, how long immunity will last, and whether
ADE or similar post-infection or post-vaccination events will
be experienced. There is no guarantee that in vitro and animal
model studies will sufficiently predict the latter. Critical key
knowledge aspects will come directly from human vaccine
experiments much like the large vaccine trials of the 1950s–
1970s albeit with contemporary approaches. In the interim,
studies in these regards will produce valuable spin-offs that
are applicable to passive immunity, vaccine safety, disease
pathogenesis, treatment, and diagnostics. There are no
grounds for absolute pessimism because proactive and
cautious initiatives will eventually succeed more or less.
The latter must necessarily occur given the majority of
success in other viral vaccines. The common mucosal
immune system, and the subset of lactogenic immunity,
can provide critical informatics.

Data Availability Not applicable.
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strategy. The immune system, and certainly the common mu-
cosal immune system, has in large part mechanisms that facil-
itate our understanding. Mucosal immunity, mostly through
sIgA, is capable of telling us what the body needs to create for
protection. As it has already provided these secrets by way of
protective lactogenic immunity, it is quite likely that such
immune informatics can be exploited easily and expeditious-
ly. As systemic IgA is a concomitant of infection or vaccina-
tion and may create some confusion if and when it enters the
mucosal sites inadvertently, probing for sIgA should be con-
ducted with labels that recognize the S chain of IgA dimers.
sIgA could then be used as a probe for what the lactogenic
immunity, and therefore the common mucosal immune sys-
tem generally, sees as being protective and yet not deleterious,
e.g., distinguishable protective epitopes. Lactogenic immunity
is unlikely to select for epitopes that facilitate early hyperim-
mune reactivity or ADE. With the latter likelihood, there is
another selfish attribute to such discovery—milk sources
whether human, bovine, caprine, or ovine (or IgY from eggs)
could be made to carry protective immunity as a preventative
passive strategy for humans. However theoretical or futuristic
at this time, such a preventative approach could obviate the
need for repeat immunizations should SARS-CoV-2 become
endemic. Transplacental antibody in newborn blood might
initially be considered another avenue for determining protec-
tion, but such antibody does not equate to sIgA, and transpla-
centally acquired IgG is non-selectively mobilized as in other
viral infections.

critical to the refinement of any potential preventative
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