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Abstract
The bifurcation of plane waves to localised structures is investigated in the Dysthe
equation, which incorporates the effects of mean flow and wave steepening. Through
the use of phase modulation techniques, it is demonstrated that such occurrences may
be described using a Korteweg–de Vries equation. The solitary wave solutions of this
system form a qualitative prototype for the bifurcating dynamics, and the role of mean
flow and steepening is thenmade clear through how they enter the amplitude andwidth
of these solitary waves. In addition, higher order phase dynamics are investigated,
leading to increased nonlinear regimes which in turn have a more profound impact on
how the plane waves transform under defects in the phase.

Keywords Modulation · Phase dynamics · Dark solitary waves · Wave–mean flow
coupling

1 Introduction

At the heart of the modern study of waves is their behaviour and stability. The last
century has heralded many studies and successes into these avenues, but there is
much left to be understood. Particularly, the stability of monochromatic wavetrains in
hydrodynamics generated large interest after the experiments of Benjamin and Feir
demonstrated that such a state was unstable in experiments [4,5]; some analytical
insight has since been gained using various mathematical techniques [44]. Such insta-
bilities have been speculated to lead to the formation of rogue waves [34,43], or the
decrease in the frequency of the monochromatic wave [7,28,41]. However, even when
suchwaves are stable to an instability like this, they can undergo different transitions to
generate structures such as dark solitary waves [24,30,32], whose mechanism for for-
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mation remains unclear. Therefore, even such a heavily studied problem has a wealth
of dynamics we have yet to understand.

The role of mean flow coupling on both the dynamics and stability of water waves
has long been emphasised. There have been many contributions towards accurately
providing a description between this interplay. Early work by Davey and Stewartson
[13] provided a system which coupled a nonlinear Schrödinger equation to an irrota-
tional fluid flow. This work has been furthered by several authors since. Of particular
note is the work of Dysthe et al. [15,46], who have derived several higher order mod-
els which capture the effects of this mean flow-wave coupling with a large degree of
success. For example, these have helped to more accurately investigate the stability of
uniformwavetrains [45–47], rogue wave formation [27,42], and frequency downshift-
ing [16]. It is because of this rich variety of behaviours that this paper will concern
itself with the Dysthe equation with only its leading order dispersive term, as written
in Ref. [46]. Thus, the governing equations are given by

i At + Axx − |A|2A + α �x |z=0 A + iβ|A|2Ax = 0,

�z |z=0 = α(|A|2)x ,
∇2� = 0 in z ∈ (−h, 0),

�z |z=−h = 0,

(1)

for complex-valued wave envelope A(x, t), velocity potential �(x, z, t) of the flow,
and h the depth of the fluid. The constants α and β characterise themagnitude ofmean-
flow and higher order self-steepening effects, respectively. In the work of Trulsen and
Dysthe [46], the values of these parameters are taken to be α = 4 and β = 8, but
we shall leave these free to see their explicit role in the emergence and evolution of
defects.

To investigate systemswhich admitwavetrains and discuss their stability properties,
one may utilise a phase dynamical approach. The origins of such studies can be
traced back to Whitham [48,50], with several years of subsequent work building upon
these ideas. The premise is to assume that one has a wavetrain solution of the form
û(kx + ωt) ≡ û(θ; k, ω) for phase θ , wavenumber k and frequency ω. Then, the key
idea is to assume that these wave variables are not fixed, but instead slowly vary in
time. Under this assumption, either by an averaging principle or direct asymptotic
analysis, one generates the system of equations:

A(k, ω)T + B(k, ω)X = 0, kT = ωX , (2)

for the now slowly varying wavenumber k(X , T ), frequency ω(X , T ), and slow vari-
ables X = εx, T = εt for ε � 1. The functions A and B turn out to be thewave action
and wave action flux, respectively, for the original system, averaged over one period of
the original wavetrain û. This set of equations then govern how the wavenumber and
frequency evolve, which lead to deformations in the wavetrain from which they are
derived. There have been several extensions to the Whitham methodology, such as the
extension to problems with multiple phases [1,35,50] and to the more general setting
of relative equilibria [10,49,50]. It is these extensions that will allow us to explore the



Phase Dynamics of the Dysthe Equation and the Bifurcation of Plane Waves 125

phase dynamics of the Dysthe system (1), as one not only modulates the emergent
wavetrain but also the mean flow, which itself forms a relative equilibrium.

The Whitham equation (2) has the additional usage that by investigating the lin-
earised stability problem for a fixed wavenumber and frequency, one can infer stability
properties of the original wave. This is diagnosed by the properties of the eigenvalues
of such a linearisation, which are denoted as the characteristics of the system. For
real characteristics, the system is hyperbolic and the associated wavetrain is stable.
Alternatively, in cases, where the characteristics become complex the Whitham sys-
tem is elliptic and the underlying wave is unstable, with perturbations to it growing
exponentially. One of the most famous examples of this usage arises when studying
the Whitham equations which emerge from the nonlinear Schrödinger equation. One
can show in this case that the Benjamin–Feir instability criterion emerges at the point
when the characteristics become complex [29]. This result was the moment when “the
penny dropped” for Whitham regarding the connection between characteristics and
stability [33].

A key development in the setting of this paper is how the dispersionless Whitham
system morphs to incorporate dispersive effects at singularities, which was achieved
via the work of Bridges et al. [9,39]. The main idea is to modify Whitham’s origi-
nal ansatz with a different set of scalings at points where the Whitham modulation
equations develop singularities. In such cases, one instead adopts an ansatz at a new
solution of the form:

u = û
(
θ + εφ(X , T ); k + ε2φX (X , T ), ω + ε4φT (X , T )

) + ε3W (θ, X , T ; ε),

with instead X = εx, T = ε3t . Doing so allows one to resolve the singularity which
leads to the emergence of dispersion and the appearance of the well-known nonlinear
wave equation, the Korteweg–de Vries (KdV), which governs the evolution of the
slowly varying wavenumber. Most strikingly, the KdV which emerges does so in
universal form, in the same sense as the Whitham equations. This is to say that its
coefficients relate to abstract properties of the original Lagrangian that generates the
problem. Extensions to this methodology, for example, when resolving additional
singularities which may arise, demonstrate how other nonlinear equations such as
the two-way Boussinesq and modified KdV (mKdV) emerge. In particular, a recent
advancement has shown that when the phase modulation is done in a moving frame,
with a speed equal to one of the characteristics emerging from the Whitham system,
nonlinear phase dynamics emerge automatically with dispersion [37]. Furthermore,
when the characteristics pass through certain values or coalesce, more complex phase
dynamics may occur [11]. It is for this reason that this paper will adopt the modulation
approach in the moving frame, to link both the properties of the conservation laws and
characteristics of the Whitham equations to the resulting dynamics.

In summary, this paper aims to utilise a modification of the Whitham modulation
theory to derive nonlinear dispersive equations to investigate the phase dynamics of
the Dysthe system (1). This will require a modulation of a two-parameter relative
equilibrium, namely, the plane wave solution coupled to a uniform current, which
adopts a theory adept at treating multiple phases as well as a moving frame. This
is achieved by combining existing modulation approaches, and will ultimately be
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used to show how the KdV equation governing the phase dynamics emerges from the
Dysthe equation. Moreover, a secondary aim will be to provide criteria for when one
expects the behaviour of defects in the wave to be qualitatively different, occurring
precisely when one of these reductions fails to be adequate and should be replaced by
another phase dynamical equation. In the setting of this paper, we consider only one
example of this, which will focus on how the Gardner, and consequently the mKdV
equation, arise whenever the nonlinearity of the KdV equation is sufficiently small
and vanishing. This leads to increased nonlinear effects within the evolution of phase
defects, which will be highlighted in the body of the paper.

From this phase dynamical description, we aim to provide a possible qualitative
picture for the emergence of various coherent structures, such as dark and bright
solitarywaves. In the study of this paper,wewill utilise the various nonlinear dispersive
reductions and illustrate how these structures can be interpreted as a deformation under
the perturbation of the wave variables by the solitary wave solutions of these systems.
This technique has been utilized in other works [3,8,23,26]; however, it has yet to be
considered in the context of a wave–mean flow system like the Dysthe equation. Thus,
another contribution of this work will be to determine how this coupling manifests
within this approach as well as to identify its effect on the qualitative predictions.
Depending on the phase dynamical description, which itself depends on the properties
of the moving frame, we will illustrate that various structures are predicted to form
from this viewpoint. Moreover, we will demonstrate that each regime implies that the
original wave is affected to differing degrees. Thus, the characteristic speeds from the
Whitham equations may in fact be used as a diagnostic regarding the degree in which
the phase dynamical description distorts the original wavetrain.

The outline of this paper is as follows. In Sect. 2, we review how the existing
phase modulation approach may be applied to the Dysthe system (1) to obtain a KdV
equation which governs how the phases of the waves evolve over space and time. This
is followed in Sect. 2.1 by an illustration of how such a KdVmay be utilised to predict
the bifurcation behaviour of the original plane wave solution, with an emphasis on
processes that lead to the formation of dark or bright solitary waves. Subsequently, in
Sect. 3, further phase reductions are discussed, noting when such equations arise and
their effect on the plane wave solution. Concluding remarks are presented in Sect. 4.

2 FromDysthe to KdV

There are a multitude of techniques in which to investigate the phase dynamics of
equations like (1). Primarily, the approach usually taken is to use a standard multiple
scales analysis and solve at each order of the small parameter [8,26]. A variant of this,
and the closest reduction procedure to the modulation considered here, is to undertake
this approach after transforming the system using the Madelung transform [3,17,23].
This approach is utilised in Appendix B to derive the KdV and show that it agrees with
that obtained via the modulation methodology. Prior to this paper, it does not appear
that such a study using the Madelung approach has been undertaken in the context of
wave–mean flow systems such as the Dysthe equation, and so the reduction using this
method is also another novelty of this paper. Within this paper the focus will be on



Phase Dynamics of the Dysthe Equation and the Bifurcation of Plane Waves 127

the modulation approach, with the details of how the KdV equation may be obtained
using this procedure appearing in Appendix A. This method allows one to draw a
connection between not only the conservation laws the Dysthe system possesses, but
also highlights how the hyperbolicity of the system plays a role in the evolution of the
phase defects.

To apply the modulation approach detailed in Appendix A to the Dysthe system
(1), we must first note that it is generated by a Lagrangian, namely

L =
∫∫ [

i

2
(AA∗

t − A∗At ) + |Ax |2 + iβ

4
|A|2(AA∗

x − A∗Ax )

−α|A|2 �x |z=0 − 1

2

∫ 0

−h
�2

x + �2
z dz

]
dx dt . (3)

To discuss how defects in the phase evolve for uniform plane waves with a current
in this equation, we consider the relative equilibria associated with the product of an
affine and toral symmetry. The first of these arises from the fact that one may add
arbitrary constants to the velocity potential � and leave the Lagrangian invariant,
and the second is the one associated with the S1 symmetry of the amplitude A. This
corresponds to the uniform wavetrain state in A and the uniform flow solution of �,
which explicitly is given by

A = A0e
iθ , � = u0x + γ t, with |A0|2 = 
 = αu0 − k2 − ω

1 + βk
. (4)

The amplitude |A0|2 must be positive and nonsingular, meaning that k �= − 1
β
.

For the analysis of Appendix A we require the relevant conservation law vectors.
These arise from averaging the Lagrangian (3) over a period of thewave, as determined
in (19) and can be readily determined as

A =
(
L̂ω

L̂γ

)
=

(



0

)
, B =

(
L̂k

L̂u0

)
=

(
2k
 + β

2
2

−hu0 − α


)
.

The first row of these vectors are associated with the conservation of wave action of the
periodic wave and is akin to the conservation of mass for the wave itself. The second
emerges as the conservation ofmass of the flowbeneath thewave, albeit with a negative
sign. This is due to the way one obtains it via the averaging principle as detailed in
(19). With these quantities in hand, we are in a position to compute both the criterion
for emergence and the coefficients of the KdV associated with this wavetrain. The
relevant criticality condition for this to emerge in a moving frame, with characteristic
speed c, from the solution (4) is given by (21) in Appendix A. For the Dysthe equation,
this requires that the determinant of the Jacobian

E(c) = 1

1 + βk

(
2(1 + βk)
 − (2k + c + β
)2 α(2k + β
 + c)

α(2k + c + β
) −h(1 + βk) − α2

)
,
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vanishes. This is the case whenever the characteristic speed satisfies

�(c) = hc2 + 2h(β
 + 2k)c + β2h
 − 2
(
h(1 − βk) + α2)
 + 4hk2 = 0, (5)

and so the characteristic speeds are given by

c = −2k − β
 ±
√

2


(
βk + 1 + α2

h

)
. (6)

The necessity for hyperbolicity requires that k > − 1
β

− α2

βh . In such cases, where (5)
is satisfied and c is real, we can define the relevant eigenvector of E(c) required for
the theory, ζ , as

ζ =
(

ζ1
ζ2

)
= 1

1 + βk

(
h(1 + βk) + α2

α(2k + c + β
)

)
.

We may now compute the coefficients of the resulting KdV equation, which is done
by following the methodology in Ref. [12] and Appendix A. The first to be computed
is the coefficient of the time derivative term, giving that

ζ TE′(c)ζ = −2
(
(βk + 1)h + α2

)
(β
 + c + 2k)h

(bk + 1)2
.

The next calculation is for the coefficient of the nonlinear term, and gives that

ζ TH(ζ , ζ ) = 3
(
(βk + 1)h + α2

)
(β
 + c + 2k)h

(
h(β2
 + βc − 2) − 2α2

)

(bk + 1)3
.

The final coefficient required is that of the dispersive term. Typically within the mod-
ulation approach, this is acquired by undertaking a Jordan chain analysis; however,
it is in fact more readily obtained from the dispersion relation computed about the
solution (4), as is typically done in hydrodynamic settings [2,19,20]. This is since the
dispersion relation for the KdV must match up with the dispersion relation from the
original problem (1) in the long wave limit. This can be found from a simple linear
analysis of (1) about the plane wave solution (4), and leads to the dispersion relation:

σ(κ) = −(2k + β
 + c)κ ± κ

√

2
(1 + βk) + κ2 + α2


h
κ coth(κh).

Thus, the relevant coefficient of dispersion arises from the cubic term in κ in the long
wave expansion of the above relation, multiplied by the coefficient of the KdV’s time
derivative term. This leads to the required coefficient of dispersion:

1

6
σκκκ |κ=0 ζ TE′(c)ζ = −

(
(βk + 1)h + α2

)
h(3 + 2α2h
)

3(bk + 1)2
.
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This can be verified by following the approach outlined in Appendix B, up to a scaling
factor. Combining the above results and simplifying gives the relevant KdV as

(2k + β
 + c)

(
UT − 3

2(1 + βk)

(
h(β2
 + βc − 2) − 2α2)UUX

)

+ 1

6
(3 + 2α2h
)UXXX = 0. (7)

One can notice that the mean flow effects, characterised by α, appear explicitly
within the dispersive coefficient, whereas both the characteristic speed c and the self-
steepening effects determined by β appear within the coefficients of the time and
nonlinear terms. Thus, these effects have a non-negligible effect on the phase dynam-
ics which emerge from the plane wave solution. The aim now will be to investigate
how these effects influence the phase dynamics and lead to the emergence of coherent,
localised structures from the original plane wave.

2.1 The Evolution of Phase Defects

With the relevantKdV(7) in hand,wemaynowdiscuss how itmaybeused to determine
the bifurcating behaviour of the periodic wave solution (4). There are a large family
of solutions admitted by the KdV equation, such as cnoidal waves [14] and multipulse
solutions [22,31], which could be utilised to explore the phase dynamics as predicted
by (7). However, for simplicity, we will focus on how the KdV equation in this context
can describe the formation of dark and bright solitary waves from the uniform plane
wave solution. The strategy to illustrate this is to use the solitary wave solution to the
KdV equation (7):

U (ξ) = a sech2
(

ξ

W

)
,

with ξ = X − VT , and where the amplitude a and width W are given by

a = − 2V (1 + βk)
(
h(β2
 + βc − 2) − 2α2

) , W = 2

√
3 + 2α2h


6(2k + β
 + c)V
. (8)

This is then used to reconstruct the solution to the Dysthe equation according to the
ansatz

A = A0(k + ε2ζ1U , u0 + ε2ζ2U , ω + cε2ζ1U − V ε4ζ1U )ei(θ+εζ1φ),

where φ =
∫

Udξ,= aW tanh

(
ξ

W

)
,

(9)
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which is utilized to derive the KdV (7). We then determine how the original solution
(4) is impacted. This, to leading order, has the corresponding effect on the envelope:

|A|2 = 
 + ε2
2(c + 2k + β
)V

β2
 + βc − 2 − 2α2

h

sech2
(

ξ

W

)
+ O(ε4). (10)

It is clear at this stage that both the mean flow and steepening influence the amplitude
and width of the solitary wave and will lead to a wide range of possible localised
structures. However, we note that the current u0 does not explicitly enter any of these
expressions, and so for a fixed amplitude 
 the resulting dynamics is independent
of the mean flow velocity, although the strength of these effects does influence the
observed phenomenon.

We can already determine a great deal analytically. In particular, we can see that as
the strength of the mean flow α is increased the width of the solution U , and thus the
width of the observed disturbance to the wave, increases. This is the case for either
choice of the characteristic speeds, as made clear by (6) which highlights that

c + 2k + β
 = ±
√

2


(
βk + 1 + α2

h

)
,

and so this only affects the choice of sign for V . Thus, the mean flow is the dominant

effect in the width, as the steepening only asymptotically decreases the width as β− 1
2 ,

whereas the mean flow causes this to grow as α.
The effect of the phase dynamics on the amplitude of the plane wave is less clear

and involves an interplay between steepening and depth. However, by studying (10),
one is able to see that overall the effects of steepening and the mean flow decrease
the resulting amplitude of the structure which forms, and the asymptotic decay is
algebraic of the order α−1, β−1. As such, one expects the largest amplitudes for these
disturbances to occur for α = 0 and for values of β approaching the singularity in
the amplitude of the solution U as given in (8). However, in this proximity the KdV
equation (7) begins to become an invalid model of the phase dynamics and other
descriptions become operational, as will be described within the next section, so the
discussion here will not apply to such choices of β that are sufficiently close to these
points.

In summary, this approximate picture provides us with a qualitative description
for how these localised structures appear and what form these are expected to take.
In the presence of strong mean flow interactions between the wave and the current,
the distortion to the envelope is expected to have a longer range. When the wave
is subjected to increased self-steepening effects, the magnitude of the disturbance is
muted so long as a degeneracy in the derived KdV equation is not approached in
parameter space. Therefore, the KdV dynamics derived in this setting suggest that the
original plane wave is in fact stable to the majority of defects which can form, and
their effect on the wavetrain is very limited.

We combine these findings to illustrate what effects the mean flow and self-
steepening have upon the bifurcation behaviour of the original plane waves. This
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Fig. 1 Comparisonbetween the resulting bifurcationof the planewave solution (4) under the phase dynamics
for the fast (left column) and slow (right column) characteristic speeds for ε = 0.2, k = 1, ω = − 3

2 , h =
4, V = 1 and a, b α = β = 0, c, d α = β = 1, e, f α = −4, β = − 3

2 and g, h α = 4, β = 8. The dashed
red lines indicate the original plane wave, whereas the solid blue lines denote the solution reconstructed via
(9), with the dotted blue lines corresponding to the envelope for this solution (Color figure online)

is done by setting α = β = 0 and in essence becomes a study of the phase dynamics
of the Nonlinear Schrödinger equation [8,26]. This is then compared to cases, where
α, β are nonzero, but with the same choice of wavenumber and frequency so that the
effects of the mean flow and steepening can be assessed. The mean flow u0 is chosen
so that the amplitudes in all cases are the same. An example of such a comparison is
depicted in Fig. 1.
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We now discuss the results of this investigation. One can observe that the mean flow
and steepening effect can lead to qualitative differences in the dynamics, changing the
polarity of the resulting structure from dark to bright, and viceversa. This is to be
expected, since the steepening effects enter the nonlinear coefficient and allow for it
to change sign. Moreover, we can see that these effects can also lead to the previously
discussed suppression of the solitary structures, suggesting that the original wave
persists even in the presence of the nonlinear phase dynamics and hints at increased
stability in these regimes. Additionally, it becomes clear that the presence of mean
flow and self-steepening within the system can lead to increased nonlinear effects in
the predicted bifurcating behaviour, where these disturbances are enhanced. Overall,
the presence of both of these effects leads to a greater range of behaviours for the
localised structures.

3 Further Singularities and Higher Order Phase Dynamics

Although the KdV itself provides some insight into the evolution of defects and the
formation of coherent structures from the uniform wavetrain, there are parameter
values for which the KdV stops being operational due to vanishing terms. At such
points, there is the potential for even more interesting nonlinear phenomena to emerge
in a way analogous to a secondary instability via higher order phase equations. We
discuss one such case of this below, leading to the modified KdV equation, and by
extension the Gardner equation, with a discussion of their effects on the evolution of
the original plane wave solution.

3.1 Modified KdV

The singularity of interest is the case, where only the quadratic nonlinearity vanishes,
which is whenever the characteristic speed takes the value

c = 1

β

(
2 − β2
 + 2α2

h

)
. (11)

For this to occur, the amplitude must satisfy


 = 2

β2

(
βk + 1 + α2

h

)
. (12)

Using this value of the amplitude in (11) gives the much simpler condition that c =
−2k. From this, we note that without the moving frame one would have to impose
k = 0 to obtain the mKdV from the Dysthe equation, limiting its applicability as well
as its ability to emerge from plane wave solutions.

In such cases, where (11) holds, a rescaling of the modulation approach must
occur to reintroduce a nonlinear term into the analysis. The subsequent modulation
reduction procedure then follows very similarly to [35], with the modifications for the
moving frame appearing in other works [11,12] and Appendix A. Alternatively, one
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considers a rescaling of the ansatz used in Appendix B as is done to obtain the mKdV
in similar contexts (for example, [25,40]). By following either procedure, one obtains
the modified KdV equation

β
UT + 3β2
2

2(1 + βk)2
U 2UX + 3 + 2α2h


6
UXXX = 0. (13)

Of note is that the effects of steepening now have an increased role in the dynamics
through the coefficient of the cubic nonlinearity.

To investigate dark and bright solitary waves in this regime, the relevant solitary
wave solution family to the above is given by

U = ±
√
V (1 + βk)2

β

sech

(√
6βV


3 + 2α2
h
ξ

)
. (14)

The requirement that this solution be real imposes that βV > 0. Note that solutions
of both polarities are permissible from the phase dynamics now, and so one expects
both dark and bright solitary waves to emerge in this scenario at the same parameter
values. The solution is then reconstructed according to

A = A0(k + εζ1U , u0 + εζ2U , ω + cεζ1U − V ε3ζ1U )ei(θ+ζ1φ), (15)

where the relevant scalings in ε are chosen so that the corresponding modulation
approach leads to the mKdV [36]. To leading order, the effects on the envelope of the
wave can be deduced via a Taylor expansion, revealing that

|A|2 = 
 ± ε

√
2h(βhk + h + α2)V

β
sech

(√
6βV


3 + 2α2
h
ξ

)
+ O(ε2).

From this, we can make some inferences regarding how the mean flow and steepening
alter the phase dynamical observations. First, the fact that the solution admitted is sech
to a unitary power reveals that the dark or bright structures are already expected to
be wider than those observed under the KdV dynamics. We can also see that β now
has a decreased role in the amplitude of the disturbance, and instead the mean flow
and depth become the main contributing factors to its size. Moreover, the expansion
itself leads to a correction an order lower than that of the KdV case, and so the effects
of this are expected to be more readily observed. The width of the localised structure
is very similar to that discussed in the KdV equation, which is expected as the linear
dispersive properties of the phase dynamics have not changed, and thus has the same
asymptotic decay properties.

These observations are confirmed by the examples of how these solutions modify
the original plane wave, depicted in Fig. 2. Overall, the reconstructions in this case
tend to have a more pronounced but typically broader effect on the plane wave than the
KdV equation, causingmore apparent versions of the emergent dark and bright solitary
waves. This is expected, as the mKdV soliton is both narrower and larger in amplitude
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Fig. 2 Examples of how the solution (14) distorts the original plane wave for a, b α = −0.5, β = 3, k =
1, ω = −4.32, h = 3, u0 = 1, c = 1, ε = 0.06 and c, d α = 0.7, β = −1.2, k = 1.2, ω = −0.69, h =
0.5, u0 = 1, c = −1.6, ε = 0.2 for both positive (left) and negative (right) polarities (Color figure online)

than the one which is admitted by the KdV. Moreover, the scalings within the ansatz
to obtain the mKdV are larger than the KdV case. Thus, the resulting bifurcation that
the phase dynamics predicts should be of higher magnitude, as well as being sharper
in regimes, where the mKdV (13) is operational.

3.2 Gardner Equation

The fact that solutions of both polarities are admissible in the mKdV presents the issue
of how this may be selected in practice. One way to ensure a certain polarity is selected
is to break this symmetry, which may be achieved by instead choosing a wavespeed
close to −2k. We achieve this by setting

c = −2k + εγ,

for γ = O(1). The modulation in this case instead leads to the Gardner equation:

β
UT − 3β
γ

2(1 + βk)
UUX + 3β2
2

2(1 + βk)2
U 2UX + 3 + 2α2h


6
UXXX = 0.

The solitary waves admitted by this system differ from those arising from (13) and
have more interesting forms due to the presence of γ . These solutions are given by
[18]

U = − 4V (1 + βk)

γβ


[
1 + B cosh

(√
6β
V

3+2α2h

ξ

)] , B2 = 1 + 4Vβ


γ 2 , (16)
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Fig. 3 Examples of how the
solution (16) affects the plane
wave solution in the regimes,
where a B = 9.19 and b
B = 1.63 (Color figure online)

-8 -6 -4 -2 0 2 4 6 8

-1

-0.5

0

0.5

1

(a)

-8 -6 -4 -2 0 2 4 6 8

-1

-0.5

0

0.5

1

(b)

with again the requirement that βV > 0. From this, it is clear that γ now controls
the polarity of the solution, rather than both signs being admissible. There are two
limits of interest for this solution. The first is as B → ∞, namely, as the quadratic
coefficient becomes small, where the classical sech solitary wave of the mKdV (14)
is recovered. The other is as B → 1, for which the solitary wave becomes broader.
One also notes that the tabletop solitary wave solution of the Gardner equation is
no longer possible, since B2 ≥ 1. Examples of both regimes and their effect on the
plane wave solution, as reconstructed according to (15), are depicted in Fig. 3. As one
might expect, the regime, where B is large is reminiscent of the mKdV case, with
more pronounced bifurcating structures than for the KdV. For lower B (corresponding
to larger γ ) one observes slightly wider packets of lower amplitude, closer to those
of the KdV dynamics. Thus, the Gardner equation sheds light on the dynamics in
the intermediate regime between the KdV and mKdV equations, and thus the way in
which the solitary waves become tighter and increase in amplitude, as one may expect.

4 Concluding Remarks

This paper has demonstrated that there is a great wealth of phase dynamics emerging
from the Dysthe equation, primarily owing to both mean flow and self-steepening
effects. The simplest of these is theKdV,which predicts how planewaves can bifurcate
to modulated, or dark/bright structures. Additionally, when certain criterion are met,
richer dynamics can occur by the increment of nonlinearity within the phase equations.

There are other phase reductions that may be admitted from the study of the Dysthe
equation. For example when the characteristics of the Whitham equation coalesce,
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both the time derivative and nonlinear terms in (7) vanish, and instead a modified
version of the two-way Boussinesq equation arises:

UTT +
(

β2
2

2(1 + βk)2
U 3 + 1

6
(3 − 2α2
h)UXX

)

XX

− β


1 + βk
(2UUT +UX∂−1

X UT )X = 0. (17)

The dynamics of this equation are quite complicated, and it does not appear to admit
solitary waves for the coefficients which emerge. Thus, a more delicate analysis of
this equation would be necessary and would involve the study of the periodic solutions
it supports. Moreover, when the Dysthe system (1) possesses higher order dispersive
effects, we expect the phase dynamics to also have increased dispersive properties
within certain parameter regimes. Such scenarios are expected to lead to the fifth order
KdV equation emerging from the modulation, and perhaps lead to more interesting
bifurcating structures.

Although the phase dynamics provides a qualitative picture as to the formation of
solitary structureswithin the original planewave, the next stepwould be to compare the
results obtained here to those from direct numerical simulation. This would quantify
the ability of the nonlinear dynamics discussed here to capture the true bifurcating
behaviour, and possibly help to lend these analytic techniques more credibility when
discussing these scenarios.

There are other systemswhich exhibit ameanflowcouplingwithin a set of nonlinear
equationswith a free surface. Examples include a version of (1)with higher order terms
in A or systems such as Benney–Roskes [6] or Hasimoto–Ono [21] equations. These
can also be explored using a phase dynamical approach to investigate how the flow
beneath a wave influences how the uniform wave is modulated in the presence of
defects. The novel features of the latter systems is that the wave action vectors these
problems admit are nondegenerate, unlike the Dysthe equation, and so richer time
dynamics are possible.
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Appendix

A Phase Dynamical Reduction to the KdV via Modulation

Here, we provide some details as to how the KdV equation (7) may be obtained by
modifying the phase modulation approach of Bridges and Ratliff [12]. Due to the
similarity of the calculations, we only provide details on the key differences that arise
and refer the reader to the above article for the remainder. We also note that the

http://creativecommons.org/licenses/by/4.0/
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subsequent notation will be adopted from this work, but is consistent with that of the
current paper.

The starting point is the multisymplectic form of the Lagrangian, obtained via a
sequence of Legendre transformations, and has the generic structure

L =
∫∫

1

2
〈Z ,MZt 〉 + 1

2
〈Z , JZx 〉 − S(Z) dxdt, (18)

for a new state variable Z , which contains the original state variables along with the
new conjugate variables which emerge from the Legendre transforms. The matrices
M, J are constant skew symmetric matrices for the purposes of this analysis; however,
the more general problem, where these depend on Z follows a similar format to the
reduction undertaken here, with the details on this case requiring a combination of [12]
and [38]. The abstract setup for the problemproceeds identically to the aforementioned
work of [12], such as the theory for the conservation laws and characteristics, Jordan
chain theory and Hermitian matrix pencils. Primarily, we highlight the assumption of
a two-phased relative equilibrium Ẑ(θ;k,ω), with

θ =
(

θ1
θ2

)
=

(
k1x + ω1t + θ

(1)
0

k2x + ω2t + θ
(2)
0

)

, k =
(
k1
k2

)
, ω =

(
ω1
ω2

)
.

Averaging the Lagrangian over the phases of the relative equilibrium and differentiat-
ing with respect to the parameters ki , ωi results in the components of the conservation
of wave action associated with each of the phases θi ,

A =
(
L̂ω1

L̂ω2

)
= 1

2

(〈〈Z ,MZθ1〉〉
〈〈Z ,MZθ2〉〉

)
, B =

(
L̂k1
L̂k2

)
= 1

2

(〈〈Z , JZθ1〉〉
〈〈Z , JZθ2〉〉

)
, (19)

where L̂ denotes the averaged Lagrangian and 〈〈·, ·〉〉 is a suitable θi -averaging inner
product. These would be the vector-valued functions which satisfy the multiphase
version of theWhithamequation (2) at the scales X = εx, T = εt , but their derivatives
will be used to form the coefficients within the KdV obtained here under a different
scaling of the slow variables detailed below. We also note that within the reduction
procedure, the solvability requirement for the inhomogenous problems involving the
linear operator:

L = D2S(Ẑ) −
2∑

i=1

(
ωiM + kiJ

)
∂θi ,

which emerge is precisely

LF = G is solvable if and only if 〈〈Ẑθ1 ,G〉〉 = 0 = 〈〈Ẑθ2 ,G〉〉 = 0.

This is since the kernel of the linear operator L is assumed to be the span of Ẑθ1 , Ẑθ2 .
More details on all of these concepts can be found in the earlier work of [12].
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The first departure from the theory of the work of [12] is to instead use the ansatz:

Z = Ẑ
(
θ + εφ, k + ε2q, ω + ε2cq + ε4�

)

+ε3
(
W0(θ , X , T ) + εW1(θ , X , T ) + ε2W2(θ, X , T )

)
,

with

X = ε(x + ct), T = ε3t,

and

φ(X , T ) =
(

φ1(X , T )

φ2(X , T )

)
, q =

(
q1(X , T )

q2(X , T )

)
= φX , � =

(
�1(X , T )

�2(X , T )

)
= φT .

This is then substituted into the Euler–Lagrange equations associated with (18), a
Taylor expansion around the state ε = 0 is undertaken and the resulting sequence of
equations are solved for each order of ε. The leading, first, second and third orders
result in exactly the same systems to solve as [12], and the first two of these are
automatically satisfied by properties of the solution Ẑ . At third order, we recover

LW0 = K
2∑

i=1

(qi )X
(
Ẑki + cẐωi

)
, K = J + cM, (20)

and we note that the above equation can be shown to be solvable precisely when

�(c) = det
[
c2DωA + c(DkA + DωB) + DkB

] ≡ det
[
E(c)

] = 0. (21)

This is exactly the condition for c to be a characteristic of the Whitham modulation
equations. The key assumption in this analysis is that all of the roots are distinct, that
is we are assuming that �′(c) �= 0 for any of the c which satisfy the above. Overall,
this vanishing determinant imposes that

q = U (X , T )ζ , where E(c)

(
ζ1
ζ2

)
≡ E(c)ζ = 0,

namely, that ζ is the eigenvector associated with the zero eigenvalue of E. This leads
to the expression for W0 in (20) as

W0 = UXv3 +
2∑

i=1

αi Ẑθi , where Lv3 = K
2∑

i=1

ζi
(
Ẑki + cMẐωi

)
.

The functions αi (X , T ) are required to prevent the equation emerging from the mod-
ulation reduction to simply admit the trivial solution. Subsequently, the fourth order
in ε is simpler than that appearing in Ref. [12], and is simply
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L
[
W1 −

2∑

i=1

(
ζiφiUX (v3)θi + (αi )X (Ẑki + cẐωi )

)] = UXXKv3.

The right hand side of this expression lies in the range of the linear operator L, as the
zero eigenvalue of L is of even algebraic multiplicity. Therefore, the solution at this
order is simply

W1 = UXXv4 +
2∑

i=1

(
ζiφiUX (v3)θi + (αi )X (Ẑki + cẐωi )

)
, where Lv4 = Kv3.

The final, and crucial, order of the modulation analysis at which the KdV equation
emerges leads to the equation:

LW̃2 = UT

2∑

i=1

ζi
(
JẐωi + MẐki + 2cMẐωi

)

+UUX

2∑

i=1

[
K(v3)θi − D3S(Ẑ)(v3, Ẑki + cẐωi )

+
2∑

j=1

K(Ẑki k j + c
(
Ẑωi k j + Ẑkiω j

) + c2 Ẑωiω j )

]

+UXXXKv4 + K
2∑

i=1

(αi )XX (Ẑki + cẐωi ).

The term W̃2 is defined as the sum of W2 with all terms at this order which are pre-
images of the expressions which lie in the range of L on the right hand side. Its form
is not important, since an exact expression for this is only required if the analysis
proceeds to further orders in ε; however, it terminates here. All that remains is to take
the inner product of the right hand side of the above with the kernel elements Ẑθ1 , Ẑθ2

and set this to zero, thus imposing that the right hand side also lies in the range of L,
which generates the KdV equation whichU must satisfy. In fact, all of the coefficients
of the relevant terms have already been computed in Ref. [12], and so we simply state
the results of these inner products. First, the inner product of the terms involving UT

lead to the vector:

(〈〈Ẑθ1 ,
∑2

i=1 ζi
(
JẐωi + MẐki + 2cMẐωi

)〉〉
〈〈Ẑθ2 ,

∑2
i=1 ζi

(
JẐωi + MẐki + 2cMẐωi

)〉〉
)
UT = −(

2cDωA + DkA + DωB
)
ζUT

≡ −E′(c)ζUT ,

as is found as part of Eq. (5.12) in [12]. Next, the terms involving the quadratic term
UUX give the vector:
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− (D2
kB+c(2DkDωB + D2

kA) + c2(2DkDωA + D2
ωB)+c3D2

ωA)(ζ , ζ )UUX

≡ −H(ζ , ζ )UUX ,

when the inner product is taken, which can be found in Eq. (5.21) of [12]. Finally, the
terms which involve UXXX lead to the vector:

(〈〈Ẑθ1 , (J + cM)v4〉〉
〈〈Ẑθ2 , (J + cM)v4〉〉

)
UXXX = −TUXXX ,

which is a vector involving nonzero constants arising from the termination of the
relevant Jordan chain. The αi terms simply give −E(c)αXX with α = (α1, α2)

T .
Therefore, we arrive at the vector equation:

E′(c)ζUT + H(ζ , ζ )UUX + TUXXX + E(c)αXX = 0,

whichmay then be projected to a scalar equation bymultiplying on the left by ζ (which
eliminates the α term), giving

ζ TE′(c)ζUT + ζ TH(ζ , ζ )UUX + ζ TTUXXX = 0.

Thus, the KdV equation emerges from the modulation with the characteristic moving
frame, with only slight modifications of the existing theory. The key assumption that
�′(c) �= 0 ensures that the coefficient of the UT term above is nonzero, but this will
vanish whenever there is a repeated root of �(c), in which case one returns exactly to
the modulation analysis in Ref. [12].

B Phase Dynamical Reduction to the KdV via theMadelung Transform

Here, we provide details as to how the KdV equation can be derived from the Dysthe
equation (1) without the explicit use of a modulation argument. To do so, we first
undertake a Madelung transform of the Dysthe equation by introducing

A = √
ρ(x, t)eiφ(x,t),

for real functions ρ, φ, and splitting the resulting system in (ρ, φ,�) into real and
imaginary parts. This leads to the system of equations:

1

2
ρt +

(
ρu + β

4
ρ2

)

x
= 0,

ut + 2uux + β(ρu)x + ρx − α �xx |z=0 =
(

ρxx

2ρ
− ρ2

x

ρ2

)

x
,

�z |z=0 = αρx ,

�xx + �zz = 0, z ∈ (−h, 0),

�z |z=−h = 0,

(22)
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with u = φx . One may then undertake a typical multiple scales analysis of the form:

ρ = 
 + ε2H(X , T ) + ε4G(X , T ),

u = k + ε2V (X , T ) + ε4W (X , T ),

� = u0x + ε�(X , T ) + ε3
(

ϒ1(X , T ) − 1

2
ϒ2(X , T )(z + h)2

)

+ ε5
(


1(X , T ) − 1

2

2(X , T )(z + h)2 + 1

24

3(X , T )(z + h)4

)
,

with X = ε(x + ct), T = ε3t . The basic states for ρ, u and � have been chosen so
that they match those given in Sect. 2. The leading, first and second orders in ε are
automatically satisfied by the above expansion, whereas the third order in ε leads to
the linear system:

F

⎛

⎝
H
V
�X

⎞

⎠

X

=
⎛

⎝
1
2 (2k + β
 + c) 
 0

1 + βk 2k + β
 + c −α

α 0 h

⎞

⎠

⎛

⎝
H
V
�X

⎞

⎠

X

= 0.

This system is, therefore, solvable whenever the determinant of the above matrix
vanishes, giving that

h

2
(2k + β
 + c)2 − 


(
h(βk + 1) + α2) = 0,

recovering the criticality condition (6). This gives that H , U and �X should all be
related via the eigenvector of the zero eigenvalue of F,

⎛

⎝
H
V
�X

⎞

⎠ =
⎛

⎝
−2


2k + β
 + c
2
α
h

⎞

⎠U , (23)

and we will also require the left eigenvector:

η =
(

− 2k + β
 + c



, 1,

α

h

)T

, where FT η = 0.

At the final order, ε5, the system can be written as

F

⎛

⎝
G
W

(ϒ1)X

⎞

⎠

X

= −

⎛

⎜
⎜
⎝

1
2HT +

(
HV + β

4 H
2
)

VT + 2VVX + β(HV )X − 1
2
 HXXX + αh2

2 �XXXX

− h3
6 �XXXX

⎞

⎟
⎟
⎠ .
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For the right hand side of this system to lie in the range of F, it must vanish when
multiplied on the left by η. Doing so, and replacing H , V and � according to (23)
gives

(2k + β
 + c)(UT + 3(2k + c)UUX ) + 1

6
(3 + 2α2
h)UXXX = 0,

giving the same KdV equation as (7) up to scaling, namely, by redefining

U �→
(
h(β2
 + βc − 2) − α2

)

2(2k + c)(1 + βk)
U .

This factor is nonsingular for the cases considered within this paper, and in particular
we note that in the criticality that leads to the mKdV discussed within this paper
this factor becomes 1

2(1+βk) as the 2k + c factor in the denominator cancels with the

numerator in this scenario.
A similar approach can be used to obtain the remaining reductions discussed within

this paper, but requires a different ansatz, which we provide below but without the
details of the reduction. This is because the analyses are very similar to that of the
KdV. For the modified KdV equation, one must use

ρ = 
 + εH(X , T ) + ε2G(X , T ) + ε3F(X , T ),

u = k + εV (X , T ) + ε2W (X , T ) + ε3R(X , T ),

� = u0x + �(X , T ) + ε2
(

ϒ1(X , T ) − 1

2
ϒ2(X , T )(z + h)2

)

+ ε3
(


1(X , T ) − 1

2

2(X , T )(z + h)2 + 1

24

3(X , T )(z + h)4

)

+ ε4
(

�1(X , T ) − 1

2
�2(X , T )(z + h)2

+ 1

4!�3(X , T )(z + h)4 − 1

6!�4(X , T )(z + h)6
)

,

again taking X = ε(x + ct), T = ε3t and assuming (12) holds. For the modified two-
way Boussinesq one uses the above ansatz but with T = ε2t and instead assuming
that �(c) in (5) leads to a double root.
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