Skip to main content

Advertisement

Log in

Effect of cooling rate on microstructure, hardness, and residual stress of 0.28C–0.22Ti wear-resistant steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The microstructure, hardness, and residual stress of 0.28C–0.22Ti wear-resistant steel produced with cooling rates varying from 80.0 to 0.3 °C/s were determined using a dilatometer, scanning electron microscope, Vickers hardness tester, and nanoindentation tester. The results showed that the hardness of martensite decreased at a rate of approximately 0.935 HV/s with carbon diffusion time (the cooldown time required to transition from Ar3, 635–100 °C). The range of the residual stress caused by the hard particles decreased with decreasing cooling rate, from − 400–300 MPa (cooling rate 40 °C/s) to − 200–100 MPa (cooling rate 0.5 °C/s), proving that the TiC particles significantly contributed to the residual stress in the high-titanium steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z. Ke, Q.L. Yong, X.J. Sun, Z.D. Li, Acta Metall. Sin. 50 (2014) 913–920.

    Google Scholar 

  2. Z. Wang, X.B. He, T. Lin, Y. Guo, H.P. Shao, X.H. Qu, Mater. Sci. Technol. 33 (2017) 1796–1805.

    Article  Google Scholar 

  3. J. Dong, X.S. Zhou, Y.C. Liu, Mater. Sci. Eng. A 683 (2017) 215–226.

    Article  Google Scholar 

  4. X.D. Huo, L.J. Li, Z.W. Peng, J. Iron Steel Res. Int. 23 (2016) 593–601.

    Article  Google Scholar 

  5. Q.L. Yong, Secondary phases in steels, Metallurgical Industry Press, Beijing, China, 2006.

    Google Scholar 

  6. C. Dong, H.B. Wu, X.T. Wang, Mater. Sci. Technol. 34 (2018) 86–94.

    Article  Google Scholar 

  7. X.H. Liu, Z.H. Zhao, S.T. Qiu, China Metallurgy 26 (2016) 42–46.

    Google Scholar 

  8. Z.Q. Wang, H. Zhang, C.H. Guo, W.B. Liu, Z.G. Yang, X.J. Sun, Z.Y. Zhang, F.C. Jiang, J. Mater. Sci. 51 (2016) 4996–5007.

    Article  Google Scholar 

  9. Z.Z. Cui, Y.C. Tan, Metallography and heat treatment, China Machine Press, Beijing, China, 2007.

    Google Scholar 

  10. J.N. Lin, F.C. Ma, X.Z. Zhao, J. Univ. Sci. Technol. Beijing 29 (2007) 118–121.

    Google Scholar 

  11. N. Oh, S. Lee, K. Hwang, H. Hong, Scripta Mater. 112 (2016) 123–127.

    Article  Google Scholar 

  12. Y. Kobayashi, J. Takahashi, K. Kawakami, Scripta Mater. 67 (2012) 854–857.

    Article  Google Scholar 

  13. N. Pryds, X. Huang, Metall. Mater. Trans. A 31 (2000) 3155–3166.

    Article  Google Scholar 

  14. D. Rasouli, S.K. Asl, A. Akbarzadeh, G.H. Daneshi, J. Mater. Process. Technol. 206 (2008) 92–98.

    Article  Google Scholar 

  15. Q.Y. Sha, G.Y. Li, L.F. Qiao, P.Y. Yan, J. Iron Steel Res. Int. 14 (2007) No. 5, 316–319.

    Article  Google Scholar 

  16. M. Asadi, B. Cooman, H. Palkowski, Mater. Sci. Eng. A 538 (2012) 42–52.

    Article  Google Scholar 

  17. M. Wu, L. Hua, Y.C. Shao, Q.J. Zhou, Mater. Des. 32 (2011) 2292–2300.

    Article  Google Scholar 

  18. W.J. Hui, Y.J. Zhang, C.W. Shao, S.L. Chen, X.L. Zhao, H. Dong, J. Mater. Sci. Technol. 32 (2016) 545–551.

    Article  Google Scholar 

  19. M. Gomez, L. Rancel, E. Escudero, S.F. Medina, J. Mater. Sci. Technol. 30 (2014) 511–516.

    Article  Google Scholar 

  20. Z.Y. Zhao, R.D. Xue, C.H. Qu, L. Xu, J. Plast. Eng. 15 (2008) No. 4, 121–125.

    Google Scholar 

  21. N. Ridley, Metall. Mater. Trans. A 15 (1984) 1019–1036.

    Article  Google Scholar 

  22. A. Marder, B. Bramfitt, Metall. Trans. A 6 (1975) 2009–2014.

    Article  Google Scholar 

  23. S. Suresh, A. Giannakopoulos, Acta Mater. 46 (1998) 5755–5767.

    Article  Google Scholar 

  24. Y.H. Lee, D. Kwon, J. Mater. Res. 17 (2002) 901–906.

    Article  Google Scholar 

  25. J.G. Swadener, B. Taljat, G.M. Pharr, J. Mater. Res. 16 (2001) 2091–2102.

    Article  Google Scholar 

  26. M.L. Dong, G. Jin, H.D. Wang, L.N. Zhu, J.N. Liu, Mater. Rev. 28 (2014) No. 3, 107–113.

    Google Scholar 

  27. L.N. Zhu, B.S. Xu, H.D. Wang, C.B. Wang, Mater. Sci. Eng. A 536 (2012) 98–102.

    Article  Google Scholar 

  28. V. Venkatesh, Gouthama, K. Mondal, J. Alloy. Compd. 692 (2016) 745–757.

    Article  Google Scholar 

  29. W. Oliver, G. Pharr, J. Mater. Res. 19 (2004) 3–20.

    Article  Google Scholar 

  30. M.X. Tan, Acta Metall. Sin. 41 (2005) 1020–1024.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 51774033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-bin Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, C., Wu, Hb. & Wang, Xt. Effect of cooling rate on microstructure, hardness, and residual stress of 0.28C–0.22Ti wear-resistant steel. J. Iron Steel Res. Int. 26, 866–874 (2019). https://doi.org/10.1007/s42243-019-00283-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00283-1

Keywords

Navigation